Announcements

Assignments

- HW3
- Mon, 9/28, 11:59 pm

Midterm 1

- Mon, 10/5
- See Piazza for details
- Fill out swap-section / conflict form by Friday

Plan

Last time

- Regression
- Linear regression
- Optimization for linear regression

Today

- Optimization for linear regression
- Linear and convex function
- (Batch) Gradient descent
- Closed-form solution
- Stochastic gradient descent

Introduction to Machine Learning

Linear Regression and Optimization

Instructor: Pat Virtue

Linear Regression
Selling my car

$$
\begin{aligned}
& y=m x+b \\
& y=w x+b
\end{aligned}
$$

$$
y=w_{1} x+w_{0}
$$

$$
y=\theta_{1} x+\theta_{0}
$$

Linear Function

Linear function

If $f(\boldsymbol{x})$ is linear, then:

- $f(\boldsymbol{x}+\mathbf{z})=f(\boldsymbol{x})+f(\mathbf{z})$
- $f(\underline{x})=\alpha f(\boldsymbol{x}) \quad \forall \alpha$
$\rightarrow \frac{f(\alpha \boldsymbol{x}+(1-\alpha) \mathbf{z})}{1}=\underline{\alpha f(\boldsymbol{x})+(1-\alpha) f(\mathbf{z})} \quad \forall \alpha$

$$
\alpha=0,25
$$

Piazza Poll 1

$$
y=\underbrace{\frac{w x_{1}}{}}_{\underbrace{\text { linear }}_{\text {aft }}}+b
$$

Based on the following definition of a linear, is the equation for a line, $y=w x+b$, linear? Example: $y=3 x+5$
$f(x)$ is linear if and only if:

$$
y=\underbrace{{\stackrel{\rightharpoonup}{w} T \vec{x}_{j}}_{\text {linear }}^{\text {lin }}}_{\text {affine }}
$$

- $f(\boldsymbol{x}+\mathbf{z})=f(\boldsymbol{x})+f(\mathbf{z})$ and
- $f(\alpha x)=\alpha f(x) \quad \forall \alpha \longleftarrow$

$$
\text { Yes } 62 \rightarrow \begin{aligned}
& 32 \% \\
& 670
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=7 \\
& f(7 x)=3(7 x)+5 \\
&=21 x+5 \\
& \neq 7(3 x+5)
\end{aligned}
$$

Linear Regression
Linear algebra formulation

Linear Regression

$$
\begin{aligned}
& \text { Error and objectives } \\
& J(w, b)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2} \\
& \hat{y}^{(i)}=\omega x^{(i)}+b \\
& J\left(w_{1} w_{2} b\right)=\frac{1}{N} \sum\left(y^{(i)}-\hat{y}^{(i)}\right)^{2} \\
& \hat{y}^{(i)}=\omega_{1} x_{1}^{(i)}+\omega_{2} x_{2}^{(i)}+b \\
& J\left(w, \ldots w_{M}, b\right)= \\
& \hat{y}^{(i)}=\sum_{j=1}^{M} \omega_{j} x_{j}^{(i)}+b
\end{aligned}
$$

Linear Regression

$$
\begin{aligned}
& \text { Linear algebra formulation, } \\
& \vec{\theta}=\left[\begin{array}{l}
b \\
w_{1} \\
w_{2}
\end{array}\right] \quad \vec{x}^{(i)}=\left[\begin{array}{l}
1 \\
x_{1}^{(i)} \\
x_{2}^{(i)}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
1 & x_{1}^{(1)} & x_{2}^{(1)} \\
& \vdots & \\
1 & x_{1}^{(N)} & x_{2}^{(N)}
\end{array}\right] \\
& \vec{y}=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(1)}
\end{array}\right] \\
& J(\vec{\theta})=\frac{1}{N}\|\vec{y}-\hat{\vec{y}}\|_{2}^{2}=\frac{1}{N}\|\vec{y}-X \vec{\theta}\|_{2}^{2} \\
& \frac{l_{L} \text {-nom sequard }}{\|\hat{z}\|_{2}^{2}=} \\
& \sum_{i=1}^{N}\left(z_{i}\right)^{2}
\end{aligned}
$$

Previous Piazza Poll

For fixed data and fixed slope, w, what shape do we get by plotting MSE objective vs intercept, b?
A. Line
B. Plane
C. Half-plane
D. Convex Parabola (U-shape)
E. Concave parabola (up-side-down U)
F. None of the above

