Warm-up as You Log In

Suppose we have a function that takes in a vector and squares each \j
element individually, returning another vector, y = f(x).
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What is dy/dx?




Announcements

Assignments

= HWS5
= Due Mon, 10/26, 11:59 pm
= Start early

Recitation

= No recitation this Friday
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Backpropagation (so-far)

Compute derivatives per layer, utilizing previous derivatives

Objective: ] (w) e :_;@_1_5
Arbitrary layer: y = f(x,w)

Need:
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Matrix Calculus

~—= Jacobian: Vector in, vector out
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Matrix Calculus

Vector in, scalar out
Numerator-layout

y=f(x) y€eR, xeRYM g—ieIR“M
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Matrix Calculus

Scalar in, vector out
Numerator-layout
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Matrix Calculus

Gradient: Vector in, scalar out
Transpose of numerator-layout
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‘Matrix Calculus

Matrix in, scalar out

Keep same dimensions as matrix
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Warm-up as You Log In LX &

—

Suppose we have a function that takes in a vector and squares each
element individually, returning another vector, y = f(x).
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Calculus Chain Rule

Scalar: Multivariate: Multivariate:

y = f(2) y = f(z) y = f(2)

z=g(x) z=g(x) z=g(x)
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F. None of the above



Piazza Poll 1

y=f(z) vyeER zeRY xeR

z = g(x)
Select all that apply
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Piazza Poll 2

y=f(z) yeR zeR", xeR"

z = g(x)

Select all that apply =
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None of the above




Piazza Poll 2

y = f(2)
z = g(x)
Select all that apply



Network Optimization
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Backpropagation (updated)
Compute derivatives per layer, utilizing previous derivatives
Objective: J(w)

Arbitrary layer: y = f(x,w)
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Neural Network Implementation /
—Z

Which pieces to we treat as functions? —
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Neural Networks Properties ;}/\

Practical considerations

" Large number of neurons
» Danger for overfitting
* Modelling assumptions vs data assumptions trade-off

* Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

= Atwo-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.

3

N\ L



Classification Design Challenge ha(x) = sign(wax + b,)

hp(x) = sign(whx + b
How could you configure three specific hBE % B .g E ;3, N ng
perceptrons to classify this data? C 32 = stgn ch C
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Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Convolutional Neural Nets



Computer Vision: How far along are we?




Computer Vision: How far along are we?

Terminator 2, 1991 https://www.youtube.com/watch?v=9MeaaCwBW?28



https://www.youtube.com/watch?v=9MeaaCwBW28

Computer Vision: How far along are we?
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personi1,00 . T .
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He, Kaiming, et al. "Mask R-CNN." Computer Vision (ICCV), 2017 IEEE
International Conference on. IEEE, 2017.

Mask R-CNN



Computer Vision: How far along are we?

“My CPU is a neural net processor, a learning computer”

Terminator 2, 1991




Computer Vision: Autonomous Driving

Tesla, Inc: https://vimeo.com/192179726



https://vimeo.com/192179726

Computer Vision: Domain Transfer

CycleGAN

Jun-Yan Zhu*, Taesung Park™, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks", ICCV 2017.



Outline

2. Why convolutional neural networks
" Old school computer vision

" Image features and classification



Image Classification

What's the problem with just directly classifying raw pixels in high
dimensional space?




Image Classification

[Dalal and Triggs, 2005]



HoG Filter

HoG: Histogram of oriented gradients

[Dalal and Triggs, 2005]



Image Classification

HOG features passed to a linear classifier (logistic regression / SVM)




Classification: Learning Features

Feature representation
tmm N Ao
ebANAE RS 3rd layer
AR Bahdl  “Objects”

Output
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Example from Honglak Lee (NIPS 2010)



Classification: Deep Learning
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Fully connected neural network?
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Convolutional Neural Networks

Convolutxign
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Convolution
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Convolution




