Announcements

Assignments
= HWS: Out today, due Thu, 12/3, 11:59 pm

Schedule next week

" Monday: Recitation in both lecture slots
= No lecture Wednesday

"= No recitation Friday

Final exam scheduled

Introc

\ViEYelal

uction to
ne Learning

Reinforcement
Learning

Instructor: Pat Virtue

Last time

-V~
Plan r(/z%\

= Rewards and Discounting L Y
" Finding optimal policies: Value iteration and_liellman equations N~ *
Today

= MDP: How to use optimal values

= Reinforcement learning
= Models are gonel &——
= Rebuilding models
= Sampling and TD learning
= (Q-learning
= Approximate Q-learning

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vier1(s) <+ m(?XZT(S’ a,s') {R(s,a, s + lvk(slﬂ

S

Repeat until convergence

Complexity of each iteration: O(S%A)

Theorem: will converge to unique ggtimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Optimal Quantities

* The value (utility) of a state s:
V@(s) = expected utility starting in s and

sisa
acting optimally state
. (s, a)is a
* The value (utility) of a g-state (s,a): g-state

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

(s,a,s’) is a
transition

" The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) =)max Q" (s, a,)S 1
—> Q"(s,a) = ZT(S,CL,S’) [R(s,a, s + "}/V*(S,)\ x’/,

V*(s) = max) T(s,a,s") [R(s,a, s + ’}/V*(S,)}

f S
Q8= 2 max Q
These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

MDP Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a
Y
Bellman equations: V@(S) = maxz P(s'|s,a)[R(s,a,s") + Y‘@(S’)]
a - 7

S/
Value iteration: I@(s) = maxz P(s'|s,a)[R(s,a,s") +]/I@S’)] , Vs
a
S/

MDP Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V*(s) = maxz: P(s'|s,a)[R(s,a,s") + yV*(s")]
a
S/

Value iteration: Vir1(s) = max E P(s'|s,a)[R(s,a,s") +yVi(s")], Vs
a
S/

Solved MDP! Now what? NORE

What are we going to do with these values??

Piazza Poll 1

It you need to extract a policy, would you rather have). g = acqgnax QG
Qa,

A) Values, E Q- valuesior C) Z-values?

Piazza Poll 1

If you need to extract a policy, would you rather have

A) Values,‘ B) Q—values‘or C) Z-values?

Policy Extraction

|

' —J

Slide: ai.berkeley.edu

Computing Actions from Values

Let’s imagine we have the optimal values V*(s) H
How should we act? e
L | .
= |t’s not obvious!
o] 0.92 4 0.91 0.80
We need to do a mini-expectimax (one step) :

AN

values

7*(s) = arg CILTIaXZ:T(s, a,s)[R(s,a,s") +~V*(s)]

S

This is called policy extraction, since it gets the policy implied by

4

1.00

-1.00

al
",

vV

Computing Actions from Q-Values

Let’s imagine we have the optimal g-values:

How should we act?
=" Completely trivial to decide!

m*(s) = argmaxQ*(s,a)

Important lesson: actions are easier to select from g-values than values!

Two Methods for Solving MDPs

Value iteration + policy extraction

(W/Step 1: Value iteration:
Vis1(s) = max Y, P(s'|s,a)[R(s,a,s") + yVi(s')], Vs until convergence
a <

= Step 2: Policy extraction:
my(s) = argmax)., P(s'|s,a)[R(s,a,s") +yV(s')], Vs
a

—_—

Policy iteration (out of scope for this course)
= Step 1: Policy evaluation:
VE1(s) =Y P(s'|s,m(s))[R(s,m(s),s") + yViF(s")], Vs until convergence
= Step 2: Policy improvement:
nTleW(S) — ar‘gmaX ZSI P(Slls; a) [R(S; a, S’) + yVT[Old (S’)]) v S
a

" Repeat steps until policy converges

Summary: MDP Algorithms

So you want to....
" Compute optimal values: use value iteration or policy iteration
» Turn your values into a policy: use policy extraction (one-step lookahead)

All these equations look the same!

