### Announcements

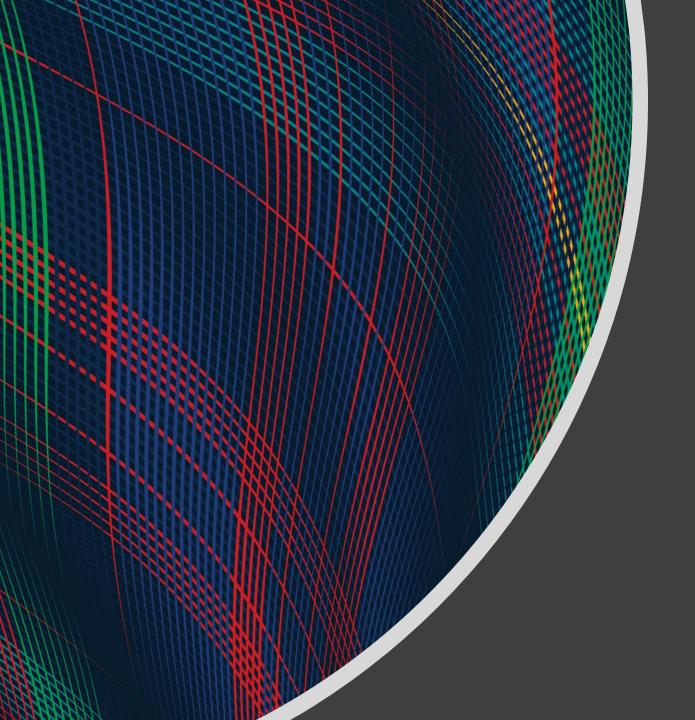
#### Assignments

- HW4
  - Due Wed, 10/14, 11:59 pm
- HW5
  - Plan: Out tomorrow
  - Due Mon, 10/26, 11:59 pm

#### Recitation

- No recitation the next two Fridays 😊
- We'll post a worksheet for neural nets and record a walk-through

#### Survey



Introduction to Machine Learning

Neural Networks

Instructor: Pat Virtue

#### Plan

#### **Last Time**

- Neural Networks
  - Perceptron
  - Multilayer perceptron

#### Today

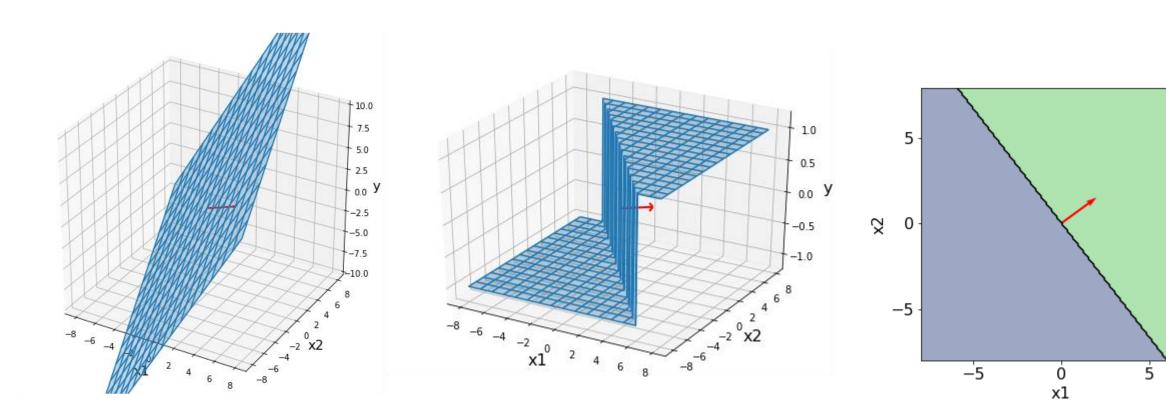
- Neural Networks
  - Building blocks
  - Optimization
    - Composite functions and chain rule
    - Forward-backward passes
    - Matrix calculus

### Perceptron

$$sign(\mathbf{z}) = \begin{cases} 1, & if \ z \ge 0 \\ -1, & if \ z < 0 \end{cases}$$

