Announcements

Assignments

- HW8: Out today, due Thu, 12/3, 11:59 pm

Schedule next week

- Monday: Recitation in both lecture slots
- No lecture Wednesday
- No recitation Friday

Final exam scheduled

Introduction to Machine Learning

Reinforcement Learning

Instructor: Pat Virtue

Plan

Last time

- Rewards and Discounting

- Finding optimal policies: Value iteration and Bellman equations

Today

- MDP: How to use optimal values
- Reinforcement learning
- Models are gone!
- Rebuilding models
- Sampling and TD learning
- Q-learning
- Approximate Q-learning

Value Iteration

Start with $\mathrm{V}_{0}(\mathrm{~s})=0$: no time steps left means an expected reward sum of zero
Given vector of $\mathrm{V}_{\mathrm{k}}(\mathrm{s})$ values, do one ply of expectimax from each state:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Repeat until convergence

Complexity of each iteration: $\mathrm{O}\left(\mathrm{S}^{2} \mathrm{~A}\right)$
Theorem: will converge to unique optimal values

- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do

Optimal Quantities

- The value (utility) of a state s:
$V^{*}(s)=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
$Q^{*}(s, a)=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:
$\pi^{*}(\mathrm{~s})=$ optimal action from state s

The Bellman Equations

Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$
\begin{aligned}
& V^{*}(s)=\max _{a} Q^{*}(s, a) \\
\rightarrow & Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
& \frac{V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]}{Q^{*}(s, a)=\sum} .
\end{aligned}
$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

MDP Notation

MDP Notation

```
Standard expectimax:
Bellman equations:
Value iteration:
\[
\begin{aligned}
& V(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
& V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right], \quad \forall s
\end{aligned}
\]
```


Solved MDP! Now what?

$\pi(s) \rightarrow a$
What are we going to do with these values??

$$
V^{*}(s)
$$

$$
Q^{*}(s, a)
$$

0.64	0.74	0.85	1.00
\triangle		\triangle	
0.57		0.57	-1.00
\triangle		-	
0.49	40.43	0.48	40.28

0.57

Piazza Poll 1

If you need to extract a policy, would you rather have $\pi(\xi)=\hat{a}=\arg \operatorname{anax}_{a} Q(s, a)$ A) Values, B) Q-values or C) Z-values?

Piazza Poll 1

If you need to extract a policy, would you rather have A) Values, B) Q-values or C) Z-values?

0.64	0.74 >	0.85	1.00
-		\triangle	
0.57		0.57	-1.00
-		-	
0.49	40.43	0.48	40.28

(2.59

Policy Extraction

Computing Actions from Values

Let's imagine we have the optimal values $\mathrm{V}^{*}(\mathrm{~s})$
How should we act?

- It's not obvious!

We need to do a mini-expectimax (one step)

$$
\pi^{*}(s)=\underset{a}{\arg \max } \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

How should we act?

- Completely trivial to decide!

$$
\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)
$$

Important lesson: actions are easier to select from q-values than values!

Two Methods for Solving MDPs

Value iteration + policy extraction
©Step 1: Value iteration:

$$
V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right], \forall s \text { until convergence }
$$

- Step 2: Policy extraction:

$$
\underline{\pi_{V}(s)}=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\underline{\gamma V\left(s^{\prime}\right)}\right], \forall s
$$

Policy iteration (out of scope for this course)

- Step 1: Policy evaluation:
$V_{k+1}^{\pi}(s)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right], \forall s$ until convergence
- Step 2: Policy improvement:

$$
\pi_{n e w}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{o l d}}\left(s^{\prime}\right)\right], \forall s
$$

- Repeat steps until policy converges

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Turn your values into a policy: use policy extraction (one-step lookahead)

All these equations look the same!