" They basically are — they are all variations of Bellman updates

" They all use one-step lookahead expectimax fragments

* They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

Standard expectimax:

Bellman equations:

CValue iteration:
Q-iteration:
—>Policy extraction:

Policy evaluation:

V(s) = mc?xz P(s'|s,a)V(s") 84/

V*(s) = mélxz P(S’ls,_c_l_)[R(s,g_,s’) + yV*(s")]

— S/

Vs () = max) P(s'ls, [R(s,a,5) + YV D], Vs
— a =

Qr+1(s,a) = P(s'|s,a)[R(s,a,s") + y max Qr(s',a)], Vs,a
a

/

S

Ty (s) = argmaxz P(s'|s,a)[R(s,a,s") +yV(s")], Vs
— a 57

W24() =) P(s'ls isDIRG, (), s + yWIsH], s
/ S/ A= 0(5)

M(s) = a L

MDP Notation

Standard expectimax:
Bellman equations:
Value iteration:
Q-iteration:

Policy extraction:

Policy evaluation:

V(s) = mc?xz P(s'|s,)V (s")

Ve(s) = mc?xyz: P(s'ls,) [R(s, @ s") + yV*(s)]

Verr(s) = maa:(,Z P(s'ls,)[R(s,a,s") + YV (sD], Vs
Qrss(s,a) = Zsz;(sws, D[R(s,a,5) +ymax Qu(s',a)], ¥s,a
7, (s) = argcrln;;(z P(s'|s,)[R(s, a,s") + YV (s)], Vs

VT L (s) = Z P(s'|s, () [R(s, m(s),s") + yVE(sD], Vs

MDP Notation

Standard expectimax:
Bellman equations:
Value iteration:
Q-iteration:

Policy extraction:

Policy evaluation:

V(s) = mc?xz P(s'|s, a)V (s")

Ve (s) = mC?XS,z: P(s'ls,)[R (s, a,5") + yV*(s")]

Verr(s) = maa:(’Z P(s'|s, @) [R(s,a,s") + yVi(s)], Vs
Qrsy(s,a) = ZS;D(SWS, [R(s,a,5) +ymax Qu(s',a)], Vs,
7, (s) = arg:lnzllxz P(s'ls,)[R(s,a,s") +yV(sD], Vs

Vi (s) = Z P(s'|s,m(s))[R(s,m(s),s") + YV, (s)], Vs

MDP Notation

Standard expectimax:
Bellman equations:
Value iteration:
Q-iteration:

Policy extraction:

Policy evaluation:

V(s) = mc?xz P(s'|s, a)V (s")

Ve (s) = mgxsrz P(s'ls,)[R (s, a,5") + yV*(s")]

Viess(s) = maa:(’Z P(s'ls,)[R(s, @ s) +yVi(sN], Vs
Qrss(s,a) = ZS;D(SWS, [R(s,a,5) +ymax Qu(s',a)], Vs,
7, (s) = argcrlnzsalxz P(s'ls,)[R(s,a,s") +yV(sD], Vs

Vi (s) = Z P(s'|s,m(s))[R(s,m(s),s") + yV,'(s)], Vs

Piazza Poll 2

Rewards may depend on any combination of state, action, next state.
Which of the following are valid formulations of the Bellman equations?

Select ALL that apply.

\/A. V*(s) = mC?XZS,P(SllS, a)[R(s,a,s") +yV*(s")]

B. V'(s) = R(s) +ymax 2, P(s'ls,)V (s")

C V*(s) = mc?x[R(S, a) +vy2aP(s'|s,a)V*(s")

D. Q*(s,a) = R(s,a) +y 25 P(s'|s,a) max Q" (s’,a’)

Piazza Poll 2

Rewards may depend on any combination of state, action, next state.
Which of the following are valid formulations of the Bellman equations?

Select ALL that apply.

Vv A V*(s) = mC?XZS,P(SllS, a)[R(s,a,s") +yV*(s")]
v/ B V*(s) = R(s) +y max Y, P(s'ls, @)V (s")
v c V*(s) = mc?x[R(S, a)+vy2aP(s'|s,a)V*(s")

4 D. Q*(s,a) = R(s,a) +y 25 P(s'|s,a) max Q" (s’,a’)

Reinforcement Learning

Double Bandits

Double-Bandit MDP " Nodiscount

100 time steps

Actions: Blue, Red Both states have
the same value

States: Win, Lose

Offline Planning

. . . . 4 No discount
Solving MDPs is offline planning 100 time steps
" You determine all quantities through computation Both states have
" You need to know the details of the MDP the same value

o /
" You do not actually play the game!
Value
Play Red 150

Play Blue 100

_ /

Let’s Play!

