Announcements

Assignments

- HW8: due Thu, 12/3, 11:59 pm
- HW9
- Out Friday
- Due Wed, 12/9, 11:59 pm
- The two slip days are free (last possible submission Fri, 12/11, 11:59 pm)

Final Exam

- Mon, 12/14
- Stay tuned to Piazza for more details

Wrap-up MDP/RL
RL slides

Introduction to Machine Learning

Support Vector Machines

Instructor: Pat Virtue

Support Vector Machines

$$
\begin{array}{ll}
w^{\top} x+b \geqslant 0 & \hat{y}=+1 \\
w^{\top} x+b<0 & \hat{y}=-1
\end{array}
$$

Linear Classification

Support Vector Machines

Margin

Given a linearly separable dataset and a linear separator defined by the hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$, the margin, γ, is the distance from this hyperplane to the closest point, $\boldsymbol{x}^{(i)}$, in a dataset.

The closest point may be on either side of the hyperplane.

Support Vector Machines

Max Margin

Support Vector Machines
SVM were super popular right before the current deep learning craze

Support Vector Machines

Important concepts withing SVMs

\longrightarrow Max-margin classification

- Optimization
- Constrained optimization
- Quadratic program \leftarrow
$\{$ Primal \rightarrow dual
- Lagrange Multipliers
- Support non-linear classification
- Feature maps
- Kernel trick

Piazza Poll 1

Which is the correct vector \boldsymbol{w} ?
A.
E. I don't know

Constrained Optimization
Linear Program

$$
\begin{array}{ll}
\min _{\boldsymbol{x}} \boldsymbol{c}^{T} \boldsymbol{x} \text { att. } \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
\rightarrow & A_{11} x_{1}+A_{12} x_{2} \leq b_{1} \\
& A_{21} x_{1}+A_{22} x_{2} \leq b_{2}
\end{array}
$$

Constrained Optimization

Linear Program

$\min _{\boldsymbol{x}}$	$\boldsymbol{c}^{T} \boldsymbol{x}$
s.t.	$\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$

Solvers

- Simplex
- Interior point methods

Constrained Optimization

$\min _{\boldsymbol{x}}$	$\boldsymbol{c}^{T} \boldsymbol{x}$
s.t.	$\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$

Quadratic Program

$$
\min _{\boldsymbol{x}} \underbrace{}_{\text {s.t. }} \underbrace{\boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x} \leq \boldsymbol{x}}+\boldsymbol{c}^{T} \boldsymbol{x}
$$

Solvers

- Simplex
- Interior point methods

Constrained Optimization

Linear Program
$\begin{array}{cl}\min _{\boldsymbol{x}} & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\end{array}$

Solvers

- Simplex
- Interior point methods

Quadratic Program

$$
\begin{array}{cl}
\min _{\boldsymbol{x}} & \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

Solvers

- Conjugate gradient
- Ellipsoid method
- Interior point methods

Constrained Optimization

Linear Program
$\begin{array}{cl}\min _{\boldsymbol{x}} & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\end{array}$

Solvers

- Simplex
- Interior point methods

Quadratic Program

$$
\begin{array}{cl}
\min _{\boldsymbol{x}} & \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

Special Case

- If \boldsymbol{Q} is positive-definite, the problem is convex
- \boldsymbol{Q} is positive-definite if:

$$
\boldsymbol{v}^{T} \boldsymbol{Q} \boldsymbol{v}>0 \quad \forall \boldsymbol{v} \in \mathbb{R}^{M} \backslash \mathbf{0}
$$

- A symmetric \boldsymbol{Q} is positivedefinite if all of its eigenvalues are positive

Optimization (from Lecture 7)

Linear function
If $f(\boldsymbol{x})$ is linear, then:

- $f(\boldsymbol{x}+\mathbf{z})=f(\boldsymbol{x})+f(\mathbf{z})$
- $f(\underline{\alpha} \boldsymbol{x})=\alpha f(\boldsymbol{x}) \quad \forall \alpha$
$\rightarrow \quad \frac{f(\alpha \boldsymbol{x}+(1-\alpha) \mathbf{z})}{1}=\underline{\alpha f(\boldsymbol{x})+(1-\alpha) f(\mathbf{z})} \quad \forall \alpha$
$\alpha=0,25$

Optimization (from Lecture 7)

Convex function

If $f(\boldsymbol{x})$ is convex, then:

- $f(\alpha \boldsymbol{x}+(1-\alpha) \mathbf{z}) \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\mathbf{z}) \quad \forall 0 \leq \alpha \leq 1$

Convex optimization

If $f(\boldsymbol{x})$ is convex, then:

- Every local minimum is also global minimum ©

Constrained Optimization

Linear Program
$\begin{array}{cl}\min _{\boldsymbol{x}} & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\end{array}$

Solvers

- Simplex
- Interior point methods

Quadratic Program

$$
\begin{array}{cl}
\min _{\boldsymbol{x}} & \boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

Special Case

- If \boldsymbol{Q} is positive-definite, the problem is convex
- \boldsymbol{Q} is positive-definite if: $\boldsymbol{v}^{T} \boldsymbol{Q} \boldsymbol{v}>0 \quad \forall \boldsymbol{v} \in \mathbb{R}^{M} \backslash \mathbf{0}$
- A symmetric \boldsymbol{Q} is positivedefinite if all of its eigenvalues are positive

Quadratic Program

Support Vector Machines

Find linear separator with maximum margin

Piazza Poll 2

As the magnitude of w increases, will the distance between the contour lines of $y=\boldsymbol{w}^{T} \boldsymbol{x}+b$ increase or decrease?

Support Vector Machines

Find linear separator with maximum margin

Linear Separability

Data
$\mathcal{D}=\left\{\boldsymbol{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N} \quad x \in \mathbb{R}^{M}, \quad y \in\{-1,+1\}$

Linearly separable iff:

$$
\begin{array}{llll}
\exists \boldsymbol{w}, b & \text { s.t. } & \boldsymbol{w}^{T} \boldsymbol{x}^{(i)}+b>0 & \text { if } y^{(i)}=+1 \\
& \boldsymbol{w}^{T} \boldsymbol{x}^{(i)}+b<0 & \text { if } y^{(i)}=-1
\end{array}
$$

Linear Separability

Data
$\mathcal{D}=\left\{\boldsymbol{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N} \quad x \in \mathbb{R}^{M}, \quad y \in\{-1,+1\}$

Linearly separable iff:

$$
\begin{array}{lll}
\exists \boldsymbol{w}, b & \text { s.t. } & \boldsymbol{w}^{T} \boldsymbol{x}^{(i)}+b>0 \\
& & \text { if } y^{(i)}=+1 \text { and } \\
\boldsymbol{w}^{T} \boldsymbol{x}^{(i)}+b<0 & \text { if } y^{(i)}=-1
\end{array}
$$

