Announcements

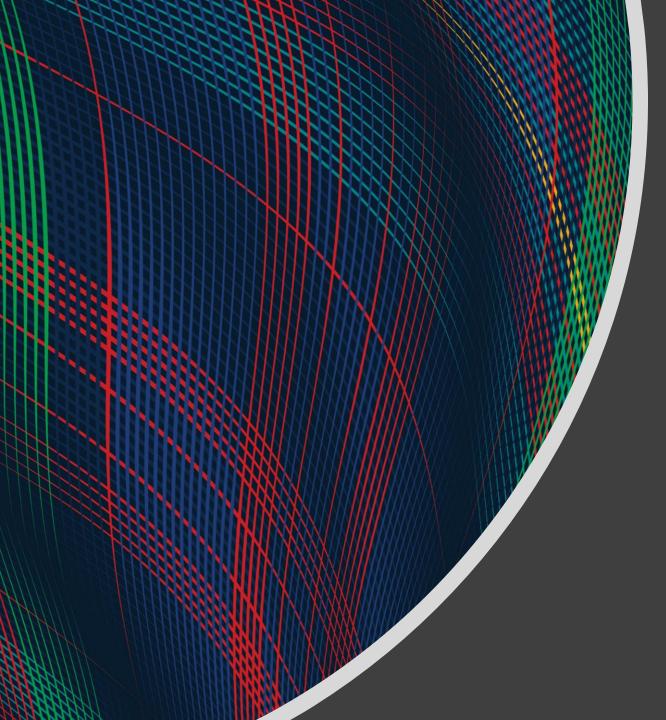
Assignments

HW8: Out today, due Thu, 12/3, 11:59 pm

Schedule next week

- Monday: Recitation in both lecture slots
- No lecture Wednesday
- No recitation Friday

Final exam scheduled



Introduction to Machine Learning

Reinforcement Learning

Instructor: Pat Virtue

Plan

Last time

- Rewards and Discounting
- Finding optimal policies: Value iteration and Bellman equations

Today

- MDP: How to use optimal values
- Reinforcement learning
 - Models are gone!
 - Rebuilding models
 - Sampling and TD learning
 - Q-learning
 - Approximate Q-learning

Value Iteration

Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

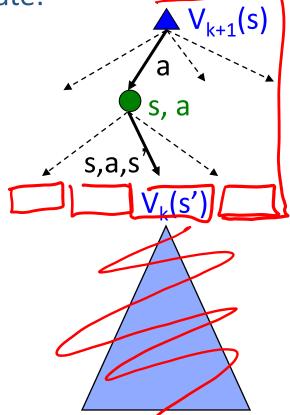
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

Complexity of each iteration: O(S²A)

Theorem: will converge to unique optimal values

- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do

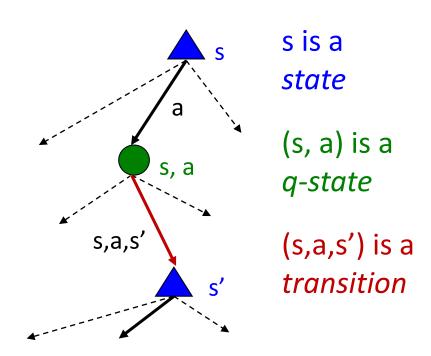


Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:
 π^{*}(s) = optimal action from state s



The Bellman Equations

Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

s, a

s,a,s

Standard expectimax:

Bellman equations:

Value iteration:

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a) V(s')$$

$$V^{*}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{*}(s')]$$

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_{R}(s')], \quad \forall s$$

Standard expectimax:

Bellman equations:

Value iteration:

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a) V(s')$$

$$V^{*}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{*}(s')]$$

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_{k}(s')], \quad \forall s$$

Solved MDP! Now what?

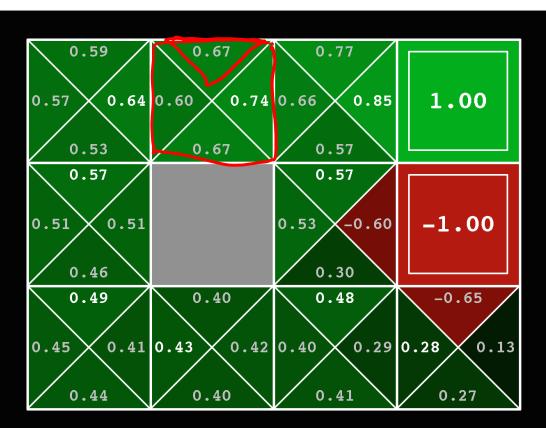
What are we going to do with these values??

0.74 ▶ 0.85 0.64 → 1.00 0.57 0.57 -1.000.49 ● 0.43 0.48 0.28

 $V^*(s)$

 $Q^*(s,a)$

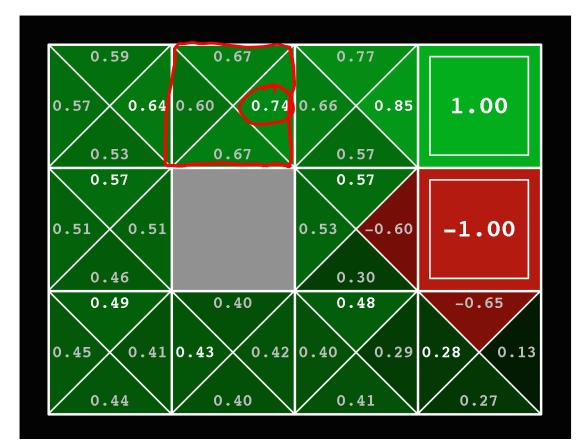
 $\Re(s) \rightarrow a$



Piazza Poll 1

If you need to extract a policy, would you rather have $\Re(s) = \hat{\alpha} = \alpha(g \wedge \alpha \times Q(s_1 \wedge \alpha))$ A) Values, B) Q-values or C) Z-values?