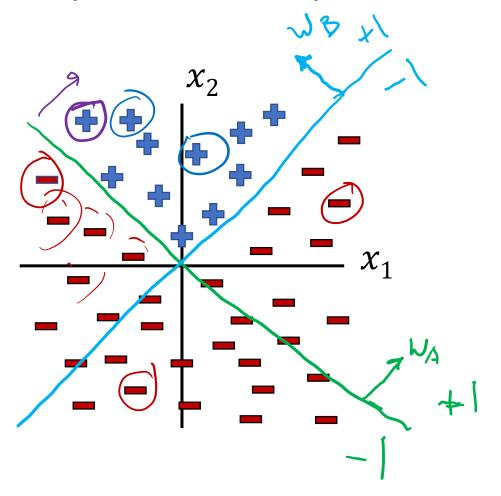
#### Classification: Hard threshold on linear model

$$h(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x} + b)$$



# Classification Design Challenge

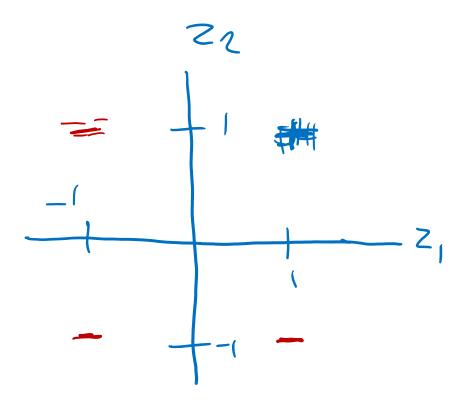
How could you configure three specific perceptrons to classify this data?



$$z_{1} = h_{A}(\mathbf{x}) = sign(\mathbf{w}_{A}^{T}\mathbf{x} + b_{A})$$

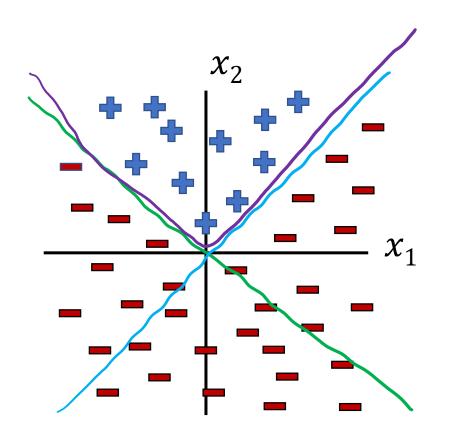
$$z_{2} = h_{B}(\mathbf{x}) = sign(\mathbf{w}_{B}^{T}\mathbf{x} + b_{B})$$

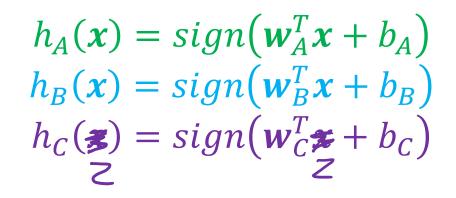
$$h_{C}(\mathbf{z}) = sign(\mathbf{w}_{C}^{T}\mathbf{z} + b_{C})$$

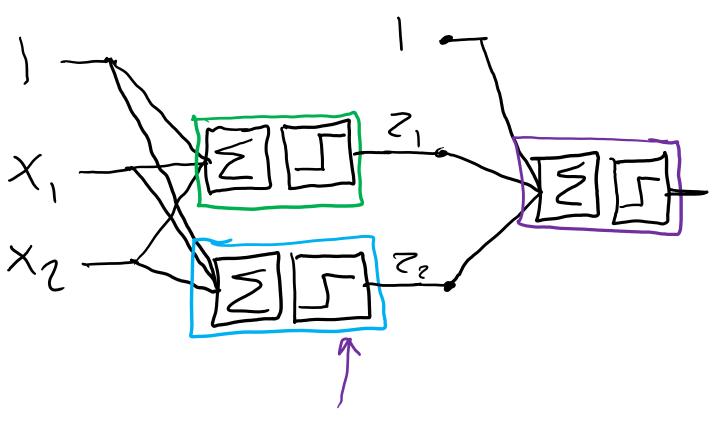


# Classification Design Challenge

How could you configure three specific perceptrons to classify this data?



