
Announcements
Assignments

▪ HW8: Out today, due Thu, 12/3, 11:59 pm

Schedule next week

▪ Monday: Recitation in both lecture slots

▪ No lecture Wednesday

▪ No recitation Friday

Final exam scheduled



Introduction to 
Machine Learning

Reinforcement 
Learning

Instructor: Pat Virtue



Plan
Last time

▪ Rewards and Discounting

▪ Finding optimal policies: Value iteration and Bellman equations

Today

▪ MDP: How to use optimal values

▪ Reinforcement learning

▪ Models are gone!

▪ Rebuilding models

▪ Sampling and TD learning

▪ Q-learning

▪ Approximate Q-learning



Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do
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Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



The Bellman Equations

Definition of “optimal utility” via expectimax recurrence 
gives a simple one-step lookahead relationship amongst 
optimal utility values

These are the Bellman equations, and they characterize 
optimal values in a way we’ll use over and over
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MDP Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:
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Solved MDP! Now what?
What are we going to do with these values?? 

𝑉∗ 𝑠 𝑄∗ 𝑠, 𝑎



Piazza Poll 1
If you need to extract a policy, would you rather have

A) Values, B) Q-values or C) Z-values?



Piazza Poll 1
If you need to extract a policy, would you rather have

A) Values, B) Q-values or C) Z-values?



Policy Extraction

Slide: ai.berkeley.edu



Computing Actions from Values
Let’s imagine we have the optimal values V*(s)

How should we act?

▪ It’s not obvious!

We need to do a mini-expectimax (one step)

This is called policy extraction, since it gets the policy implied by the values

Slide: ai.berkeley.edu



Computing Actions from Q-Values
Let’s imagine we have the optimal q-values:

How should we act?

▪ Completely trivial to decide!

Important lesson: actions are easier to select from q-values than values!

Slide: ai.berkeley.edu



Two Methods for Solving MDPs 
Value iteration + policy extraction

▪ Step 1: Value iteration: 
𝑉𝑘+1 𝑠 = max

𝑎
σ𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠 until convergence

▪ Step 2: Policy extraction:
𝜋𝑉 𝑠 = argmax

𝑎
σ𝑠′𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

Policy iteration (out of scope for this course)

▪ Step 1: Policy evaluation: 

𝑉𝑘+1
𝜋 𝑠 = σ𝑠′𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘

𝜋 𝑠′ ] , ∀ 𝑠 until convergence

▪ Step 2: Policy improvement:
𝜋𝑛𝑒𝑤 𝑠 = argmax

𝑎
σ𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

▪ Repeat steps until policy converges



Summary: MDP Algorithms
So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

All these equations look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead expectimax fragments

▪ They differ only in whether we plug in a fixed policy or max over actions



MDP Notation

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Standard expectimax:

Policy evaluation:
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Piazza Poll 2
Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?

Select ALL that apply.

A. 𝑉∗ 𝑠 = max
𝑎

σ𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

B. 𝑉∗ 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

σ𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′

C. 𝑉∗ 𝑠 = max
𝑎
[𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′

D. 𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

𝑄∗(𝑠′, 𝑎′)
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Reinforcement Learning

Image: ai.berkeley.edu



Double Bandits
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Double-Bandit MDP

Actions: Blue, Red

States: Win, Lose

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0

No discount

100 time steps

Both states have 
the same value

Slide: ai.berkeley.edu



Offline Planning

Solving MDPs is offline planning
▪ You determine all quantities through computation

▪ You need to know the details of the MDP

▪ You do not actually play the game!

Play Red

Play Blue

Value

No discount

100 time steps

Both states have 
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75  $2

0.25 
$0
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Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0

Slide: ai.berkeley.edu



Online Planning
Rules changed!  Red’s win chance is different.

W L

$1

1.0

$1

1.0

??   $0

?? 
$2

??   $2

?? 
$0

Slide: ai.berkeley.edu



Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0

Slide: ai.berkeley.edu



What Just Happened?

That wasn’t planning, it was learning!

▪ Specifically, reinforcement learning

▪ There was an MDP, but you couldn’t solve it with just computation

▪ You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP

Slide: ai.berkeley.edu



Reinforcement learning
What if we didn’t know 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠, 𝑎, 𝑠’)?