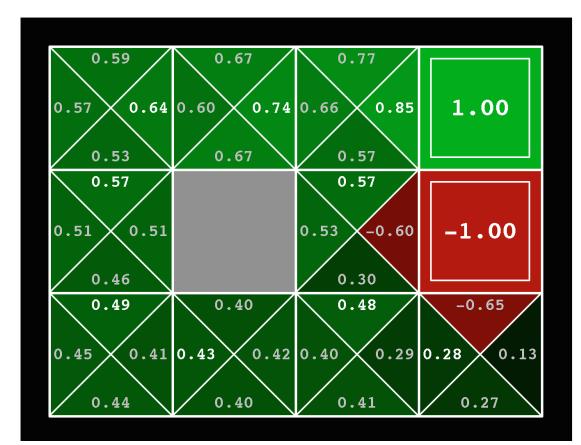
0.64 →	0.74 ▶	0.85 ≯	1.00
0.57		0.57	-1.00
^		^	
0.49	∢ 0.43	0.48	∢ 0.28



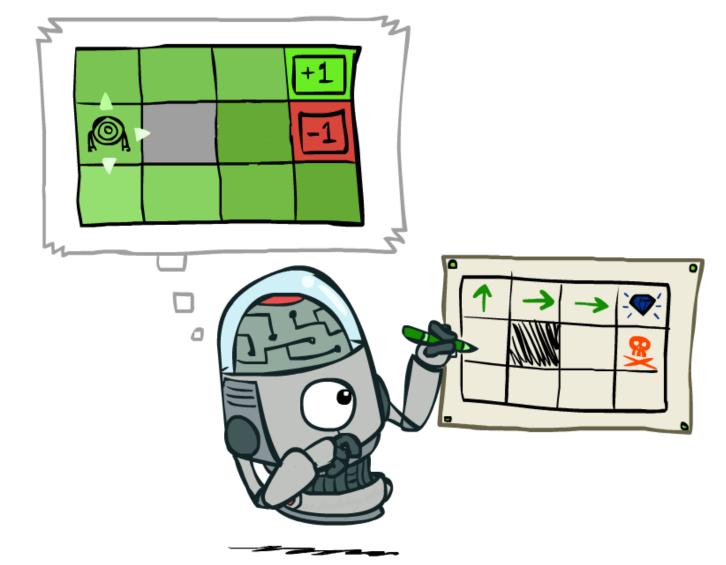
Piazza Poll 1

If you need to extract a policy, would you rather have A) Values, B) Q-values or C) Z-values?

0.64 ▶	0.74 ▶	0.85 →	1.00
• 0.57		• 0.57	-1.00
▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28



Policy Extraction



Computing Actions from Values

Let's imagine we have the optimal values V*(s)

How should we act?

It's not obvious!

We need to do a mini-expectimax (one step)

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called policy extraction, since it gets the policy implied by the values

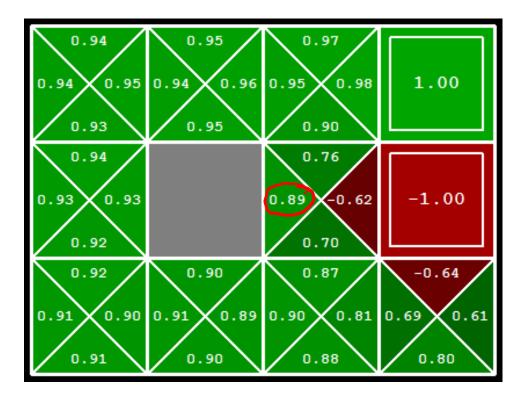
Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

How should we act?

Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



Important lesson: actions are easier to select from q-values than values!

Two Methods for Solving MDPs

Value iteration + policy extraction Step 1: Value iteration:

 $V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \forall s \text{ until convergence}$

Step 2: Policy extraction:

$$\underline{\tau_V(s)} = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \underline{V(s')}], \ \forall \ s$$

Policy iteration (out of scope for this course)

Step 1: Policy evaluation:

T

 $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \forall s \text{ until convergence}$

Step 2: Policy improvement:

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \forall s$$

Repeat steps until policy converges

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Turn your values into a policy: use policy extraction (one-step lookahead)

All these equations look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Standard expectimax:

Bellman equations:

→ Value iteration:

→ Q-iteration:

Policy extraction:

Policy evaluation:

小

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$

$$V^{*}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^{*}(s')]$$

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{k}(s')], \quad \forall s$$

$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_{k}(s', a')], \quad \forall s, a$$

$$\pi_{V}(s) = \arg_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{k}(s')], \quad \forall s$$

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_{k}^{\pi}(s')], \quad \forall s$$

$$A = P(s')$$

Standard expectimax:

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$

$$V^{*}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^{*}(s')]$$

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{k}(s')], \quad \forall s$$

$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_{k}(s', a')], \quad \forall s, a$$

$$\pi_{V}(s) = \arg_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \quad \forall s$$

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_{k}^{\pi}(s')], \quad \forall s$$

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$
Bellman equations: $V^*(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^*(s')]$ Value iteration: $V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \quad \forall s$ Q-iteration: $Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$ Policy extraction: $\pi_V(s) = \operatorname{argmax}_{s'} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \quad \forall s$ Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s$

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$
Bellman equations: $V^*(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^*(s')]$ Value iteration: $V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \quad \forall s$ Q-iteration: $Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$ Policy extraction: $\pi_V(s) = \operatorname{argmax}_{s'} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \quad \forall s$ Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s$

Piazza Poll 2

Rewards may depend on any combination of *state, action, next state*. Which of the following are valid formulations of the Bellman equations? Select ALL that apply.

$$\sqrt{A} \quad V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

B. $V^*(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a) V^*(s')$

C.
$$V^*(s) = \max_{a} [R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s')]$$

D.
$$Q^*(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q^*(s', a')$$

Piazza Poll 2

Rewards may depend on any combination of *state, action, next state*. Which of the following are valid formulations of the Bellman equations? Select ALL that apply.

$$\checkmark A. V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

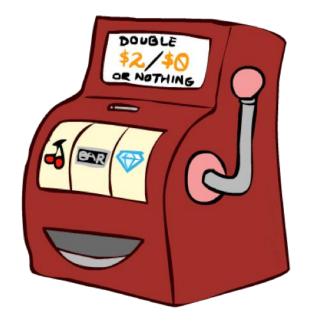
• B.
$$V^*(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^*(s')$$