Linear Regression

Optimizing the objective

$$
J(w, b)=\frac{1}{2}\left[\left(y^{(1)}-\left(w x^{(1)}+\underset{\uparrow}{b}\right)\right)^{2}+\left(y^{(2)}-\left(w x^{(2)}+\underset{\uparrow}{b}\right)\right)^{2}\right]
$$

Linear Regression

Optimizing the objective
$J(w, b)=\frac{1}{2}\left[\left(y^{(1)}-\left(w x^{(1)}+b\right)\right)^{2}+\left(y^{(2)}-\left(w x^{(2)}+b\right)\right)^{2}\right]$

Linear Regression

Methods for optimizing the objective

$$
J(w, b)
$$

- Grid search
- Random search
- Closed-form solution
((Batch) Gradient descent
- Stochastic gradient descent

Optimization

Linear function

If $f(\boldsymbol{x})$ is linear, then:

- $f(\boldsymbol{x}+\mathbf{z})=f(\boldsymbol{x})+f(\mathbf{z})$
- $f(\underline{x})=\alpha f(\boldsymbol{x}) \quad \forall \alpha$
$\rightarrow \quad \underbrace{f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{z})}_{1}=\underline{\alpha f(\boldsymbol{x})+(1-\alpha) f(\mathbf{z})} \quad \forall \alpha$

$$
\alpha=0,25
$$

Optimization

Convex function

If $f(\boldsymbol{x})$ is convex, then:

- $f(\alpha \boldsymbol{x}+(1-\alpha) \mathbf{z}) \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\mathbf{z}) \quad \forall 0 \leq \alpha \leq 1$

Convex optimization

If $f(\boldsymbol{x})$ is convex, then:

- Every local minimum is also global minimum ©

Linear Regression

Optimizing the objective

Optimization

$$
\vec{\theta}=\left[\begin{array}{l}
b \\
w
\end{array}\right]
$$

Gradients

$$
\begin{aligned}
& \text { Optimization } \\
& \text { Gradients } \\
& \text { function } f: \mathbb{R}^{\mu} \rightarrow \mathbb{R} \\
& \text { gradient } \nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \nabla_{z} f(z)=\left[\begin{array}{l}
\frac{\partial f}{\partial z_{1}} \\
\frac{\partial f}{\partial z_{2}} \\
\frac{\partial f}{\partial z_{M}}
\end{array}\right] \\
& \nabla f(\vec{z}) \\
& \nabla_{\vec{z}} g(\vec{z}, \vec{u})
\end{aligned}
$$

Optimization

Gradients

Optimization
Gradient descent
Choose learning rate

$$
\alpha>0
$$

Initial $\vec{\theta}^{(0)} b^{(0)} \omega^{(0)}$ parameters
Loop

Linear Regression

$$
\|\vec{z}\|_{2}^{2}=\sum_{i=1}^{N} z_{i}^{2}=\sum_{i=1}^{N} z_{i} z_{i}=\vec{z}^{\top} \vec{z}
$$

Expanding objective before computing gradient

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{N}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta}\|_{2}^{2} \\
& =\frac{1}{N}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta}) \\
& =\frac{1}{N}\left(\boldsymbol{y}^{T}-\boldsymbol{\theta}^{T} \boldsymbol{X}^{T}\right)(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta}) \\
& =\frac{1}{N}\left(\boldsymbol{y}^{T} \boldsymbol{y}-\underline{\left.\boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{y}-\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{\theta}+\boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta}\right)}\right. \\
& =\frac{1}{N}\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{y}+\boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta}\right)
\end{aligned}
$$

Linear Regression

$$
\begin{array}{r}
\frac{\partial z^{T} \boldsymbol{u}}{\partial z}=\boldsymbol{u} \\
\quad-- \text { or -- }
\end{array}
$$

Gradient of objective with respect to parameters

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{N}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta}\|_{2}^{2} \\
& =\frac{1}{N}\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{y}+\boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta}\right) \\
\nabla J(\boldsymbol{\theta}) & =\frac{1}{N}\left(0-2 \boldsymbol{X}^{T} \boldsymbol{y}+2 \boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{X}\right) \\
& =\frac{1}{N}\left(0-2 \boldsymbol{X}^{T} \boldsymbol{y}+2 \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta}\right) \\
& =\frac{2}{N}\left(-\boldsymbol{X}^{T} \boldsymbol{y}+\boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \boldsymbol{z}^{T} A z}{\partial \boldsymbol{z}}=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) \mathbf{z} \\
& \text {-- or -- } \\
& \frac{\partial \boldsymbol{z}^{T} A \boldsymbol{z}}{\partial \boldsymbol{z}}=\boldsymbol{z}^{T}\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right)
\end{aligned}
$$