- They basically are - they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

Standard expectimax:

$$
\begin{aligned}
& V(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \underline{a}\right)\left[R\left(s, \underline{a}, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Bellman equations:
Value iteration:

$$
\begin{aligned}
& V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \underline{\left.V_{k}\left(s^{\prime}\right)\right]}, \quad \forall s\right. \\
& \underline{Q_{k+1}(s, a)}=\sum_{s s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} \underline{\left.Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]}, \quad \forall s, a\right.
\end{aligned}
$$

Q-iteration:

$$
\pi_{V}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\underline{\left.V\left(s^{\prime}\right)\right]}, \quad \forall s\right.
$$

Policy evaluation:

$$
V_{k+1}^{\pi}(s)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \underline{\pi(s))}\left[R\left(s, \underline{\pi(s)}, s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right], \quad \forall s\right.
$$

$$
\pi(s) \rightarrow a
$$

MDP Notation

Standard expectimax:

$$
\begin{aligned}
& V(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Bellman equations:
Value iteration:

$$
V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right], \quad \forall s
$$

Q-iteration:

Policy extraction:

$$
Q_{k+1}(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right], \quad \forall s, a
$$

$$
\pi_{V}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right], \quad \forall s
$$

Policy evaluation:

$$
V_{k+1}^{\pi}(s)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right], \quad \forall s
$$

MDP Notation

Standard expectimax:

$$
\begin{aligned}
& V(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Bellman equations:
Value iteration:

$$
V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right], \quad \forall s
$$

Q-iteration:

Policy extraction:

$$
Q_{k+1}(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right], \quad \forall s, a
$$

$$
\pi_{V}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right], \quad \forall s
$$

Policy evaluation:

$$
V_{k+1}^{\pi}(s)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right], \quad \forall s
$$

MDP Notation

Standard expectimax:

$$
\begin{aligned}
& V(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Bellman equations:
Value iteration:

$$
V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right], \quad \forall s
$$

Q-iteration:

Policy extraction:

$$
Q_{k+1}(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right], \quad \forall s, a
$$

$$
\pi_{V}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right], \quad \forall s
$$

Policy evaluation:

$$
V_{k+1}^{\pi}(s)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right], \quad \forall s
$$

Piazza Poll 2

Rewards may depend on any combination of state, action, next state. Which of the following are valid formulations of the Bellman equations? Select ALL that apply.
A. $V^{*}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[\underline{R\left(s, a, s^{\prime}\right)}+\gamma V^{*}\left(s^{\prime}\right)\right]$
B. $V^{*}(s)=\underline{R(s)}+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right)$
C. $V^{*}(s)=\max _{a}\left[R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right)\right.$
D. $Q^{*}(s, a)=R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)$

Piazza Poll 2

Rewards may depend on any combination of state, action, next state. Which of the following are valid formulations of the Bellman equations? Select ALL that apply.
A. $V^{*}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
B. $V^{*}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right)$
C. $V^{*}(s)=\max _{a}\left[R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right)\right.$
D. $Q^{*}(s, a)=R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)$

Reinforcement Learning

Double Bandits

Double-Bandit MDP

Actions: Blue, Red
States: Win, Lose

Offline Planning

Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP

No discount
100 time steps
Both states have the same value

- You do not actually play the game!

Value	
Play Red	150
Play Blue	100

Slide: ai.berkeley.edu

Let's Play!

\$2 \$2 \$0 \$2 \$2
\$2 \$2 \$0 \$0 \$0

Online Planning

Rules changed! Red's win chance is different.

Let's Play!

\$0 \$0 \$0 \$2 \$0
\$2 \$0 \$0 \$0 \$0

What Just Happened?

That wasn't planning, it was learning!