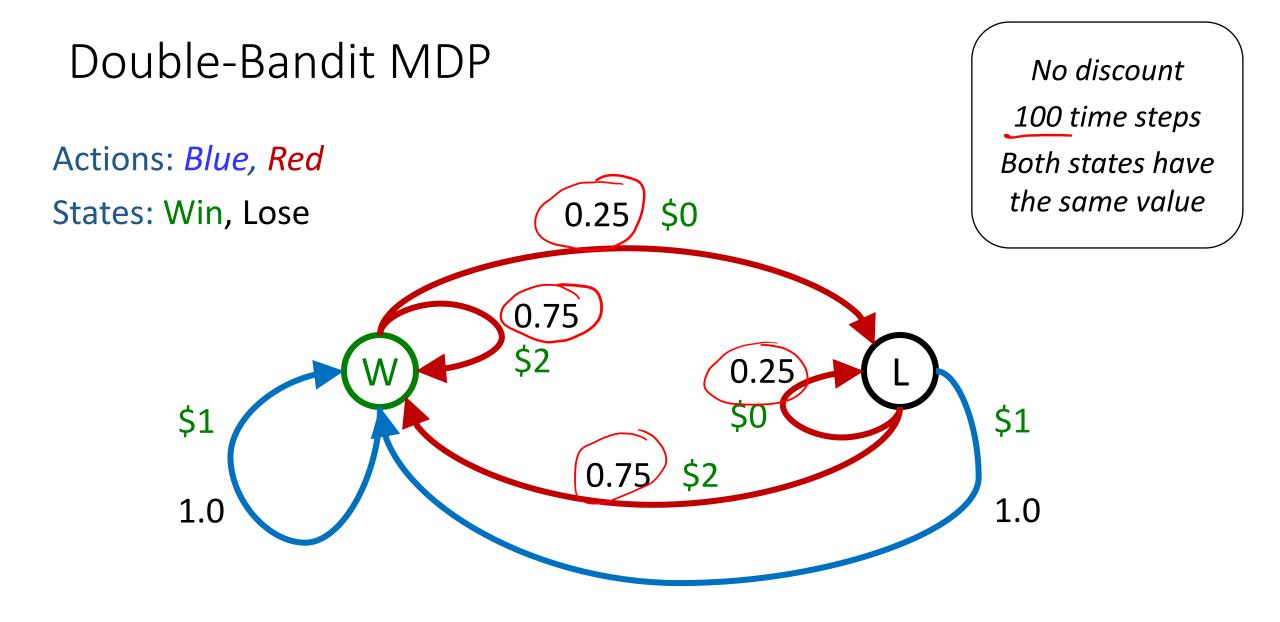
$$C. V^*(s) = \max_{a} [R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s')]$$
 $D. Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^*(s',a')$

Reinforcement Learning

Image: ai.berkeley.edu

Double Bandits



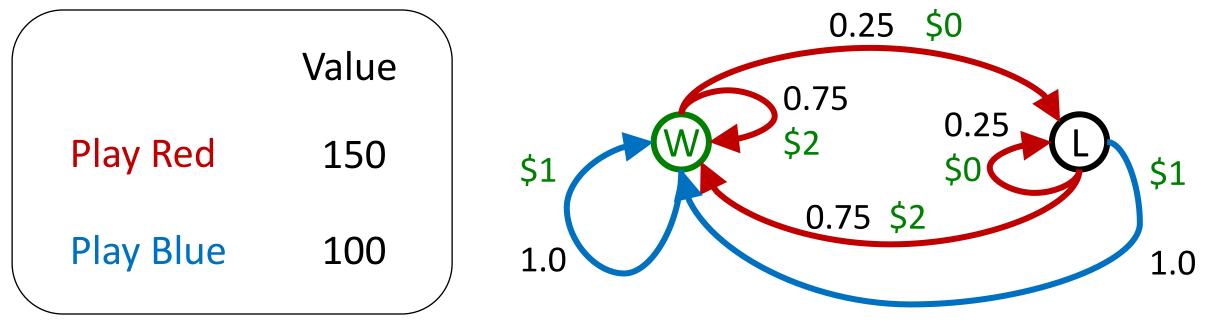


Offline Planning

Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

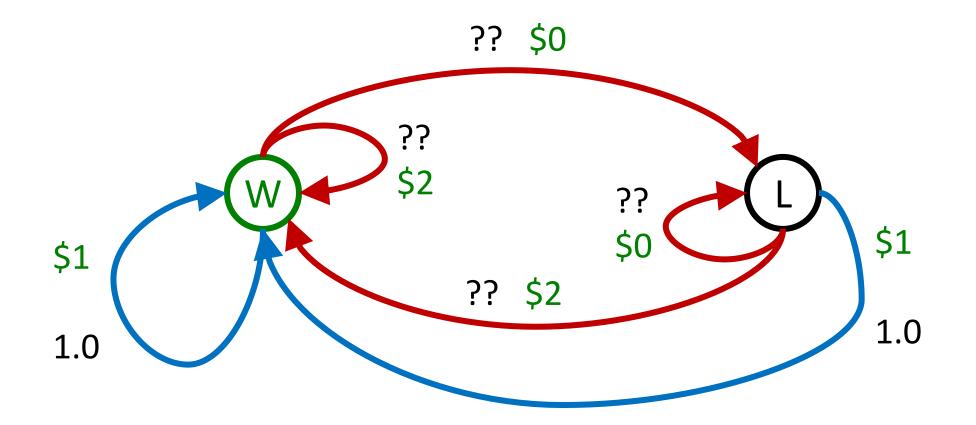
No discount 100 time steps Both states have the same value

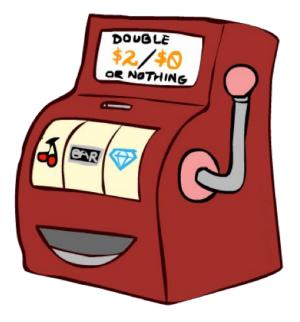


\$2\$2\$0\$2\$2\$0\$0\$0

Online Planning

Rules changed! Red's win chance is different.





\$0\$0\$0\$2\$0\$2\$0\$0\$0\$0

What Just Happened?

That wasn't planning, it was learning!

Specifically, reinforcement learning

You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

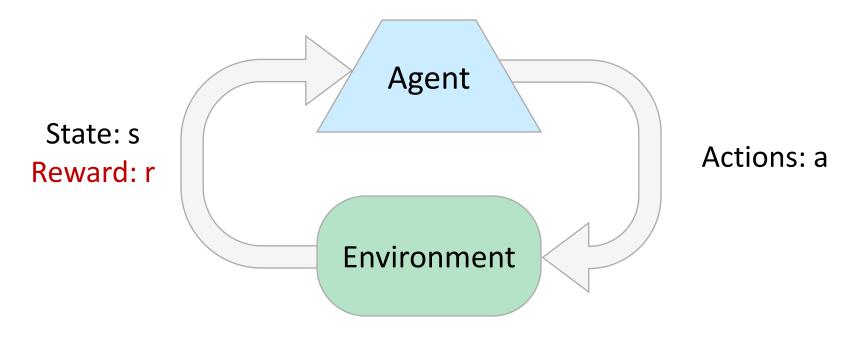
- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
- Difficulty: learning can be much harder than solving a known MDP

Reinforcement learning

What if we didn't know P(s'|s, a) and R(s, a, s')?

