### Announcements

#### Assignments

- HW8: due Thu, 12/3, 11:59 pm
- HW9
  - Out Friday
  - Due Wed, 12/9, 11:59 pm
  - The two slip days are free (last possible submission Fri, 12/11, 11:59 pm)

#### Final Exam

- Mon, 12/14 ←
- Stay tuned to Piazza for more details

# Wrap-up MDP/RL

**RL** slides





Introduction to Machine Learning

Support Vector Machines

Instructor: Pat Virtue

**Linear Classification** 





$$\hat{y} = Sign(\omega^T x + b)$$

### Margin

Given a linearly separable dataset and a linear separator defined by the hyperplane  $\mathbf{w}^T \mathbf{x} + b = 0$ ,

the margin,  $\gamma$ , is the distance from this hyperplane to the closest point,  $x^{(i)}$ , in a dataset.

The closest point may be on either side of the hyperplane.



Max Margin



SVM were super popular right before the current deep learning craze



### Important concepts withing SVMs

- Max-margin classification
- Optimization
  - Constrained optimization Quadratic program —

  - Primal → dual
  - Lagrange Multipliers
- Support non-linear classification
  - Feature mapsKernel trick

### Piazza Poll 1

#### Which is the correct vector w?

- Α.
- B
- C.
- D.
- E. I don't know



### Constrained Optimization

### **Linear Program**

$$\min_{x} \quad \underline{c}^{T} x$$
s.t. 
$$Ax \leq b$$

$$A_{11} \times_{1} + A_{12} \times_{2} \leq b_{1}$$

$$A_{21} \times_{1} + A_{22} \times_{2} \leq b_{2}$$



### Constrained Optimization

### **Linear Program**

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
  
s.t. 
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$

#### Solvers

- Simplex
- Interior point methods



Figure: Fig 11.2 from Boyd and Vandenberghe, Convex Optimization

### x 4x + 3x

### Constrained Optimization

### **Linear Program**

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
  
s.t. 
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$

#### Solvers

- Simplex
- Interior point methods

$$\min_{\mathbf{x}} \quad \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{c}^{T} \mathbf{x}$$
s.t. 
$$A\mathbf{x} \leq \mathbf{b}$$

### Constrained Optimization

### **Linear Program**

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
  
s.t. 
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$

#### Solvers

- Simplex
- Interior point methods

#### **Quadratic Program**

$$\min_{\mathbf{x}} \quad \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{c}^{T} \mathbf{x}$$
  
s.t. 
$$A\mathbf{x} \leq \mathbf{b}$$

#### Solvers

- Conjugate gradient
- Ellipsoid method
- Interior point methods

### Constrained Optimization

#### Linear Program

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
  
s.t. 
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$

#### Solvers

- Simplex
- Interior point methods

### **Quadratic Program**

$$\min_{\mathbf{x}} \quad \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{c}^{T} \mathbf{x}$$
  
s.t. 
$$A\mathbf{x} \leq \mathbf{b}$$

#### **Special Case**

- If Q is positive-definite, the problem is convex
- $\mathbf{Q}$  is positive-definite if:  $\mathbf{v}^T \mathbf{Q} \mathbf{v} > 0 \quad \forall \ \mathbf{v} \in \mathbb{R}^M \setminus \mathbf{0}$ 
  - A symmetric *Q* is positivedefinite if all of its eigenvalues are positive

### Optimization (from Lecture 7)

#### Linear function

 $\propto = 0.25$ 

If f(x) is linear, then:

$$f(x+z) = f(x) + f(z)$$

$$f(\alpha x) = \alpha f(x) \quad \forall \alpha$$

$$= f(\alpha x + (1 - \alpha)z) = \alpha f(x) + (1 - \alpha)f(z) \quad \forall \alpha$$



# Optimization (from Lecture 7)

#### Convex function

If f(x) is convex, then:

• 
$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{z}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{z}) \quad \forall \ 0 \le \alpha \le 1$$

### Convex optimization

If f(x) is convex, then:

Every local minimum is also a global minimum ©



### Constrained Optimization

#### Linear Program

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
  
s.t. 
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$

#### Solvers

- Simplex
- Interior point methods

#### **Quadratic Program**

$$\min_{\mathbf{x}} \quad \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{c}^{T} \mathbf{x}$$
  
s.t. 
$$A \mathbf{x} \leq \mathbf{b}$$

#### **Special Case**

- If Q is positive-definite, the problem is convex
- $\mathbf{Q}$  is positive-definite if:  $\mathbf{v}^T \mathbf{Q} \mathbf{v} > 0 \quad \forall \ \mathbf{v} \in \mathbb{R}^M \setminus \mathbf{0}$
- A symmetric Q is positivedefinite if all of its eigenvalues are positive











Find linear separator with maximum margin



### Piazza Poll 2

As the magnitude of w increases, will the distance between the contour lines of  $y = \mathbf{w}^T \mathbf{x} + b$  increase or decrease?



Find linear separator with maximum margin



### Linear Separability

#### Data

$$\mathcal{D} = \left\{ x^{(i)}, y^{(i)} \right\}_{i=1}^{N} \quad x \in \mathbb{R}^{M}, \ y \in \{-1, +1\}$$

#### Linearly separable iff:

$$\exists w, b$$
 s.t.  $w^T x^{(i)} + b > 0$  if  $y^{(i)} = +1$  and  $w^T x^{(i)} + b < 0$  if  $y^{(i)} = -1$ 

### Linear Separability

#### Data

$$\mathcal{D} = \left\{ x^{(i)}, y^{(i)} \right\}_{i=1}^{N} \quad x \in \mathbb{R}^{M}, \ y \in \{-1, +1\}$$

#### Linearly separable iff:

$$\exists w, b \qquad s.t. \quad w^T x^{(i)} + b > 0 \quad \text{if} \quad y^{(i)} = +1 \quad \text{and}$$

$$w^T x^{(i)} + b < 0 \quad \text{if} \quad y^{(i)} = -1$$

$$\Leftrightarrow \exists w, b \quad s.t. \quad y^{(i)} (w^T x^{(i)} + b) > 0$$

$$\Leftrightarrow \exists w, b, c \quad s.t. \quad y^{(i)} (w^T x^{(i)} + b) \ge c \quad \text{and} \quad c > 0$$