- Specifically, reinforcement learning
- There was an MDP, but you couldn't solve it with just computation
- You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
- Difficulty: learning can be much harder than solving a known MDP

Reinforcement learning

What if we didn't know $P\left(s^{\prime}+s, a\right)$ and $R\left(s, a, s^{\prime}\right)$?
Value iteration:

$$
V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} p\left(c^{\prime} 4, a\right)\left[R(c, a, s)+\gamma V_{k}\left(s^{\prime}\right)\right], \quad \forall s
$$

Q-iteration:
Policy extraction:

$$
Q_{k+1}(s, a)=\sum_{s^{\prime}} P\left(o^{\prime} 1 s^{\prime}, a\right)\left[R\left(a^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right], \quad \forall s, a
$$

$$
\pi_{V}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(g^{\prime} \mid s, a\right)\left[R\left(0, u, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right], \quad \forall s
$$

Policy evaluation:

$$
V_{k+1}^{\pi}(s)=\sum_{s^{\prime}} P\left(s^{\prime} 10, \pi(s)\right]\left[R\left(s, m(0), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right], \quad \forall s
$$

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

Example: Learning to Walk

Example: Learning to Walk

Training

Example: Learning to Walk

Finished

Example: Sidewinding

Example: Toddler Robot

The Crawler!

Demo Crawler Bot

Reinforcement Learning

Still assume a Markov decision process (MDP):

- A set of states $s \in S$
- A set of actions (per state) A
- A model T(s,a, s')
- A reward function R(s,a, s')

Still looking for a policy $\pi(s)$

Warm

New twist: don't know T or R

- I.e. we don't know which states are good or what the actions do
- Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Model-Based Learning

Model-Based Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}\left(s, a, s^{\prime}\right)$
- Discover each $\hat{R}\left(s, a, s^{\prime}\right)$ when we experience ($\mathrm{s}, \mathrm{a}, \mathrm{s}^{\prime}$)

Step 2: Solve the learned MDP

- For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

Assume: $\gamma=1$

Observed Episodes (Training)

Learned Model

$$
\begin{gathered}
\widehat{T}\left(s, a, s^{\prime}\right) \\
\hline \mathrm{T}(\mathrm{~B}, \text { east, } \mathrm{C})=2 / 2 \\
\mathrm{~T}(\mathrm{C}, \text { east, D })=3 / 4 \\
\mathrm{~T}(\mathrm{C}, \text { east, A })=1 / 4
\end{gathered}
$$

| Episode 3 |
| :---: | :---: |
| E, north, $C,-1$
 C, east, $D,-1$
 D, exit, $x,+10$ |

Episode 4

E, north, $C,-1$	
C, east,,	$A,-1$
A, exit,	$x,-10$

$\hat{R}\left(s, a, s^{\prime}\right)$
R(B, east, C) $=$ $R(C$, east, D$)=$ $\mathrm{R}(\mathrm{D}$, exit, x$)=$ \ldots

Example: Model-Based Learning

Input Policy π

Assume: $\gamma=1$

Observed Episodes (Training)
Episode 1
B, east, $C,-1$
C, east, D, -1
D, exit, $x,+10$

Episode 3
E, north, C, -1
C, east, D, -1
D, exit, $\quad x,+10$

Episode 2
B, east, $C,-1$
C, east, D, -1
D, exit, x, +10

Episode 4
E, north, C, -1
C, east, A, -1
A, exit, $\quad x,-10$

Learned Model

$$
\begin{gathered}
\widehat{T}\left(s, a, s^{\prime}\right) \\
\hline T(B, \text { east, } \mathrm{C})=1.00 \\
\mathrm{~T}(\mathrm{C}, \text { east, } \mathrm{D})=0.75 \\
\mathrm{~T}(\mathrm{C}, \text { east, A) })=0.25
\end{gathered}
$$

$$
\begin{aligned}
& \widehat{R}\left(s, a, s^{\prime}\right) \\
& \hline R(B, \text { east, } C)=-1 \\
& R(C, \text { east, } \mathrm{D})=-1 \\
& R(\mathrm{D}, \text { exit, } \mathrm{x})=+10
\end{aligned}
$$

Example: Expected Age

Goal: Compute expected age of students

$$
\begin{gathered}
\text { Known P(A) } \\
\hline E[A]=\sum_{a} P(a) \cdot a \quad=0.35 \times 20+\ldots
\end{gathered}
$$

Without $P(A)$, instead collect samples $\left[a_{1}, a_{2}, \ldots a_{N}\right]$