Value iteration: $V_{k+1}(s) = \max_{a} \sum_{s'} P(c'|s, a) [P(c, a, s') + \gamma V_k(s')], \quad \forall s$ Q-iteration: $Q_{k+1}(s, a) = \sum_{s'} P(c'|s, a) [P(c, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$ Policy extraction: $\pi_V(s) = \operatorname{argmax}_{a} \sum_{s'} P(c'|s, a) [P(c, a, s') + \gamma V(s')], \quad \forall s$ Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(c'|s, n(s)) [P(c, n(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s$

Reinforcement Learning



Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Initial

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – initial]



Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – training]

Finished

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – finished]

Example: Sidewinding

[Video: SNAKE – climbStep+sidewinding]

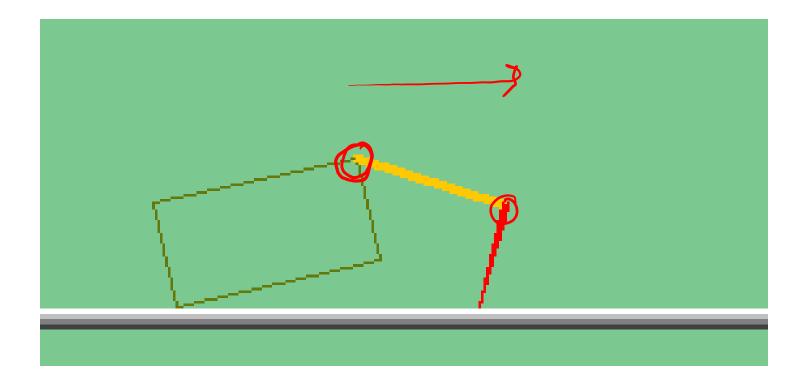
[Andrew Ng]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

[Video: TODDLER – 40s]

The Crawler!



Slide: ai.berkeley.edu

[Demo: Crawler Bot (L10D1)]

Demo Crawler Bot

Reinforcement Learning

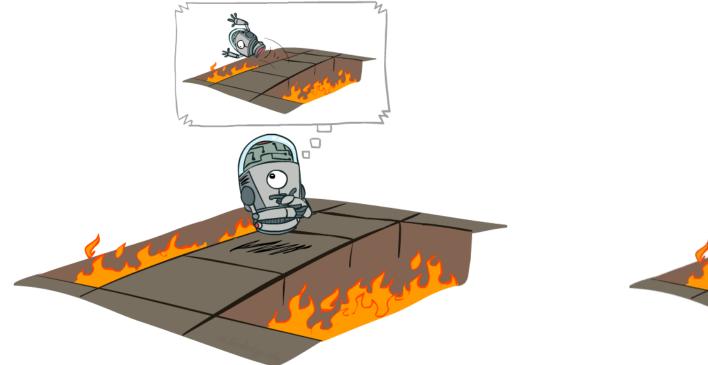
Still assume a Markov decision process (MDP):

- A set of states $s \in S$
- A set of actions (per state) A
- A model T(s,a,s')
- A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

New twist: don't know T or R

- I.e. we don't know which states are good or what the actions do
- Must actually try actions and states out to learn

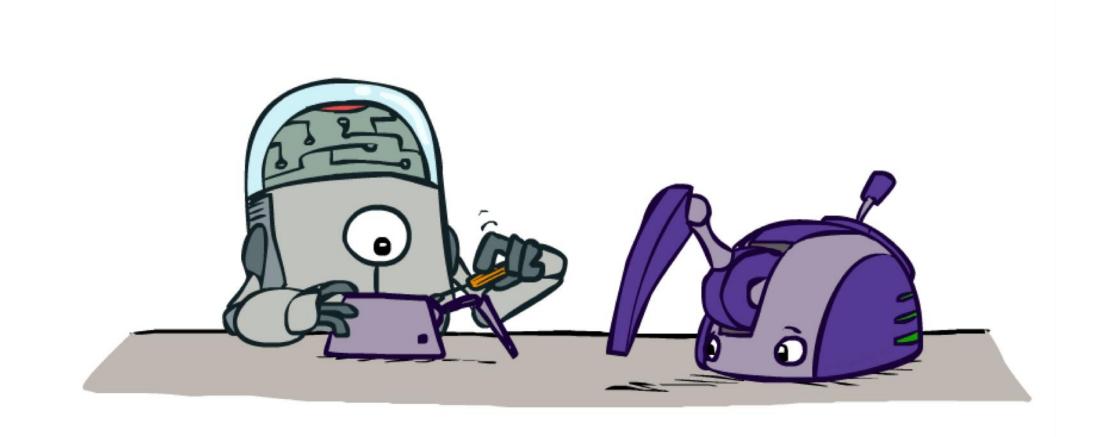
Offline (MDPs) vs. Online (RL)



Offline Solution

Online Learning

Model-Based Learning



Model-Based Learning

Model-Based Idea:

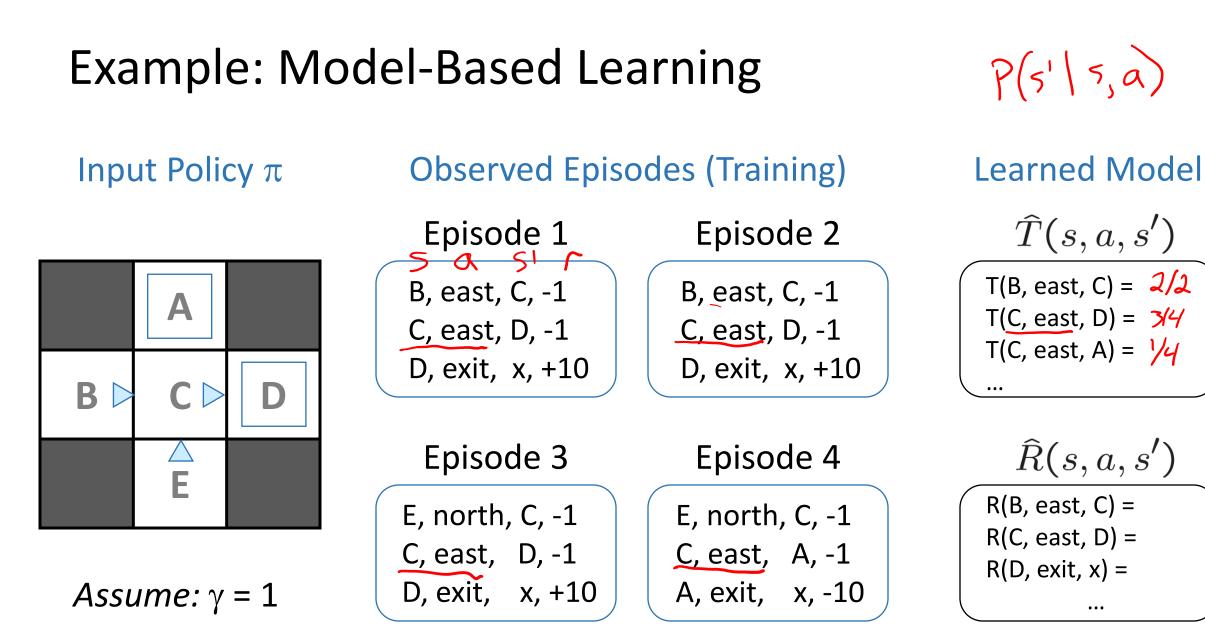
- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