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:



Reinforcement Learning

Basic idea:
▪ Receive feedback in the form of rewards

▪ Agent’s utility is defined by the reward function

▪ Must (learn to) act so as to maximize expected rewards

▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Slide: ai.berkeley.edu



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]



Example: Sidewinding

[Andrew Ng] [Video: SNAKE – climbStep+sidewinding]



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]



The Crawler!

[Demo: Crawler Bot (L10D1)]Slide: ai.berkeley.edu



Demo Crawler Bot



Reinforcement Learning

Still assume a Markov decision process (MDP):
▪ A set of states s  S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

Still looking for a policy (s)

New twist: don’t know T or R
▪ I.e. we don’t know which states are good or what the actions do

▪ Must actually try actions and states out to learn

Slide: ai.berkeley.edu



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Slide: ai.berkeley.edu



Model-Based Learning

Slide: ai.berkeley.edu



Model-Based Learning
Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

Step 2: Solve the learned MDP
▪ For example, use value iteration, as before

Slide: ai.berkeley.edu



Example: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) =
T(C, east, D) =
T(C, east, A) = 
…

R(s,a,s’).
R(B, east, C) = 
R(C, east, D) = 
R(D, exit, x) = 

…

Slide: ai.berkeley.edu



Example: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Slide: ai.berkeley.edu



Example: Expected Age

Goal: Compute expected age of students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.

Slide: ai.berkeley.edu



Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost!  But we can’t 
rewind time to get sample 
after sample from state s.

Slide: ai.berkeley.edu



Temporal Difference Learning

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy is fixed, just doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉𝜋 𝑠′

Slide: ai.berkeley.edu



𝑉𝜋 𝑠 ← 𝑉𝜋(𝑠) + 𝛼 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

Temporal Difference Learning

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy is fixed, just doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉𝜋 𝑠′

𝑉𝜋 𝑠 ← 1 − 𝛼 𝑉𝜋 𝑠 + (𝛼) 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 − 𝛼∇𝐸𝑟𝑟𝑜𝑟Same update: 𝐸𝑟𝑟𝑜𝑟 =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

2



Example: Temporal Difference Learning

Assume:  = 1, 
α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Slide: ai.berkeley.edu

𝑉𝜋 𝑠 ← 1 − 𝛼 𝑉𝜋 𝑠 + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′



Piazza Poll 3

Which converts TD values into a policy?

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

A) Value iteration:

B) Q-iteration:

C) Policy extraction:

E) None of the above

D) Policy evaluation:

TD update: 𝑉𝜋 𝑠 = 𝑉𝜋(𝑠) + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠
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Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:

Idea: learn Q-values, not values

Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

Slide: ai.berkeley.edu



Detour: Q-Value Iteration

Value iteration:
▪ Start with V0(s) = 0
▪ Given Vk, calculate the iteration k+1 values for all states:

But Q-values are more useful, so compute them instead
▪ Start with Q0(s,a) = 0, which we know is right
▪ Given Qk, calculate the iteration k+1 q-values for all q-states:



Q-Learning

We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a)  (Why?)

▪ So keep a running average

Slide: ai.berkeley.edu



Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if 
you’re acting suboptimally!

This is called off-policy learning

Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)

Slide: ai.berkeley.edu



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  TD/Value Learning

Slide: ai.berkeley.edu



MDP/RL Notation
𝑉 𝑠 = max

𝑎
෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝑉𝜋 𝑠 = 𝑉𝜋(𝑠) + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Standard expectimax:

Q-learning:

Value (TD) learning:



Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning – auto – cliff grid (L11D1)]

[python gridworld.py -n 0.0 -a q -k 400 -g CliffGrid -d 1.0 -r -0.1 -e 1.0]Slide: ai.berkeley.edu



Exploration vs. Exploitation

Slide: ai.berkeley.edu



How to Explore?

Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)
▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?