Convolution

Signal processing definition

z[i,j] = 2 z @u

u_—OO V=—00

Relaxed definition

=D finity; don’t flip k |
rop in inity; don’t flip kerne

z|i,j] = ZZ x[li +u,j+v]:

u=0 v=0

g

wlu,v]
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Convolution

Relaxed definition —
K—-1 K-1
l+u + v Wuv
Ail= ) ) alitw)+ vl win,v
u 0 v=0 |
for 1 in range(0, Im width - K + 1):

for j in range(0, 1Im height - K + 1):

im out[i,j] = 0
rggr u 1n range (0, K):

for v in range (0, K):

- im out([i,j] += im[i+u, Jj+v] * kernellu,V]
/
GPU!!
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Piazza Poll 3 : Which kernel goes with which output image?
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Piazza Poll 3: Which kernel goes with which output image?

Input K1 K2 K3




Convolutional Neural Networks

Convolution




Convolutional Neural Networks

Convolution
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Stride: Max Pooling
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Stanford CS 231n, Spring 2017

— T

max pool with 2x2 filters
and stride 2 6
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Convolutional Neural Networks

Convolution




Convolutional Neural Networks

Convolution
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Convolutional Neural Networks

263
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Convolution

Pooling
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Convolutional Neural Networks

Lenet5 — Lecun, et al, 1998

/
= Convnets for digit recognition

6 @545

C3:f. maps 16@10x10

INFUT %ﬂfﬂlﬁmmﬂﬁ . 54 f. maps 16@5x5
d2x32 — S2: 1. maps EE layer
ede /\-55@1 maf Vo Feyer QUTPUT

N

?\D FuII connection Gaussmn connections

Convolutions Subsampling Comvolutions — Su L‘rﬁamplmg Full connection

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11
(1998): 2278-2324.



Question:

How big many convolutional weights between S2 and C3?
= S2: 6 channels @14x14
= Conv: 5x5, pad=0, stride=1
" C3:16 channels @ 10x10

C3: f. maps 16@ 1010
C1: feature maps —_—
RPLIT @2 8:28
3232 S2: f. maps

S@14x14

|T_

\
| i
-‘ |

Convolutions Subsampling Corvolutions  Subsampling



Question:

How big many convolutional weights between S2 and C3?
= S2: 6 channels @14x14
= Conv: 5x5, pad=0, stride=1
" C3:16 channels @ 10x10
C3:f. maps 16@10x10 é Wi Kuvz

=2: 1. maps

P |T_
5

Corvolutions S2: 6x14x14

/\Cr)ne image in C3 is actually the result of a 3D convolution
%

\ &

Kernel_1: 6x5x5 C3_1: 1x10x10




Question:

How big many convolutional weights between S2 and C3?
= S2: 6 channels @14x14 _ |
Each image in C3 convolved S2
= Conv: 5)(5’ pad:()’ stride=1 convolved with a different 3D kernel
= C3: 16 channels @ 10x10 Kernel_2: 6x5x5 C3_2: 1x10x10

C3: f. maps 16@10x10

|T_
%

=2. T maps
6@14x14

e L

| ] Kernel 1:6x5x5 C3_1:1x10x10
Corvolutions S2: 6x14x14




Question:

How big many convolutional weights between S2 and C3?

m S2: 6 channels @14x14
The 16 images in C3 are the result of doing 16 3D

= Conv: 5x5, pad=O, stride=1 convolutions of S2 with 16 different 6x5x5 kernels.

Assuming no bias term, this is 16x6x5x5 weights!
" C3:16 channels @ 10x10

C3: f. maps 16@10x10 ‘ |
=2. T maps r
6@14x14 r

| . Kernels:
Cormvalutions S2: 6x14x14 16@6X5X5 C3: 16@1OX1O



Convolutional Neural Networks

Alexnet — Lecun, et al, 2012

= Convnets for image classification

* More data & more compute power
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Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural
networks." NIPS, 2012.



CNNs for Image Recognition
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Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

Slide from Kaiming He