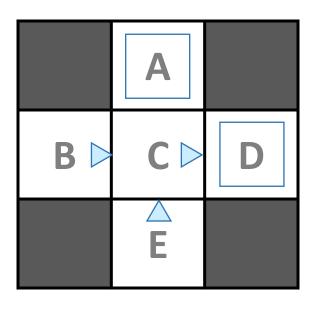
Step 2: Solve the learned MDP

For example, use value iteration, as before

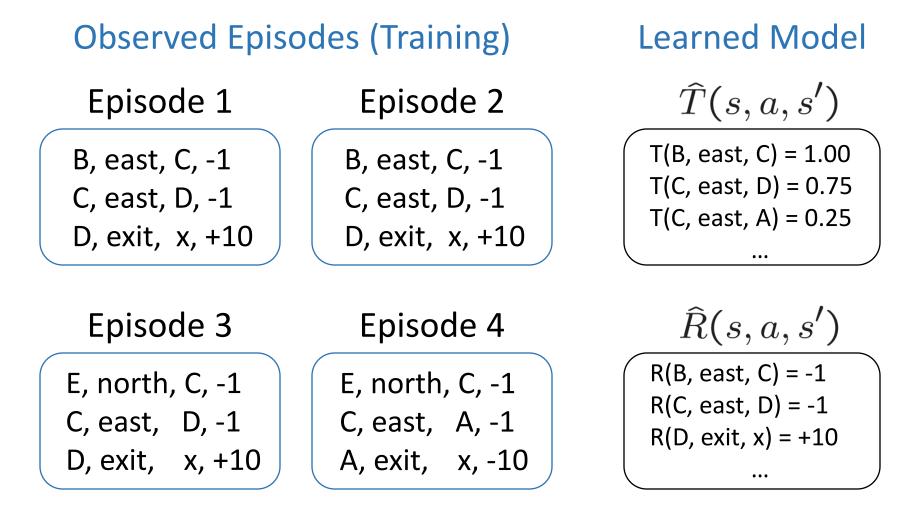


Example: Model-Based Learning

Input Policy π

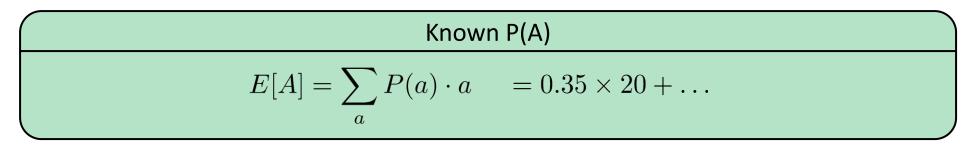


Assume: $\gamma = 1$

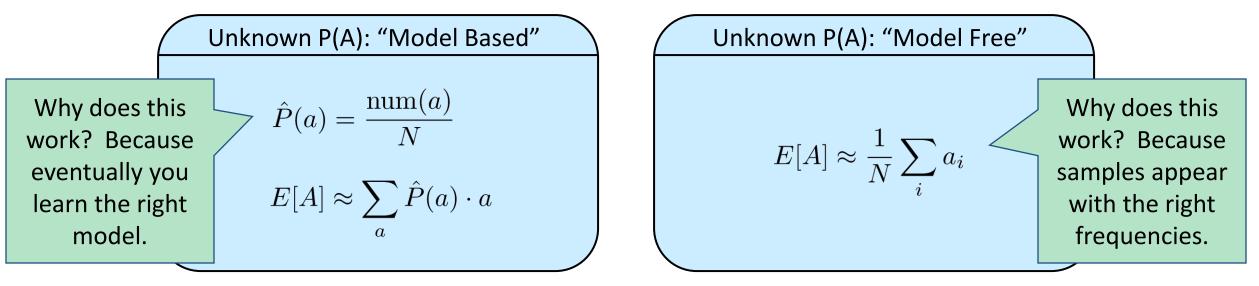


Example: Expected Age

Goal: Compute expected age of students



Without P(A), instead collect samples $[a_1, a_2, ..., a_N]$



Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')] \quad \longleftarrow \Uparrow(s) \rightarrow \mathfrak{q}$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

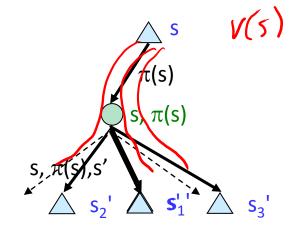
$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

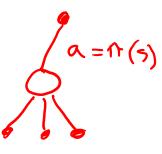
$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Almost! But we can't rewind time to get sample after sample from state s.





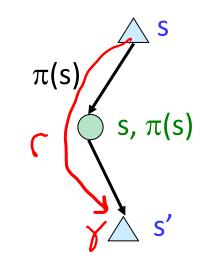
Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy is fixed, just doing evaluation!
- Move values toward value of whatever successor occurs: running average



Sample of V(s): sample =
$$r + \gamma V^{\pi}(s')$$

Update to V(s): $V^{\uparrow}(s) \leftarrow (l-\alpha) V^{\uparrow}(s) + \alpha$ sample
 $V^{\uparrow}(s) \leftarrow V^{\uparrow}(s) + \alpha$ [sample $-V^{\uparrow}(s)$]

Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy is fixed, just doing evaluation!
- Move values toward value of whatever successor occurs: running average

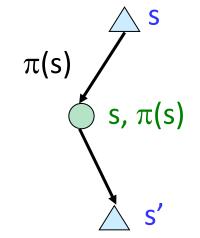
Sample of V(s):
$$sample = r + \gamma V^{\pi}(s')$$

Update to V(s):

$$V^{\pi}(s) \leftarrow (1-\alpha) V^{\pi}(s) + (\alpha) sample$$

Same update:

Same update:



Example: Temporal Difference Learning

States

	Α	
В	С	D
	Е	

Assume: $\gamma = 1$, $\alpha = 1/2$

$$V^{\pi} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 8 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 8 & 0 & 0 \\ 0 & -1 & 0 & 8 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = 0$$

$$V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + (\alpha)[r + \gamma V^{\pi}(s')] \leftarrow V^{\pi}(s) \leftarrow 0, 5 \cdot 0 + 0, 5[-2 + 1 \cdot 0] = -1$$

$$V^{\pi}(s) \leftarrow 0, 5 \cdot 0 + 0, 5[-2 + 1 \cdot 0] = -1$$

$$V^{\pi}(s) \leftarrow 0, 5 \cdot 0 + 0, 5[-2 + 1 \cdot 0] = 3$$

Piazza Poll 3

TD update:
$$V^{\pi}(s) = V^{\pi}(s) + \alpha [r + \gamma V^{\pi}(s') - V^{\pi}(s)]$$

Which converts TD values into a policy?