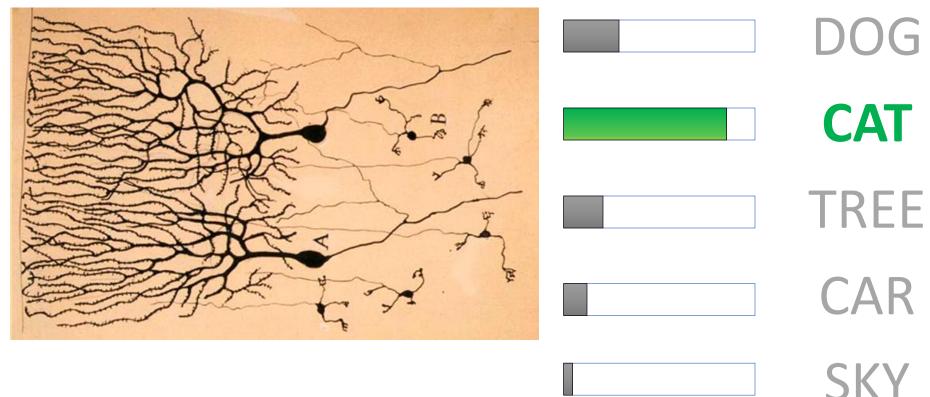




# Neural Networks Inspired by actual human brain

Input Signal





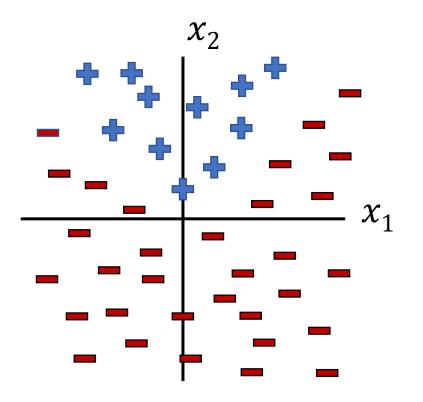
Output

Signal

Image: https://en.wikipedia.org/wiki/Neuron

# Classification Design Challenge

How could you configure three specific perceptrons to classify this data?



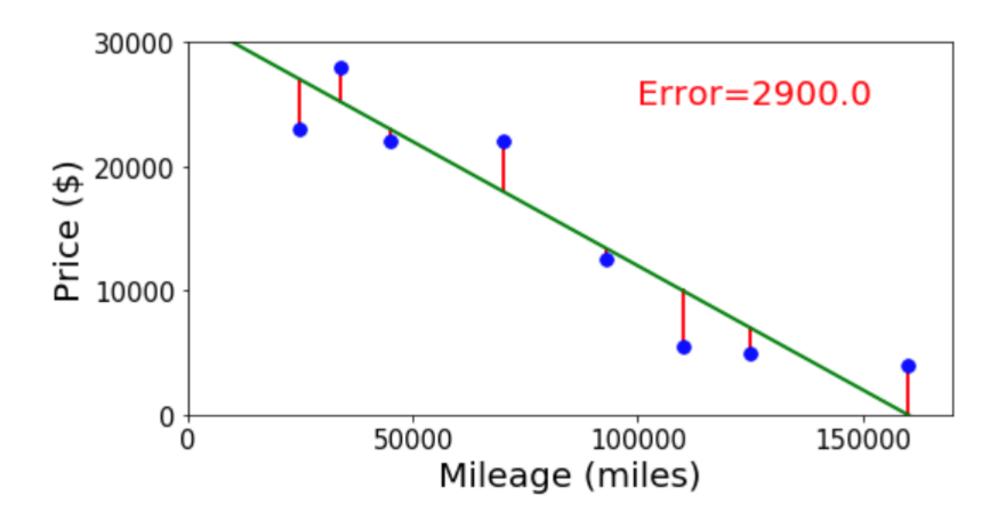
$$h_A(\mathbf{x}) = sign(\mathbf{w}_A^T \mathbf{x} + b_A)$$