S2 $2 S0 $S2 $2
$2 $2 SO SO SO

Online Planning

Rules changed! Red’s win chance is different.

?? SO

Let’s Play!

SO SO SO $2 SO
$2 SO SO SO SO

What Just Happened?

That wasn’t planning, it was learning!
= Specifically, reinforcement learning
" There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

" Exploration: you have to try unknown actions to get information

= Exploitation: eventually, you have to use what you know

= Regret: even if you learn intelligently, you make mistakes

= Sampling: because of chance, you have to try things repeatedly

= Difficulty: learning can be much harder than solving a known MDP

Reinforcement learning

What if we didn’t know P(s}7@) and M?

Value iteration: Vierq(8) = maxz Pls==T0) [Blsrer) + yVi(s)], Vs
Q-iteration: Qr+1(s,a) = Zﬂ@—lﬂ [ResrerS) + y max Q,(s’,a")], Vs,a
Policy extraction: my (s) = argmaxEW[w +yV(s)], Vs

Policy evaluation: Vira(s) = Z s ST [RbesrmsTS) + YV (s)], Vs
Y4

Reinforcement Learning

Agent
State: s o
Reward: r Actions: a
Environment
Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]

Example: Learning to Walk

m

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

Example: Sidewinding

[Andrew Ng] [Video: SNAKE — climbStep+sidewinding]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

The Crawler!

Slide: ai.berkeley.edu [Demo: Crawler Bot (L10D1)]

Demo Crawler Bot

Reinforcement Learning

Still assume a Markov decision process (MDP):
= Aset of statess € S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

R

Overheated

Still looking for a policy m(s)

New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Slide: ai.berkeley.edu

Model-Based Learning

Slide: ai.berkeley.edu

Model-Based Learning
Model-Based Idea:

" Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

" Count outcomes s’ for each s, a /
= Normalize to give an estimate of T'(s,a, s’)
» Discover each R(s,a, s’?\when we experience (s, a, s’)

Step 2: Solve the learned MDP
" For example, use value iteration, as before

Example: Model-Based Learning

Input Policy ©

Assume:y =1

N

Observed Episodes (Training)

Episode 1
B, east, C, -1

C, east, D, -1

D, exit, X, +10/

Episode 3

N

/E, north, C, -1

~ N
D, exit,

~

C,east, D, -1

X, +1O/

Episode 2

N

g B, east, C, -1

C,east, D, -1
D, exit, x, +10

~

J

Episode 4

N

g E, north, C, -1

C east,

A, exit,

A, -1
X, -10

~

J

?(3' \ s>®

Learned Model

T(s,a,s")

T(C, east, D) = /¢
T(C, east, A) = Y

4 T(B, east, C) = Q/J\

_ . Y,
R(s,a,s')
4 R(B, east, C) =)
R(C, east, D) =
R(D, exit, x) =
N /

Example: Model-Based Learning

Input Policy ©

Assume:y =1

Observed Episodes (Training)

Episode 1

N

g B, east, C, -1

~
C, east, D, -1

D, exit, X, +10/

Episode 3

N

/E, north, C, -1

~

C,east, D, -1

D, exit, X, +1O/

Episode 2

g B, east, C, -1
C, east, D, -1
D, exit, x, +10

N

~

J

Episode 4

g E, north, C, -1
C, east, A, -1
A, exit, x,-10

N

~

J

Learned Model

T(s,a,s")

4 T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

.

~

)

R(s,a,s")

(" R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

.

~

)

Example: Expected Age

Goal: Compute expected age of students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a,]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this \7 p(a) _ num(a) Z Why does this
work? Because N E[A] ~ i Za' work? Because
eventually you A N &~ samples appear
learn the right E[A] ~ Z P(a)-a ' with the right

model. _ g / K /frequencies.

Sample-Based Policy Evaluation?