A) Value iteration:

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s$$
B) Q-iteration:

$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s, a$$

$$(67\%)$$
C) Policy extraction:

$$\pi_V(s) = \operatorname{argmax}_{s'} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s$$
D) Policy evaluation:

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

$$M_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Piazza Poll 3

TD update:
$$V^{\pi}(s) = V^{\pi}(s) + \alpha [r + \gamma V^{\pi}(s') - V^{\pi}(s)]$$

Which converts TD values into a policy?

A) Value iteration: $V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s$ B) Q-iteration: $Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s, a$ C) Policy extraction: $\pi_V(s) = \operatorname{argmax}_{s'} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s$ D) Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$

E) None of the above

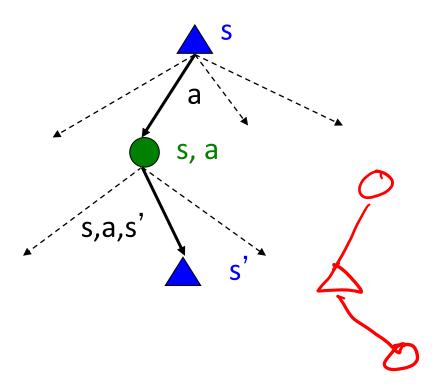
Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we're sunk:

 $\pi(s) = \arg\max_{a} Q(s, a)$ $Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$

Idea: learn Q-values, not values Makes action selection model-free too!



Detour: Q-Value Iteration

Value iteration:

- Start with V₀(s) = 0
- Given V_k, calculate the iteration k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

But Q-values are more useful, so compute them instead

- Start with Q₀(s,a) = 0, which we know is right
- Given Q_k, calculate the iteration k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

 $\Re(s) = \hat{a} = \arg \operatorname{Rax} Q(s, a)$

We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

But can't compute this update without knowing T, R

Instead, compute average as we go

- Receive a sample transition (s,a,r,s')
- This sample suggests

$$Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a') \right]$

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

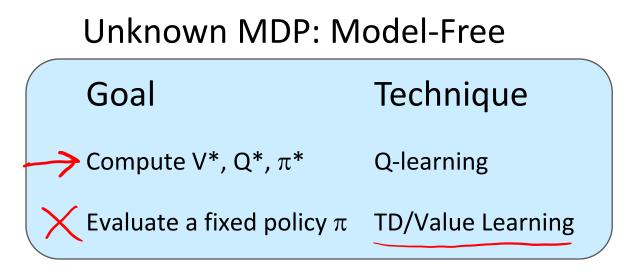
The Story So Far: MDPs and RL

Known	MDP:	Offline	Solution
-------	------	---------	----------

Goal	Technique	
Compute V*, Q*, π^*		
Evaluate a fixed policy π	Policy evaluation	

Vunknown MDP: Model-Based

Goal	Technique
Compute V*, Q*, π^*	VI/PI on approx. MDP
Evaluate a fixed policy π	PE on approx. MDP



MDP/RL Notation

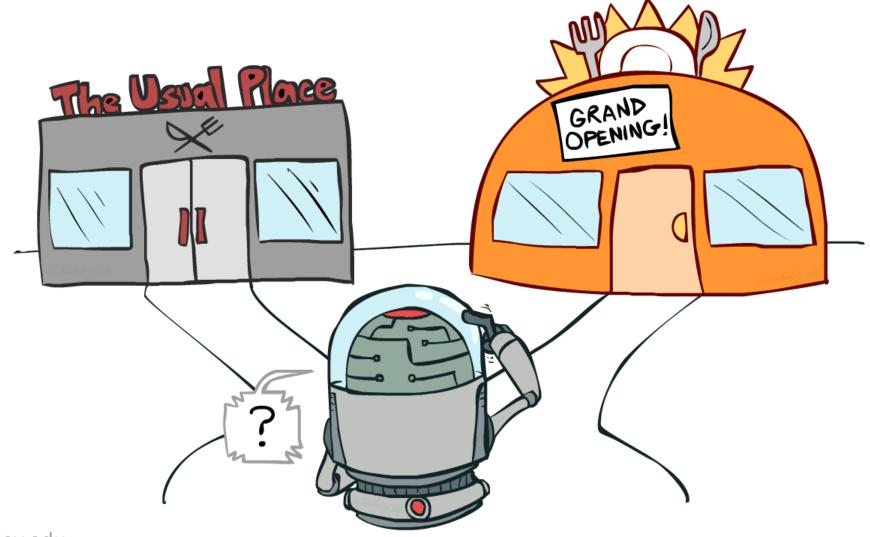
 $V(s) = \max_{a} \sum P(s'|s, a) V(s')$ Standard expectimax: $V^{*}(s) = \max_{a} \sum_{s} P(s'|s, a) [R(s, a, s') + \gamma V^{*}(s')]$ **Bellman equations:** $V_{k+1}(s) = \max_{a} \sum P(s'|s, a) [R(s, a, s') + \gamma V_k(s')],$ Value iteration: $\forall s$ $Q_{k+1}(s,a) = \sum P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$ Q-iteration: $\pi_V(s) = \operatorname*{argmax}_a \sum P(s'|s,a)[R(s,a,s') + \gamma V(s')],$ **Policy extraction:** $\forall s$ $V_{k+1}^{\pi}(s) = \sum P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_k^{\pi}(s')],$ Policy evaluation: $\forall s$ $V^{\pi}(s) = V^{\pi}(s) + \alpha [r + \gamma V^{\pi}(s') - V^{\pi}(s)]$ Value (TD) learning: $Q(s,a) = Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)] \quad \longleftarrow$ Q-learning:

Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning – auto – cliff grid (L11D1)]

[python gridworld.py -n 0.0 -a q -k 400 -g CliffGrid -d 1.0 -r -0.1 -e 1.0]

Exploration vs. Exploitation

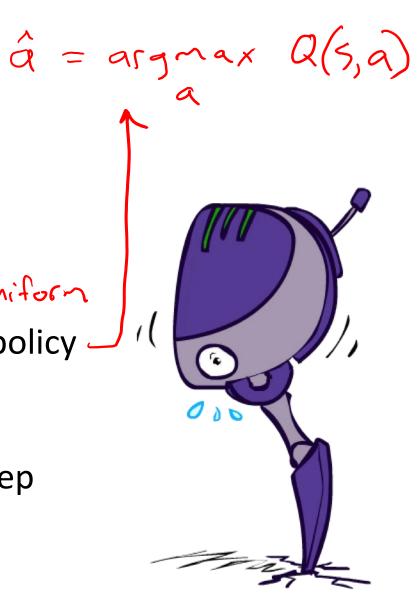


How to Explore?