$$h_B(\mathbf{x}) = sign(\mathbf{w}_B^T \mathbf{x} + b_B)$$

$$h_C(\mathbf{x}) = sign(\mathbf{w}_C^T \mathbf{x} + b_C)$$

# Neural Networks Simple single neuron example:

Selling my car



### Neural Networks

Many layers of neurons, millions of parameters

Output Signal Input Signal **CAT** TREE CAR

### Neural Networks

Many layers of neurons, millions of parameters

Signal Input Signal **CAT** TREE CAR

Output

### Neural Networks

Many layers of neurons, millions of parameters

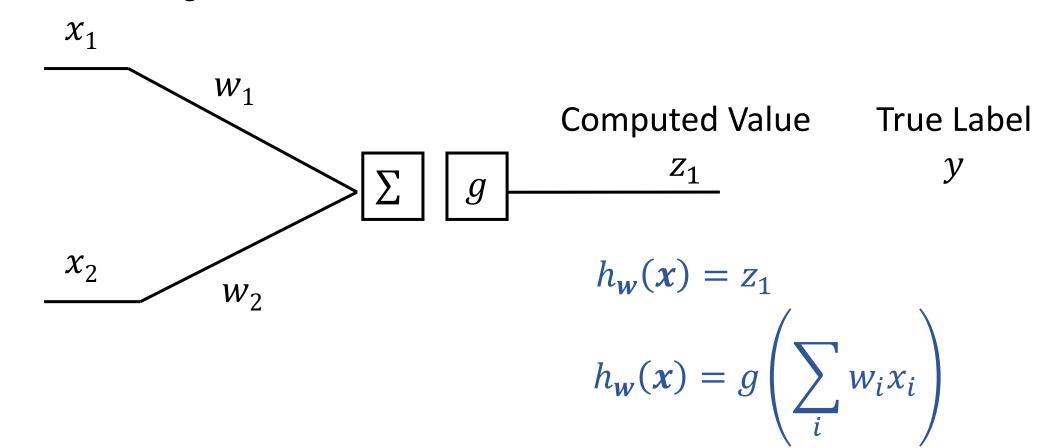
Signal Input Signal **RIGHT** 

Output

# Single Neuron

#### Single neuron system

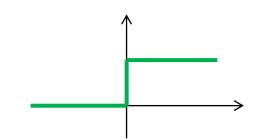
- Perceptron (if g is step function)
- Logistic regression (if g is sigmoid)
- Linear regression (if *g* is nothing)



### **Activation Functions**

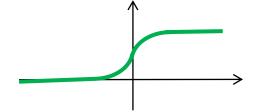
#### It would be really helpful to have a g(z) that was nicely differentiable

■ Hard threshold: 
$$g(z) = \begin{cases} 1 & z \ge 0 \\ 0 & z < 0 \end{cases}$$
  $\frac{dg}{dz} = \begin{cases} 0 & z \ge 0 \\ 0 & z < 0 \end{cases}$ 



• Sigmoid: 
$$g(z) = \frac{1}{1+e^{-z}}$$

$$\frac{dg}{dz} = g(z) (1 - g(z))$$



ReLU:

$$g(z) = max(0, z) \qquad \frac{dg}{dz} = \begin{cases} 1 & z \ge 0 \\ 0 & z < 0 \end{cases}$$



# Optimizing

How do we find the "best" set of weights?