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$
V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right] \longleftarrow \Uparrow(s) \rightarrow \mathfrak{a}
$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$
\begin{aligned}
& \text { sample }_{1}=R\left(s, \pi(s), s_{1}^{\prime}\right)+\gamma V_{k}^{\pi}\left(s_{1}^{\prime}\right) \\
& \text { sample }_{2}=R\left(s, \pi(s), s_{2}^{\prime}\right)+\gamma V_{k}^{\pi}\left(s_{2}^{\prime}\right) \\
& \ldots \\
& \text { sample }_{n}=R\left(s, \pi(s), s_{n}^{\prime}\right)+\gamma V_{k}^{\pi}\left(s_{n}^{\prime}\right) \\
& V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} \text { sample }_{i}
\end{aligned}
$$

Almost! But we can't rewind time to get sample after sample from state s.

Temporal Difference Learning

Big idea: learn from every experience!

- Update $\mathrm{V}(\mathrm{s})$ each time we experience a transition (s, a, s^{\prime}, r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy is fixed, just doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of $\mathrm{V}(\mathrm{s}): \quad$ sample $=r+\gamma V^{\pi}\left(s^{\prime}\right)$

Update to $V(s): \quad V^{\pi}(s) \leftarrow(1-\alpha) V^{\Uparrow}(s)+\alpha$ Sample

Temporal Difference Learning

Big idea: learn from every experience!

- Update $\mathrm{V}(\mathrm{s})$ each time we experience a transition (s, a, s^{\prime}, r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy is fixed, just doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of $\mathrm{V}(\mathrm{s}): \quad$ sample $=r+\gamma V^{\pi}\left(s^{\prime}\right)$
Update to $\mathrm{V}(\mathrm{s}): \quad V^{\pi}(s) \leftarrow(1-\alpha) V^{\pi}(s)+(\alpha)$ sample
Same update: $\quad V^{\pi}(s) \leftarrow V^{\pi}(s)+\alpha\left[\right.$ sample $\left.-V^{\pi}(s)\right]$
Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s)+\alpha\left[\right.$ sample $\left.-V^{\pi}(s)\right]$

$$
V^{\pi}(s) \leftarrow V^{\pi}(s)-\alpha \nabla E r r o r
$$

Example: Temporal Difference Learning

Piazza Poll 3

TD update:

$$
V^{\pi}(s)=V^{\pi}(s)+\alpha\left[r+\gamma V^{\pi}\left(s^{\prime}\right)-V^{\pi}(s)\right]
$$

Which converts TD values into a policy?

A) Value iteration:

$$
\begin{aligned}
& V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \nmid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right], \quad \forall s \\
& Q_{k+1}(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \nmid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right], \quad \forall s, a
\end{aligned}
$$

B) Q-iteration:
67% C) Policy extraction:

$$
\pi_{V}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid \sqrt[s, a)\right]{ }\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right], \quad \forall s
$$

D) Policy evaluation:

$$
V_{k+1}^{\pi}(s)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right], \quad \forall s
$$

Piazza Poll 3

TD update:

$$
V^{\pi}(s)=V^{\pi}(s)+\alpha\left[r+\gamma V^{\pi}\left(s^{\prime}\right)-V^{\pi}(s)\right]
$$

Which converts TD values into a policy?
A) Value iteration:
B) Q-iteration:
C) Policy extraction:
D) Policy evaluation:
E) None of the above

$$
\begin{aligned}
& V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right], \quad \forall s \\
& Q_{k+1}(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right], \quad \forall s, a \\
& \pi_{V}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right], \quad \forall s \\
& V_{k+1}^{\pi}(s)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right], \quad \forall s
\end{aligned}
$$

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
However, if we want to turn values into a (new) policy, we're sunk:

$$
\begin{aligned}
& \pi(s)=\underset{a}{\arg \max } Q(s, a) \\
& Q(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]
\end{aligned}
$$

Idea: learn Q-values, not values Makes action selection model-free too!