A =¥ (3)

/N

We want to improve our estimate of V by computing these averages:

Vitp1(s) « 3 T(s,7(s). H[R(s, m(s),8") + 4V ()] «—T(s)=a

S

|dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s), 8’1) + ’}/ka(Sll)

—_—

sample> = R(s, m(s), 8’2) + nykW(s’Q)

samplep, = R(s,m(s), S;@) + ”YV/?(S;;,)

1
Vig1(8) < - > sample;
()

SI/ ’S, \\\\

X LA '
A Szl sl A 53

Almost! But we can’t

rewind time to get sample
after sample from state s.

Temporal Difference Learning v(s)

Big idea: learn from every experience! .
= Update V(s) each time we experience a transition (s, a, s/, r)
= Likely outcomes s’ will contribute updates more often n(s)
s, Tt(s)
. . ¢
Temporal difference learning of values
= Policy is fixed, just doing evaluation! ,
= Move values toward value of whatever successor occurs: running average)/A >

Sample of V(s): sample = r +y V™(s")
: fy iy ’—\
UpdatetoVis): |/ T(sy e~ (I)V "(5) + o sanple

\/4‘\(33 = \" () + Dc[jamp[(’W(s\‘x

Temporal Difference Learning

Big idea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s/, r)
= Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
= Policy is fixed, just doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = r +y V™(s")
Update to V(s): Vi(s) « (1 —a)V™(s) + (a) sample
Same update: VT(s) « V™(s) + a [sample — V™(s)] A

‘ T A {

Same update: V7(s) « V™(s) — aVError Error = 5 (sample — V’T(S))2

Example: Temporal Difference Learning

States

5 lclo

Assume: y =1,
a=1/2

ObservedTranS|t|ons ,
S & sS' P s r

\/ﬂ“’ [BeastC 2} V‘T[CeastD 2}

Vi(s) « (L= a) V() + @)[r +y V7(s")] &€—
V(e 050 + 052 +[-0) = -
\/”((3 05 0+ 0,5'[324 | 'ij = 3

Piazza Poll 3
TD update: Ve(s) = V() +alr+yVT(s') — VT(s)]

Which converts TD values into a policy?

A) Value iteration: Vst (s) = maxz PMS/) RG-S + V()] Vs

B) Q-iteration: Qr+1(s,a) = z P(/I»s/) R%) + y max Qr(s’,a)], Vs,a
6770C) Policy extraction: Ty (s) = argmaxz: P/(yl/s,a) m +yV(s)], Vs

D) Policy evaluation: V7, ,(s) = Z P(s/ |57 () [R(s. (), s) +YVE(sD], Vs

Q?@g‘\the ab@

Piazza Poll 3
TD update: Ve(s) = V() +alr+yVT(s') — VT(s)]

Which converts TD values into a policy?

E) None of the above

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmaxQ(s,a)
a

Q(s,a) = ZT(S, a,s') [R(S, a,s') + ny(S’)]

ldea: learn Q-values, not values

Makes action selection model-free too! o

Detour: Q-Value Iteration

Value iteration:
= Start with V4(s) =0
" Given V,, calculate the iteration k+1 values for all states:

Vier1(s) & max 3 T(s,a,5) [R(s,0,8) 4 Vie(s") /
S
But Q-values are more useful, so compute them instead &
= Start with Qq(s,a) = 0, which we know is right
= Given Q,, calculate the iteration k+1 g-values for all g-states: O

Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(sd

)
g\

Q-Learning W) =3 - MO Qls, o)

We'd like to do Q-value updates to each Q-state:
Qut1(s,a) = S T(s,a,8) |R(s,a,5) + 7 max Qu(s',)|

S,
" But can’t compute this update without knowing T, R

‘\9

Instead, compute average as we go
= Receive a sample transition (s,a,r,s’) /

" This sample suggests
Q(s,a) ~r+~ymaxQ(s,a') e—
— a
* But we want to average over results from (s,a) (Why?)
" So keep a running average g