$$h_{\mathbf{w}}(\mathbf{x}) = g\left(\sum_{j} w_{j} x_{j}\right)$$

### Loss Functions

#### Regression

■ Squared error:  $\ell(y, \hat{y}) = (y - \hat{y})^2$ 

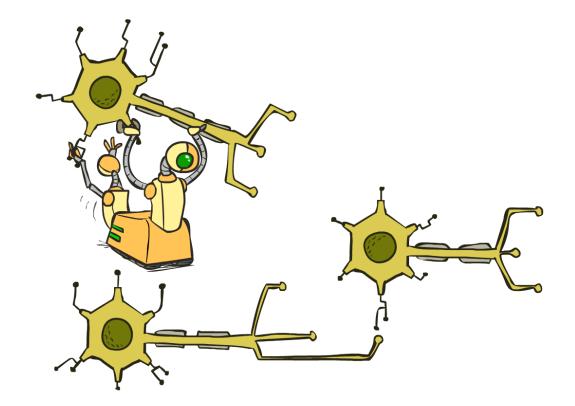
#### Classification

• Cross entropy:  $\ell(\boldsymbol{y}, \widehat{\boldsymbol{y}}) = -\sum_k y_k \log \widehat{y}_k$ 

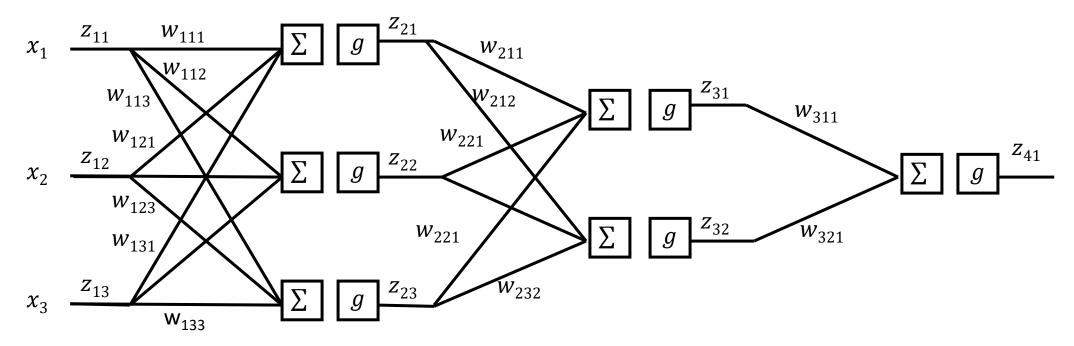
# Multilayer Perceptrons

A *multilayer perceptron* is a feedforward neural network with at least one *hidden layer* (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function



# Neural Network Equations



$$h_{w}(\mathbf{x}) = z_{4,1} \qquad z_{1,1} = x_{1}$$

$$z_{4,1} = g(\sum_{i} w_{3,i,1} z_{3,i})$$

$$z_{3,1} = g(\sum_{i} w_{2,i,1} z_{2,i}) \qquad h_{w}(\mathbf{x}) = g\left(\sum_{k} w_{3,k,1} g\left(\sum_{j} w_{2,j,k} g\left(\sum_{i} w_{1,i,j} x_{i}\right)\right)\right)$$

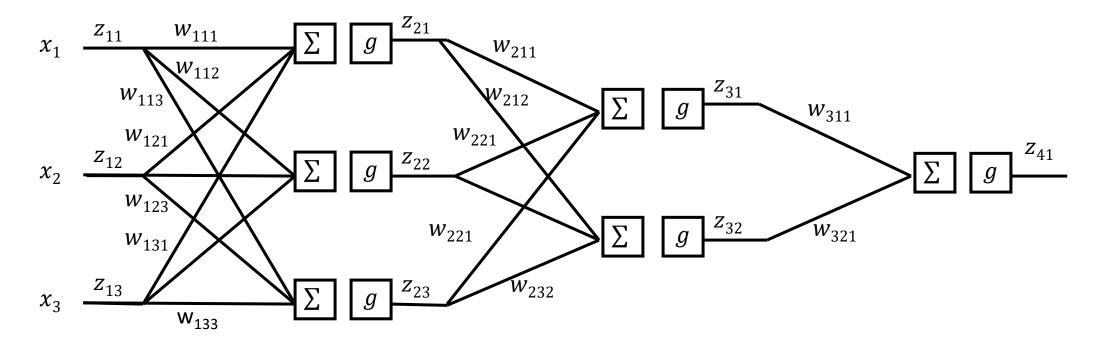
$$z_{d,1} = g(\sum_{i} w_{d-1,i,1} z_{d-1,i})$$

# Optimizing

How do we find the "best" set of weights?

$$h_w(x) = g\left(\sum_k w_{3,k,1} \ g\left(\sum_j w_{2,j,k} \ g\left(\sum_i w_{1,i,j} \ x_i\right)\right)\right)$$

# Neural Network Equations



How do we describe this network?