Detour: Q-Value Iteration

Value iteration:

- Start with $\mathrm{V}_{0}(\mathrm{~s})=0$
- Given V_{k}, calculate the iteration $\mathrm{k}+1$ values for all states:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

But Q-values are more useful, so compute them instead

- Start with $\mathrm{Q}_{0}(\mathrm{~s}, \mathrm{a})=0$, which we know is right
- Given Q_{k}, calculate the iteration $k+1 q$-values for all q-states:

$$
Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Q-Learning

$$
\Pi(s)=\hat{a}=\underset{a}{\arg } \max Q(s, a)
$$

Wed like to do Q-value updates to each Q-state:

$$
Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]
$$

- But can't compute this update without knowing T, R

Instead, compute average as we go

- Receive a sample transition (s, a, r, s^{\prime})
- This sample suggests

$$
Q(s, a) \approx \underline{r}+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right) \longleftarrow
$$

- But we want to average over results from (s, a) (Why?)
- So keep a running average

$$
Q(s, a) \leftarrow(1-\alpha) Q(s, a)+(\alpha)\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]
$$

Slide: ai.berkeley.edu

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly

- Basically, in the limit, it doesn't matter how you select actions (!)

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal
 Compute $\mathrm{V}^{*}, \mathrm{Q}^{*}, \pi^{*}$
 Evaluate a fixed policy π

\rightarrow Value / policy iteration
Policy evaluation
Unknown MDP: Model-Based

Goal | Technique | |
| :--- | :--- |
| Compute $V^{*}, \mathrm{Q}^{*}, \pi^{*}$ | $\mathrm{VI} / \mathrm{PI}$ on approx. MDP |
| Evaluate a fixed policy π | PE on approx. MDP |

Unknown MDP: Model-Free	
Goal	
\longrightarrow Compute $\mathrm{V}^{*}, \mathrm{Q}^{*}, \pi^{*}$	Technique
\times Evaluate a fixed policy π	$\underline{\text { TD/Value Learning }}$

[^0]
MDP/RL Notation

Standard expectimax:

$$
\begin{aligned}
& V(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

$$
V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right], \quad \forall s
$$

$$
Q_{k+1}(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right], \quad \forall s, a
$$

Policy extraction:

Policy evaluation:

$$
\pi_{V}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right], \quad \forall s
$$

$$
V_{k+1}^{\pi}(s)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right], \quad \forall s
$$

Value (TD) learning:

$$
V^{\pi}(s)=V^{\pi}(s)+\alpha\left[r+\gamma V^{\pi}\left(s^{\prime}\right)-V^{\pi}(s)\right]
$$

Q-learning:

$$
Q(s, a)=Q(s, a)+\alpha\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right]
$$

Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation

How to Explore?

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
- Every time step, flip a coin
- With (small) probability ε, act randomly Uniform
- With (large) probability 1- ε, act on current policy
- Problems with random actions?
- You do eventually explore the space, but keep thrashing around once learning is done
- One solution: lower ε over time
$\hat{a}=\operatorname{argmax} Q(s, a)$
a

- Another solution: exploration functions

Demo Q-learning - Manual Exploration - Bridge Grid

Demo Q-learning - Epsilon-Greedy - Crawler

Approximate Q-Learning

Example: Pacman

How many possible states?

$\left(p, g_{1}, g_{2}, f_{11}, f_{12}, f_{13}\right.$

$$
55 \cdot 55 \cdot 55 \cdot 2^{55}
$$

- 55 (non-wall) positions
- 1 Pacman
- 2 Ghosts
- Dots eaten or not

Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about every single state!

- Too many states to visit them all in training
- Too many states to hold the q-tables in memory

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

[Demo: Q-learning - pacman - tiny - watch all (L11D5)] [Demo: Q-learning - pacman - tiny - silent train (L11D6)]
[Demo: Q-learning - pacman - tricky - watch all (L11D7)]

Feature-Based Representations

Solution: describe a state using a vector of features (properties)

- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:
\rightarrow - Distance to closest ghost
- Distance to closest dot
- Number of ghosts
- 1 / (dist to dot) ${ }^{2}$
- Is Pacman in a tunnel? (0/1)
- \qquad etc.
- Is it the exact state on this slide?

- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

Using a feature representation, we can write aq function (or value function) for any state using a few weights:

- $\mathrm{V}_{\mathrm{w}}(\mathrm{s})=\underset{\Omega}{\mathrm{w}_{1} \mathrm{f}_{1}(\mathrm{~s})}+\underset{\jmath}{\mathrm{w}_{2} \mathrm{f}_{2}(\mathrm{~s})}+\ldots+\underset{w_{M}}{ } \underline{\mathrm{w}_{M}(\mathrm{~s})}$ $\vec{w}^{\top} \vec{f}(s)$
- $\mathrm{Q}_{\mathrm{w}}(\mathrm{s}, \mathrm{a})=\mathrm{w}_{1} \mathrm{f}_{1}(\mathrm{~s}, \mathrm{a})+\mathrm{w}_{2} \mathrm{f}_{2}(\mathrm{~s}, \mathrm{a})+\ldots+\mathrm{w}_{\mathrm{M}} \underline{\mathrm{f}_{\mathrm{M}}(\mathrm{s}, \mathrm{a})}$ $w^{\top} \vec{f}(s, a)$
\rightarrow Advantage: our experience is summed up in a few powerful numbers
\rightarrow Disadvantage: states may share features but actually be very different in value!

Updating a linear value function

$$
\frac{Q_{w}(s, a)=w_{1} f_{1}(s, a)+\ldots+w_{M} f_{M}(s, a)}{E=\frac{1}{2}(y-\hat{y})^{2}}
$$

Original Q learning rule tries to reduce prediction error at s, a :

$$
\left.-\mathrm{Q}(\mathrm{~s}, \mathrm{a}) \leftarrow \mathrm{Q}(\mathrm{~s}, \mathrm{a})+\alpha \cdot \frac{\left[R\left(\mathrm{~s}, \mathrm{a}, \mathrm{~s}^{\prime}\right)+\gamma \max _{a^{\prime}} \mathrm{Q}\left(\mathrm{~s}^{\prime}, \mathrm{a}^{\prime}\right)\right.}{\mathrm{y}}-\mathrm{Q}(\mathrm{~s}, \mathrm{a})\right] \frac{\partial E}{\partial \mathrm{y}}
$$

Instead, we update the weights to try to reduce the error at s, a :

$$
\begin{aligned}
-\mathrm{w}_{\mathrm{i}} & \leftarrow \mathrm{w}_{\mathrm{i}}+\alpha \cdot\left[R\left(\mathrm{~s}, \mathrm{a}, \mathrm{~s}^{\prime}\right)+\gamma \max _{\mathrm{a}^{\prime}} \mathrm{Q}_{\mathrm{w}}\left(\mathrm{~s}^{\prime}, \mathrm{a}^{\prime}\right)-\mathrm{Q}_{\mathrm{w}}(\mathrm{~s}, \mathrm{a})\right] \partial \mathrm{Q}_{\mathrm{w}}(\mathrm{~s}, \mathrm{a}) / \partial \mathrm{w}_{\mathrm{i}} \\
& \left.=\mathrm{w}_{\mathrm{i}}+\alpha \cdot \frac{\left[R\left(\mathrm{~s}, \mathrm{a}, \mathrm{~s}^{\prime}\right)+\gamma \max _{\mathrm{a}^{\prime}} \mathrm{Q}_{\mathrm{w}}\left(\mathrm{~s}^{\prime}, \mathrm{a}^{\prime}\right)\right.}{\hat{y}}-\frac{\mathrm{Q}_{\mathrm{w}}(\mathrm{~s}, \mathrm{a})}{\hat{y}}\right] \mathrm{f}_{\mathrm{i}}(\mathrm{~s}, \mathrm{a})
\end{aligned}
$$