▪ You do eventually explore the space, but keep 
thrashing around once learning is done

▪ One solution: lower  over time
▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]Slide: ai.berkeley.edu



Demo Q-learning – Manual Exploration – Bridge Grid 



Demo Q-learning – Epsilon-Greedy – Crawler 



Approximate Q-Learning

Slide: ai.berkeley.edu



Example: Pacman

How many possible states?

▪ 55 (non-wall) positions

▪ 1 Pacman

▪ 2 Ghosts

▪ Dots eaten or not

Image: ai.berkeley.edu



Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about 
every single state!

▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

Instead, we want to generalize:

▪ Learn about some small number of training states 
from experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and 
we’ll see it over and over again

[demo – RL pacman]
Slide: ai.berkeley.edu



Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)] 
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!

Slide: ai.berkeley.edu



Feature-Based Representations

Solution: describe a state using a vector of 
features (properties)
▪ Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food)

Slide: ai.berkeley.edu



Linear Value Functions

Using a feature representation, we can write a q function (or value 
function) for any state using a few weights:

▪ Vw(s) = w1f1(s) + w2f2(s) + … + wMfM(s) 

▪ Qw(s,a) = w1f1(s,a) + w2f2(s,a) + … + wMfM(s,a) 

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in 
value!



Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)  Q(s,a)  +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ]

Instead, we update the weights to try to reduce the error at s, a:

▪ wi  wi +    [R(s,a,s’) + γ maxa’ Qw (s’,a’) - Qw(s,a) ] Qw(s,a)/wi

=  wi +    [R(s,a,s’) + γ maxa’ Qw (s’,a’) - Qw(s,a) ] fi(s,a)

Qw(s,a) = w1f1(s,a) + … + wMfM(s,a)



Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)  Q(s,a)  +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ]

Instead, we update the weights to try to reduce the error at s, a:

▪ wi  wi +    [R(s,a,s’) + γ maxa’ Qw (s’,a’) - Qw(s,a) ] Qw(s,a)/wi

=  wi +    [R(s,a,s’) + γ maxa’ Qw (s’,a’) - Qw(s,a) ] fi(s,a)

𝑄𝒘 𝑠, 𝑎 = 𝑤1𝑓1 𝑠, 𝑎 + 𝑤2𝑓2 𝑠, 𝑎

𝜕𝑄

𝜕𝑤2
=

𝐸𝑟𝑟𝑜𝑟 𝑤 =
1

2
𝑦 − 𝒘𝑇𝑓 𝑥

2

𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝒘
= − 𝑦 −𝒘𝑇𝑓 𝑥 𝑓(𝑥)

Qw(s,a) = w1f1(s,a) + … + wMfM(s,a)



Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)  Q(s,a)  +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ]

Instead, we update the weights to try to reduce the error at s, a:

▪ wi  wi +    [R(s,a,s’) + γ maxa’ Qw (s’,a’) - Qw(s,a) ] Qw(s,a)/wi

=  wi +    [R(s,a,s’) + γ maxa’ Qw (s’,a’) - Qw(s,a) ] fi(s,a)

Qualitative justification:

▪ Pleasant surprise: increase weights on +ve features, decrease on –ve ones

▪ Unpleasant surprise: decrease weights on +ve features, increase on –ve ones



Approximate Q-Learning

Q-learning with linear Q-functions:

Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that 

were on: disprefer all states with that state’s features

Formal justification: online least squares

Exact Q’s

Approximate Q’s

Slide: ai.berkeley.edu

Qw(s,a) = w1f1(s,a) + w2f2(s,a) + … + wMfM(s,a) 



Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Slide: ai.berkeley.edu



Demo Approximate Q-Learning -- Pacman



Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
Slide: ai.berkeley.edu



Reinforcement Learning Milestones

Image: ai.berkeley.edu



TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play

3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:
▪ Plays approximately at parity with world champion

▪ Led to radical changes in the way humans play backgammon



Deep Q-Networks

Deep Mind, 2015

Used a deep learning network to represent Q:
▪ Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

81
Image: Deep Mind

sample = r + γ maxa’ Qw (s’,a’)
Qw(s,a): Neural network 
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OpenAI Gym
2016+

Benchmark problems for learning agents

https://gym.openai.com/envs

Images: Open AI



AlphaGo, AlphaZero
Deep Mind, 2016+



Autonomous Vehicles?