# Network Optimization Details

# Reminder: Calculus Chain Rule (scalar version)

$$y = f(z)$$
  
$$z = g(x)$$

$$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$$

# Network Optimization

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

# Network Optimization: Forward then Backwards

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

$$\frac{\partial J}{\partial w_3} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_3}$$

$$\frac{\partial J}{\partial w_2} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial w_2}$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

Lots of repeated calculations

# Network Optimization: Layer Implementation

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

$$\frac{\partial J}{\partial w_3} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_3}$$

$$\frac{\partial J}{\partial w_2} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial w_2}$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

Lots of repeated calculations

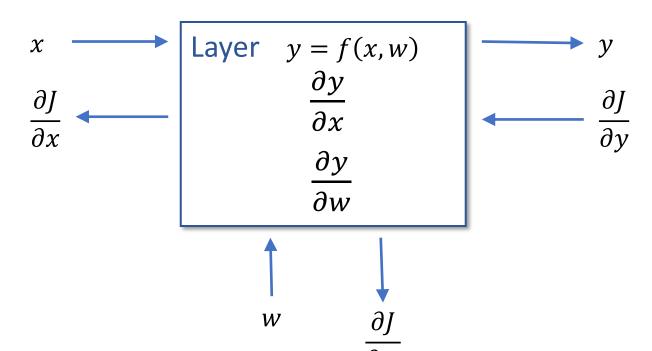
# Backpropagation (so-far)

Compute derivatives per layer, utilizing previous derivatives

Objective: J(w)

Arbitrary layer: y = f(x, w)

#### Need:



One way to think of it: Bag of Derivatives

One way to think of it: Bag of Derivatives

Jacobian: Vector in, vector out

Numerator-layout

$$y = f(x)$$
  $y \in \mathbb{R}^N$ ,  $x \in \mathbb{R}^M$ ,  $\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M}$ 

Vector in, scalar out

Numerator-layout

$$y = f(x)$$
  $y \in \mathbb{R}$ ,  $x \in \mathbb{R}^M$ ,  $\frac{\partial y}{\partial x} \in \mathbb{R}^{1 \times M}$ 

Scalar in, vector out

Numerator-layout

$$y = f(x)$$
  $y \in \mathbb{R}^N$ ,  $x \in \mathbb{R}$ ,  $\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times 1}$ 

Gradient: Vector in, scalar out

Transpose of numerator-layour

$$y = f(x)$$
  $y \in \mathbb{R}$ ,  $x \in \mathbb{R}^M$ ,  $\frac{\partial y}{\partial x} \in \mathbb{R}^{1 \times M}$ ,  $\nabla_x f \in \mathbb{R}^{M \times 1}$ 

Matrix in, scalar out

Keep same dimensions as matrix

$$y = f(X)$$
  $y \in \mathbb{R}$ ,  $X \in \mathbb{R}^{N \times M}$ ,  $\frac{\partial y}{\partial X} \in \mathbb{R}^{N \times M}$ 

### Multivariate Chain Rule

$$z_1 = g_1(x) = \sin(x)$$

$$z_2 = g_2(x) = x^3$$

$$y = f(z_1, z_2) = z_1^4 e^{z_2} + 5z_1 + 7z_2$$

### Multivariate Chain Rule

$$z_1 = g_1(x) = \sin(x)$$
  
 $z_2 = g_2(x) = x^3$   
 $y = f(z_1, z_2) = z_1 z_2$ 

### Calculus Chain Rule

#### Scalar:

$$y = f(z)$$

$$z = g(x)$$

$$\frac{dy}{dz} = \frac{dy}{dz} \frac{dz}{dz}$$

#### Multivariate:

$$y = f(\mathbf{z})$$
$$\mathbf{z} = g(x)$$

$$\frac{dy}{dx} = \sum_{j} \frac{\partial y}{\partial z_{j}} \frac{\partial z_{j}}{\partial x}$$