Updating a linear value function

$$
\mathrm{Q}_{\mathrm{w}}(\mathrm{~s}, \mathrm{a})=\mathrm{w}_{1} \mathrm{f}_{1}(\mathrm{~s}, \mathrm{a})+\ldots+\mathrm{w}_{\mathrm{M}} \mathrm{f}_{\mathrm{M}}(\mathrm{~s}, \mathrm{a})
$$

Original Q learning rule tries to reduce prediction error at s, a :

$$
\text { - } \mathrm{Q}(\mathrm{~s}, \mathrm{a}) \leftarrow \mathrm{Q}(\mathrm{~s}, \mathrm{a})+\alpha \cdot\left[R\left(\mathrm{~s}, \mathrm{a}, \mathrm{~s}^{\prime}\right)+\gamma \max _{\mathrm{a}^{\prime}} \mathrm{Q}\left(\mathrm{~s}^{\prime}, \mathrm{a}^{\prime}\right)-\underline{\mathrm{Q}(\mathrm{~s}, \mathrm{a})}\right]
$$

Instead, we update the weights to try to reduce the error at s, a :

$$
\begin{aligned}
& \text { - } \mathrm{w}_{\mathrm{i}} \leftarrow \mathrm{w}_{\mathrm{i}}+\alpha \cdot\left[R\left(\mathrm{~s}, \mathrm{a}, \mathrm{~s}^{\prime}\right)+\gamma \max _{\mathrm{a}^{\prime}} \mathrm{Q}_{\mathrm{w}}\left(\mathrm{~s}^{\prime}, \mathrm{a}^{\prime}\right)-\mathrm{Q}_{\mathrm{w}}(\mathrm{~s}, \mathrm{a})\right] \partial \mathrm{Q}_{\mathrm{w}}(\mathrm{~s}, \mathrm{a}) / \partial \mathrm{w}_{\mathrm{i}} \\
& =w_{i}+\alpha \cdot \underbrace{\left[\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{w}\left(s^{\prime}, a^{\prime}\right)-Q_{w}(s, a),\right] f_{i}(s, a)\right.}_{\partial E} \\
& \longrightarrow Q_{\boldsymbol{w}}(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a) \\
& \frac{\partial Q}{\partial w_{2}}=f_{\imath}(\zeta, a) \\
& \hat{\jmath} \underset{ }{\operatorname{Error}(w)}=\frac{1}{2}\left(y-\boldsymbol{w}^{T} f(x)\right)^{2} \\
& \frac{\partial E r r o r}{\partial \boldsymbol{w}}=-\left(y-\boldsymbol{w}^{T} f(x)\right) f(x)
\end{aligned}
$$

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a :

- $\mathrm{Q}(\mathrm{s}, \mathrm{a}) \leftarrow \mathrm{Q}(\mathrm{s}, \mathrm{a})+\alpha \cdot\left[R\left(\mathrm{~s}, \mathrm{a}, \mathrm{s}^{\prime}\right)+\gamma \max _{\mathrm{a}^{\prime}} \mathrm{Q}\left(\mathrm{s}^{\prime}, \mathrm{a}^{\prime}\right)-\mathrm{Q}(\mathrm{s}, \mathrm{a})\right]$

Instead, we update the weights to try to reduce the error at s, a :

$$
\begin{aligned}
-\mathrm{w}_{\mathrm{i}} & \leftarrow \mathrm{w}_{\mathrm{i}}+\alpha \cdot\left[R\left(\mathrm{~s}, \mathrm{a}, \mathrm{~s}^{\prime}\right)+\gamma \max _{\mathrm{a}^{\prime}} \mathrm{Q}_{\mathrm{w}}\left(\mathrm{~s}^{\prime}, \mathrm{a}^{\prime}\right)-\mathrm{Q}_{\mathrm{w}}(\mathrm{~s}, \mathrm{a})\right] \partial \mathrm{Q}_{\mathrm{w}}(\mathrm{~s}, \mathrm{a}) / \partial \mathrm{w}_{\mathrm{i}} \\
& =\mathrm{w}_{\mathrm{i}}+\alpha \cdot \underbrace{\left[R\left(\mathrm{~s}, \mathrm{a}, \mathrm{~s}^{\prime}\right)+\gamma \max _{\mathrm{a}^{\prime}} \mathrm{Q}_{\mathrm{w}}\left(\mathrm{~s}^{\prime}, \mathrm{a}^{\prime}\right)-\mathrm{Q}_{\mathrm{w}}(\mathrm{~s}, \mathrm{a})\right.}] \mathrm{f}_{\mathrm{i}}(\mathrm{~s}, \mathrm{a})
\end{aligned}
$$