Several schemes for forcing exploration

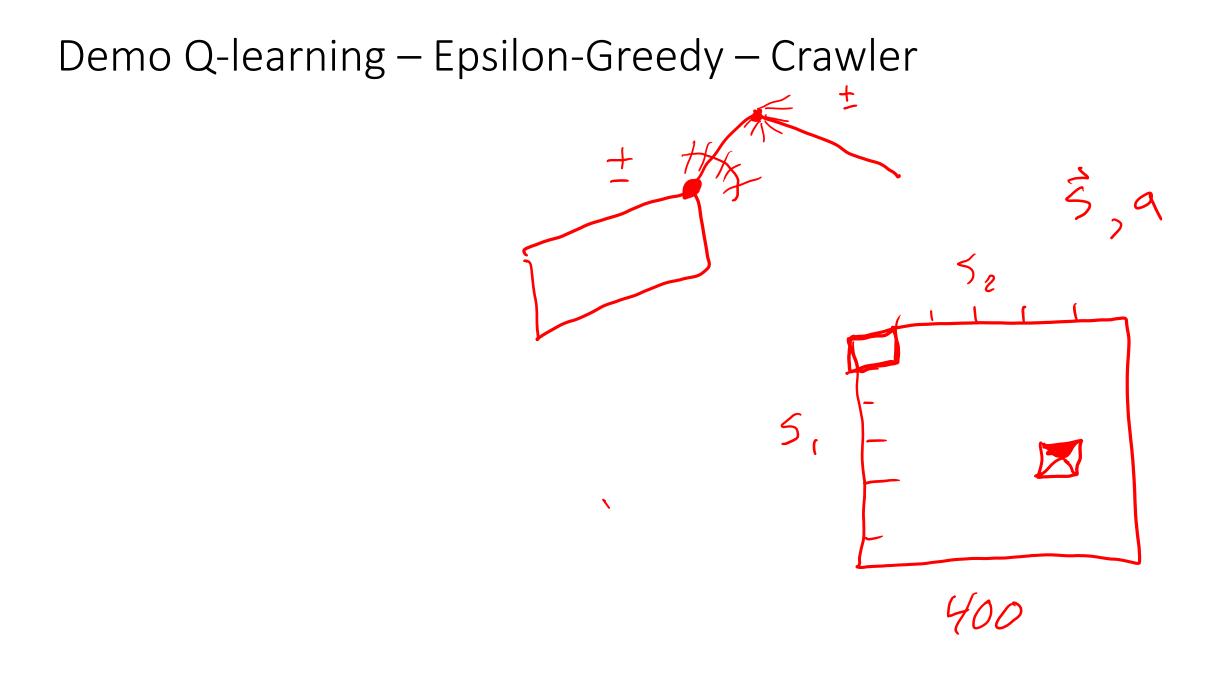
- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin

 - With (small) probability ε, act randomly Uniform
 With (large) probability 1-ε, act on current policy
- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

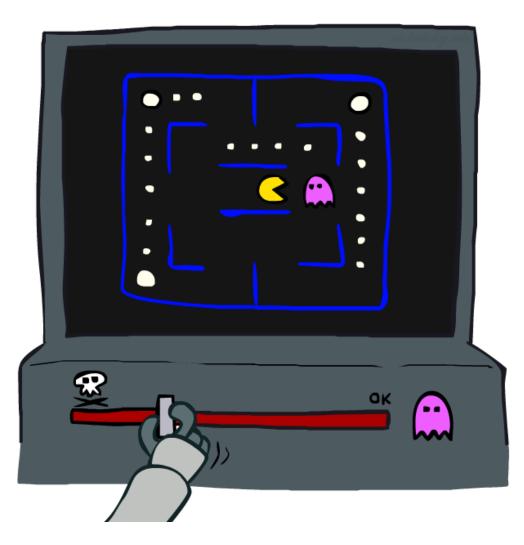


[Demo: Q-learning – manual exploration – bridge grid (L11D2)] [Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Demo Q-learning – Manual Exploration – Bridge Grid



Approximate Q-Learning

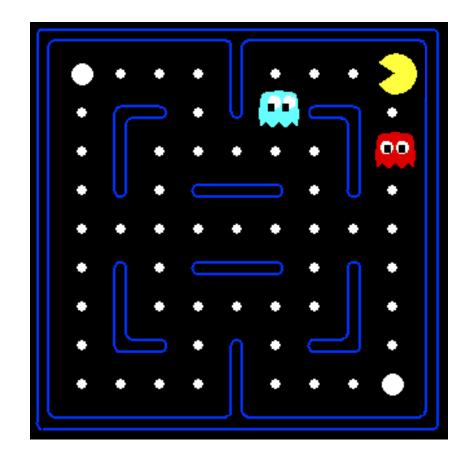


Example: Pacman

How many possible states?

- 55 (non-wall) positions
- 1 Pacman
- 2 Ghosts
- Dots eaten or not

 $(P, J_1, J_2, f_{11}, f_{12}, f_{13})$ 55.55.55.255



Generalizing Across States

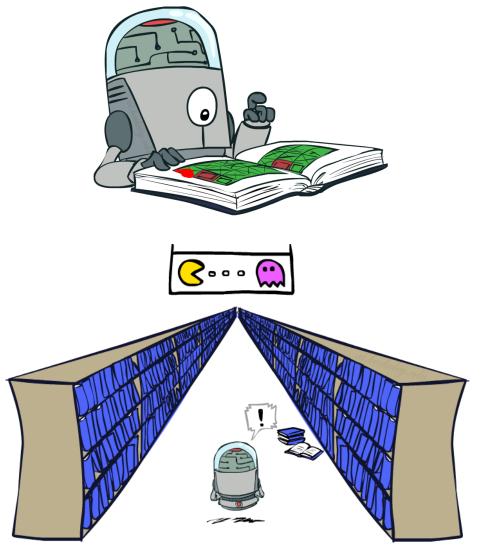
Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about every single state!