#### Multivariate:

$$\mathbf{y} = f(\mathbf{z})$$

$$\mathbf{z} = g(\mathbf{x})$$

$$\frac{dy_{i}}{dx_{k}} = \sum_{j} \frac{\partial y_{i}}{\partial z_{j}} \frac{\partial z_{j}}{\partial x_{k}}$$

### Network Optimization

$$J(w) = z_4$$

$$z_4 = f_4(w_D, w_E, z_2, z_3)$$

$$z_3 = f_3(w_C, z_1)$$

$$z_2 = f_2(w_B, z_1)$$

$$z_1 = f_1(w_A, x)$$

Need multivariate chain rule!

# Network Optimization

$$J(\mathbf{w}) = z_4$$

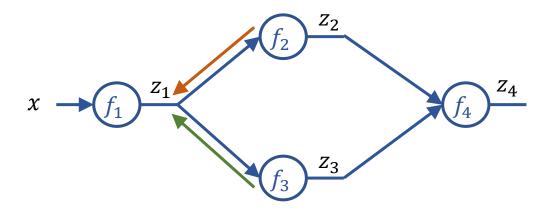
$$z_4 = f_4(w_D, w_E, z_2, z_3)$$

$$z_3 = f_3(w_C, z_1)$$

$$z_2 = f_2(w_B, z_1)$$

$$z_1 = f_1(w_A, x)$$

#### Need multivariate chain rule!



$$\frac{\partial J}{\partial w_E} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial w_E}$$

$$\frac{\partial J}{\partial w_D} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial w_D}$$

$$\frac{\partial J}{\partial z_3} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial z_3}$$
$$\frac{\partial J}{\partial z_2} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial z_2}$$

$$\frac{\partial J}{\partial w_C} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_C}$$
$$\frac{\partial J}{\partial w_B} = \frac{\partial J}{\partial z_2} \frac{\partial z_2}{\partial w_B}$$

$$\frac{\partial J}{\partial z_1} = \frac{\partial J}{\partial z_2} \frac{\partial z_2}{\partial z_1} + \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_1}$$

$$\frac{\partial J}{\partial w_A} = \frac{\partial J}{\partial z_1} \frac{\partial z_1}{\partial w_A}$$

# Backpropagation (updated)

#### Compute derivatives per layer, utilizing previous derivatives

Objective: I(w)

Arbitrary layer: y = f(x, w)

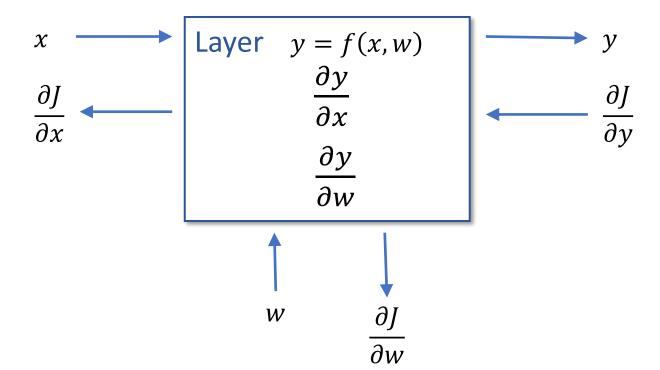
#### Init:

$$\blacksquare \frac{\partial J}{\partial x} = 0$$

$$\frac{\partial J}{\partial x} = 0$$

$$\frac{\partial J}{\partial w} = 0$$

#### Compute:



### Neural Networks Properties

#### Practical considerations

- Large number of neurons
  - Danger for overfitting
- Modelling assumptions vs data assumptions trade-off
- Gradient descent can easily get stuck local optima

#### What if there are no non-linear activations?

 A deep neural network with only linear layers can be reduced to an exactly equivalent single linear layer

#### **Universal Approximation Theorem:**

 A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.