Qualitative justification:

- Pleasant surprise: increase weights on +ve features, decrease on -ve ones
- Unpleasant surprise: decrease weights on +ve features, increase on -ve ones

Approximate Q-Learning

$$
Q_{w}(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{M} f_{M}(s, a)
$$

Q-learning with linear Q-functions:

$$
\begin{aligned}
& \text { transition }=\left(s, a, r, s^{\prime}\right) \\
& \text { difference }=\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]-Q(s, a) \\
& Q(s, a) \leftarrow Q(s, a)+\alpha \text { [difference] } \quad \text { Exact Q's } \\
& \qquad w_{i} \leftarrow w_{i}+\alpha \text { [difference] } f_{i}(s, a) \quad \text { Approximate Q's }
\end{aligned}
$$

Intuitive interpretation:

- Adjust weights of active features

- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features

Example: Q-Pacman

$$
Q(s, a)=4.0 f_{D O T}(s, a)-1.0 f_{G S T}(s, a)
$$

$$
\text { difference }=-501 \quad \square \quad \begin{aligned}
& w_{D O T} \leftarrow 4.0+\alpha[-501] 0.5 \\
& w_{G S T} \leftarrow-1.0+\alpha[-501] 1.0
\end{aligned}
$$

Slide: ai.berkeley.edu $Q(s, a)=3.0 f_{D O T}(s, a)-3.0 f_{G S T}(s, a)$

Demo Approximate Q-Learning -- Pacman

Minimizing Error

Imagine we had only one point x, with features $f(x)$, target value y, and weights w :

$$
\begin{aligned}
\operatorname{error}(w) & =\frac{1}{2}\left(y-\sum_{k} w_{k} f_{k}(x)\right)^{2} \\
\frac{\partial \operatorname{error}(w)}{\partial w_{m}} & =-\left(y-\sum_{k} w_{k} f_{k}(x)\right) f_{m}(x) \\
w_{m} \leftarrow w_{m} & +\alpha\left(y-\sum_{k} w_{k} f_{k}(x)\right) f_{m}(x)
\end{aligned}
$$

Approximate q update explained:

$$
\begin{gathered}
w_{m} \leftarrow w_{m}+\alpha\left[r+\gamma \max _{a} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right] f_{m}(s, a) \\
\text { "target" "prediction" }
\end{gathered}
$$

Reinforcement Learning Milestones

$$
W_{S} N_{E}
$$

TDGammon

1992 by Gerald Tesauro, IBM
\rightarrow 4-ply lookahead using $V(s)$ trained from 1,500,000 games of self-play $\rightarrow 3$ hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features
Experimental results:

- Plays approximately at parity with world champion
- Led to radical changes in the way humans play backgammon

Deep Q-Networks

sample $=r+\gamma \max _{a^{\prime}} \mathrm{Q}_{\mathrm{w}}\left(\mathrm{s}^{\prime}, \mathrm{a}^{\prime}\right)$ $\mathrm{Q}_{\mathrm{w}}(\mathrm{s}, \mathrm{a})$: Neural network

Deep Mind, 2015
Used a deep learning network to represent Q:

- Input is last 4 images (84×84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

OpenAl Gym

2016+

Benchmark problems for learning agents https://gym.openai.com/envs

Breakout-ram-v0 Maximize score in the game Breakout, with RAM as input

AlphaGo, AlphaZero
Deep Mind, 2016+

\%\%: Google DeepMind
Challenge Match 8-15 March 2016

Autonomous Vehicles?

[^0]: Slide: ai.berkeley.edu