Qs,a) (1 - 2)Q(s,a) + (@) [r + 7max Q(s', o

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

This is called off-policy learning

Caveats:
" You have to explore enough

" You have to eventually make the learning rate
small enough

= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

The Story So Far: MDPs and RL

Known MDP: Offline Solution

><Unknown MDP: Model-Based

g . I
Goal Technique
Compute V¥, Q*, * VI/BLon approx. MDP

\l

Evaluate a fixed policy 1 PE on approx. MDP
L\/\N

%

Slide: ai.berkeley.edu

Unknown MDP: Model-Free

4 N

Goal Technique

+—> Compute V*, Q*, n* Q-learning

\X Evaluate a fixed policy # TD/Value Learning

/

MDP/RL Notation

Standard expectimax: V(s) = méaxz P(s'ls,a)V(s")
Bellman equations: V*(s) = mc?xs'z: P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(s) = mc?:z P(s'|s,a)[R(s,a,s") + yVi(s")], Vs
Q-iteration: Qr+1(s,a) = ZSP(S’IS, a)[R(s,a,s’) +y n}le,lx Qr(s’,a)], Vs,a
Policy extraction: my(s) = argm:xz: P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a /
Policy evaluation: Vi, (s) = Z P(SS’IS, (s))[R(s,m(s),s") + yVF(s")], Vs
S7
Value (TD) learning: Vi(s) = V() +ar+yV™(s') — V(s)] E—

Q-learning: Q(s,a) = Q(s,a) +a[r+vy max Q(s',a") — Q(s,a)] €—

Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning — auto — cliff grid (L11D1)]
[python gridworld.py -n 0.0 -a g -k 400 -g CliffGrid -d 1.0 -r -0.1 -e 1.0]

Exploration vs. Exploitation

/\
b
M\EG,

b £T0

+ =P

Slide: ai.berkeley.edu

How to Explore? Q = argmax A5,a)

Several schemes for forcing exploration
= Simplest: random actions (g-greedy)
= Every time step, flip a coin
= With (small) probability ¢, act randomly Unifor
= With (large) probability 1-¢, act on current policy _

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

" One solution: lower € over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Demo Q-learning — Manual Exploration — Bridge Grid

Demo Q-learning — Epsilon-Greedy — Crawler

Approximate Q-Learning

Py T

Example: Pacman (7.3 ’7Z\f'f>‘(‘z){>z
IT.55. S

How many possible states? >3 §§"\02§'

= 55 (non-wall) positions
=] Pacman
= 2 Ghosts

= Dots eaten or not

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn about
every single state!

* Too many states to visit them all in training
" Too many states to hold the g-tables in memory

Instead, we want to generalize:

" Learn about some small number of training states
from experience

= Generalize that experience to new, similar situations

" This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]

Example: Pacman QL T

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

X — (860) - s £

Feature-Based Representations |4

\fz (5)
Solution: describe a state using a vector of - \% (~§>>

features (properties)

= Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

= Example features:
~—> ® Distance to closest ghost
= Distance to closest dot
* Number of ghosts
= 1/ (dist to dot)?
» [s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Q I
' !
LinearVaIue Functions = J\G\m 3)\\2__,

Using a feature representation, we can write a q function (or value
function) for any state using a few weights:

L —

"V, (s) = WyF,(S) + Wofo(S) + ... + Wy,fy(S) WARNCY
3 7 -
" Q,(s,a) = w;fy(s,a) + wyfy(s,a) + ... + wyfy(s,a) wil ((5, A)

|

—7 Advantage: our experience is summed up in a few powerful numbers

—» Disadvantage: states may share features but actually be very different in
value!

Q,(s,a) =w,f(s,a) + ... + wy,f,(s,a)

Updating a linear value function .
E=4(y-9)
Original Q learning rule tries to reduce prediction error at s, a:
= Q(s,a) « Qfs,a) + a-[R(s,a,s’) +y max,. Q(s,a’) - Qfs,a)] %%

A

Y Y
Instead, we update the weights to try to reduce the error at s, a:

" w, « W, + o-[R(s,a,s’) +ymax, Q,(s,a’) - Q,ls,a)]120Q,(s,a)/ow,
= w;+ a-[R(s,a,s) +y max, Q,(s’a’) - Quls,a)]fi(s,a)

/ Y

Q,(s,a) =w,f(s,a) + ... + wy,f,(s,a)

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
= Q(s,a) « Qfs,a) + a-[R(s,a,s’) +y max, Q(s,a’) - Qfs,a)]

Instead, we update the weights to try to reduce the error at s, a:
" w, « W, + o-[R(s,a,s’) +ymax, Q,(s,a’) - Q,ls,a)]10Q,(s,a)/ow,