Dimension mismatch

Linear Regression
Closed-form solution

$$
\begin{aligned}
& \nabla J(\theta)=\frac{2}{N}\left(-X^{T} y+X^{T} X \theta\right) \\
& \nabla J(\theta)=0 \\
& X^{\top} X \theta=X^{\top} y \leftarrow N_{\text {dermal equation }} \\
& \hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} y
\end{aligned}
$$

Linear Regression

Number of solutions

A Note on Matrix Rank
Underlying dimensionality of the data

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
1 & 1 & 1 \\
2 & 2 & 2 \\
5 & 5 & 5 \\
3 & 3 & 3
\end{array}\right] \\
\operatorname{Rank}(A)=1
\end{gathered}
$$

Linear Regression

Methods for optimizing the objective

$$
J(w, b)
$$

- Grid search
- Random search
- Closed-form solution
- (Batch) Gradient descent
- Stochastic gradient descent

Linear Regression

Methods for optimizing the objective

$$
J(w, b)
$$

- Grid search
- Random search
- Closed-form solution
- (Batch) Gradient descent
- Stochastic gradient descent

Linear Regression Gradient Descent
$J(\theta)=\frac{1}{\pi} \sum_{i=1}^{n}\left(y^{(M)}-x^{4}\left(x^{\prime}\right)\right)^{2}$
What happens in gradient descent when we have

$$
\begin{aligned}
& N=1,000,000 \text { training points? } \\
& \nabla_{\theta} J=\left[\begin{array}{l}
\frac{\partial J}{\partial b} \\
\frac{\partial J}{\partial \omega}
\end{array}\right] \int_{i=1}^{N}
\end{aligned}
$$

(Batch) Gradient Descent

$$
\begin{aligned}
& \hline \text { Algorithm } 1 \text { Gradient Descent } \\
& \hline \text { 1: } \\
& \text { 2: } \quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)} \\
& \text { 3: } \quad \text { while not converged do } \\
& \text { 4: } \quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}, \gamma^{2} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
& \text { 5: } \quad \text { return } \boldsymbol{\theta}
\end{aligned}
$$

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure $\operatorname{SGD}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
2: $\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
$\begin{array}{lc}\text { 3: } & \text { while not converged do } \\ \text { 4: } & i \sim \text { Uniform }(\{1,2, \ldots, N\})^{\mathscr{}} \\ \text { 5: } & \left.\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\lambda D_{\boldsymbol{\theta}}((i)\rangle \boldsymbol{\theta}\right) \\ \text { 6: } & \text { return } \boldsymbol{\theta}\end{array}$

We need a per-example objective:

$$
\text { Let } J(\boldsymbol{\theta})=\sum_{i=1}^{N} L^{J^{(i)}(\boldsymbol{\theta})}
$$

Linear Regression

Optimizing the objective

Stochastic Gradient Descent

Linear Regression

Optimizing the objective

Stochastic Gradient Descent

Linear Regression
Optimizing the objective

Stochastic Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

```
Algorithm 2 Stochastic Gradient Descent (SGD)
    1: procedure \(\operatorname{SGD}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)\)
    2: \(\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}\)
    3: while not converged do
    4: \(\quad i \sim \operatorname{Uniform}(\{1,2, \ldots, N\})\)
    5: \(\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\lambda \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})\)
    6: \(\quad\) return \(\theta\)
```


We need a per-example objective:

$$
\text { Let } J(\boldsymbol{\theta})=\sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})
$$

Stochastic Gradient Descent (SGD)

We need a per-example objective:

$$
\text { Let } J(\boldsymbol{\theta})=\sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})
$$

In practice, it is common to implement SGD using sampling without replacement (i.e. shuffle($\{1,2, \ldots N\}$), even though most of the theory is for sampling with replacement (i.e. Uniform($\{1,2, \ldots \mathrm{~N}\}$).

Convergence Curves

Log-log plot of training MSE versus epochs

- Def: an epoch is a single pass through the training data

1. For GD, only one update per epoch
2. For SGD, N updates per epoch N = (\# train examples)

- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