= Wi+ o [R(s,a,s") + Y max, Q,(s,3a") - Q,(s,a),] fi(s,a))

ot JQ 1 %
7 o /

—7 Qu(s,a) = wyifi(s,a) + wyf>(s,a) j Error(w) = —(y wa(x))
00 _ 9
o, = T (5,2 T (= W) @)

ow

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
" Q(s,a) « Q(s,a) + a-[R(s,a,s’) +y max, Q(s,a’) - Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:
" w, « W, + o-[R(s,a,s’) +ymax, Q,(s,a’) - Q,ls,a)]120Q,(s,a)/ow,
= w, + a-[R(s,a,s’) +y max, Q,(s,a’) - Qw(s,a)}] f.(s,a)
. l)

r — &

—

Qualitative justification:
= Pleasant surprise: increase weights on +ve features, decrease on —ve ones
» Unpleasant surprise: decrease weights on +ve features, increase on —ve ones

Approximate Q-Learning

[Q,,(s,a) = w,f,(s,a) + w,f,(s,a) + ... + w,f,(s,a) }

Q-learning with linear Q-functions:
transition = (s,a,r,s’)
difference = [7" + v max Q(s',d)| —Q(s,a)

a

Q(s,a) «— Q(s,a) + «[difference] Exact Q’s

w; «— w; + a [difference] f;(s,a) Approximate Q’s

Intuitive interpretation:

= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

Formal justification: online least squares

Example: Q—Pacmar\]f

S

Q(S,CL) — 4'OfDOT(Sa CL) — 1'OfGST(Saa)

fDOT(Sa NORTH) = 0.5

fasr(s, NORTH) = 1.0

~

a = NORTH
r = —500

/

Q(s,NORTH) = +1
r + vy max Q(s’,a") = —500

a

O

Q(S,7) =0

[difference — —501 >

wpor < 4.0 + a[-501]0.5
was — —1.0 + a [-501] 1.0

Q(S, CL) — 30fDOT(S, CL) — 30fGST(S, CL) [Demo: approximate Q-

learning pacman (L11D10)]

Demo Approximate Q-Learning -- Pacman

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y - Zwkf’f(x))
k
0 e(;ror(’lU) — _ (y _ Zwkfk(aj)) fm(x)
Wm k

Wm <= Wm + O (y — Zwkfk(w)) fm(x)
k
Approximate q update explained:

W — w4 |7+ MaxQ(s',a') — Q(s, a) | fm(s,a)

“target” “prediction”

TDGammon | ofg\ﬁ
X

1992 by Gerald Tesauro, IBM \
—> 4-ply lookahead using V(s) trained from 1,500,000 games of self-play
—33 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:

" Plays approximately at parity with world champion
" Led to radical changes in the way humans play backgammon

sample = r +y max_ Q,, (s’,a’)

Deep Q—Networks Q,(s,a): Neural network

Deep Mind, 2015

Used a deep learning network to represent Q:
" [nput is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

S

,—f—/“w

Com.rglution Convglution Fully cgnnected Fully cgnnected

E) ap < + 5

i

"4 7
+ 1+ 0+ 0+
@] (@] (@] (@

AINMIR €
+ 1+ 0+
@] (@] (@]

______ EEEE N == 5 =

I o o W

= r=1 B rt I r D

bt L e

b =

i iy

For g

b1 i il

L 1]
palh gl il

[e — e

milgr

* wihec) .-.----."'-.__-
o - 00000 =
fes Ewere

ATTIL-TSION =¥

OpenAl Gym

2016+
Benchmark problems for learning agents
https://gym.openai.com/envs

Acrobot-v1
Swing up a two-link robot

MountainCarContinuous-v0
Drive up a big hill with

trol

Humanoid-v2
Make a 3D two-legged robot
walk

continuous con

Breakout-ram-vO
Maximize score in the game

Breakout, with RAM as input

FetchPush-v0
Push a block to a goal

Episode 2

HandManipulateBlock-v0
Orient a block using a robot

hand

AlphaGo, AlphaZero ' o
Deep Mind, 2016+

e e

* D+ Google DeepMind

‘00
Challenge Match

8 - 15 March 2016

Autonomous Vehicles?