- Too many states to visit them all in training
- Too many states to hold the q-tables in memory

Instead, we want to generalize:

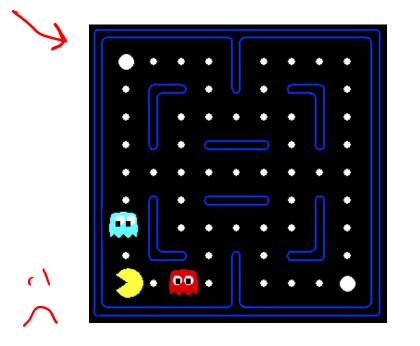
- Learn about some small number of training states from experience
- Generalize that experience to new, similar situations
- This is a fundamental idea in machine learning, and we'll see it over and over again



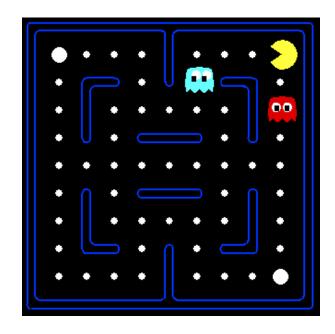
[demo – RL pacman]

Example: Pacman

Let's say we discover through experience that this state is bad:

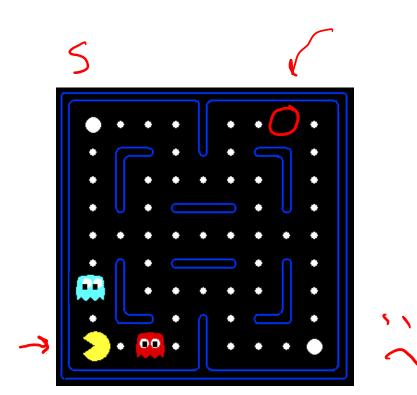


In naïve q-learning, we know nothing about this state:



Q(5, a) 51

Or even this one!



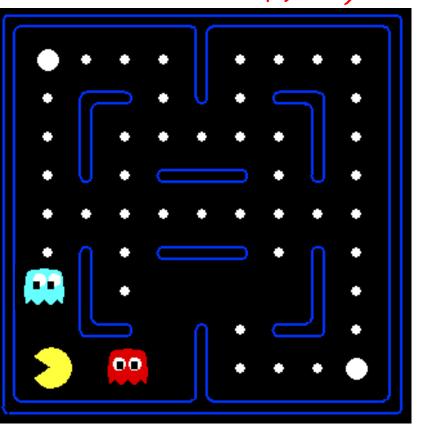
[Demo: Q-learning – pacman – tiny – watch all (L11D5)] [Demo: Q-learning – pacman – tiny – silent train (L11D6)] [Demo: Q-learning – pacman – tricky – watch all (L11D7)]

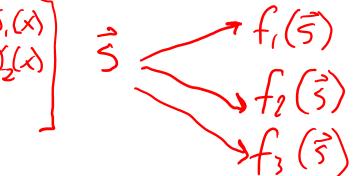
Slide: ai.berkeley.edu

Feature-Based Representations

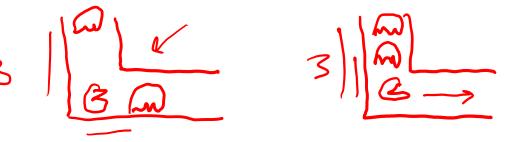
Solution: describe a state using a vector of features (properties)

- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:
- Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)





Linear Value Functions 3



Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V_{w}(s) = w_{1}f_{1}(s) + w_{2}f_{2}(s) + ... + w_{M}f_{M}(s) \qquad \vec{w}^{T}f(s)$$

$$Q_{w}(s,a) = w_{1}f_{1}(s,a) + w_{2}f_{2}(s,a) + ... + w_{M}f_{M}(s,a) \qquad \vec{w}^{T}f(s,a)$$

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Updating a linear value function $E = \left(y - \hat{y} \right)^{\epsilon}$ Original Q learning rule tries to reduce prediction error at s, a: 些 • $Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]$ Instead, we update the weights to try to reduce the error at s, a: • $W_i \leftarrow W_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q_w(s',a') - Q_w(s,a)] \partial Q_w(s,a) / \partial W_i$ $= w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q_w(s',a') - Q_w(s,a)] f_i(s,a)$

 $Q_{w}(s,a) = w_1 f_1(s,a) + ... + w_M f_M(s,a)$

 $Q_w(s,a) = w_1 f_1(s,a) + ... + w_M f_M(s,a)$ Updating a linear value function Original Q learning rule tries to reduce prediction error at s, a: • $Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]$ Instead, we update the weights to try to reduce the error at s, a: • $w_i \leftarrow w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q_w(s',a') - Q_w(s,a)] \partial Q_w(s,a) / \partial w_i$ = $w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q_w(s',a') - Q_w(s,a)] f_i(s,a)$ $J_{Error(w)} = \frac{1}{2} \left(y - w^T f(x) \right)^2$ $\rightarrow Q_{w}(s,a) = w_{1}f_{1}(s,a) + w_{2}f_{2}(s,a)$ 1 $\frac{\partial Q}{\partial w_2} = f_2(s, a)$ $\frac{\partial Error}{\partial w} = -(y - w^T f(x))f(x)$

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a: • $Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]$

Instead, we update the weights to try to reduce the error at s, a:

• $w_i \leftarrow w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q_w(s',a') - Q_w(s,a)] \partial Q_w(s,a) / \partial w_i$ $= w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q_w(s',a') - Q_w(s,a)] f_i(s,a)$

Qualitative justification:

Pleasant surprise: increase weights on +ve features, decrease on -ve ones
Unpleasant surprise: decrease weights on two features.

Unpleasant surprise: decrease weights on +ve features, increase on -ve ones

Approximate Q-Learning

$$Q_w(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + ... + w_M f_M(s,a)$$

Q-learning with linear Q-functions:

transition =
$$(s, a, r, s')$$

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's

Intuitive interpretation:

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features

Formal justification: online least squares

Slide: ai.berkeley.edu

Example: Q-Pacman $Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$

 $r + \gamma \max_{a} Q(s', a') = -500 + 0$



difference = -501
$$w_{GST} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

Slide: ai.berkeley.edu $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$ [D

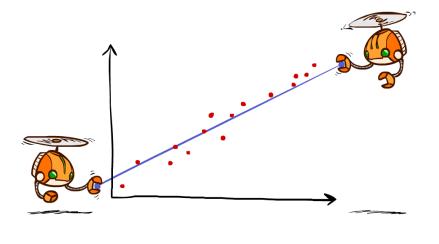
[Demo: approximate Qlearning pacman (L11D10)]

Demo Approximate Q-Learning -- Pacman

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$
$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$



Approximate q update explained:

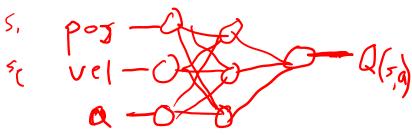
$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

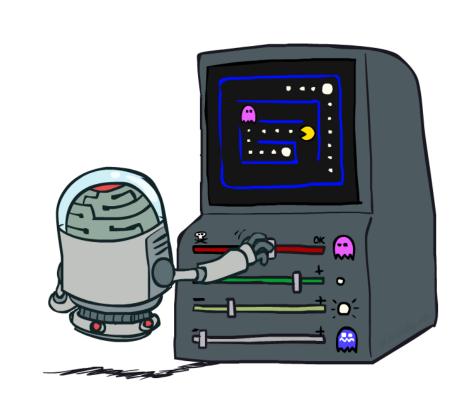
"prediction"

"target"

Slide: ai.berkeley.edu

Reinforcement Learning Milestones





NNSE

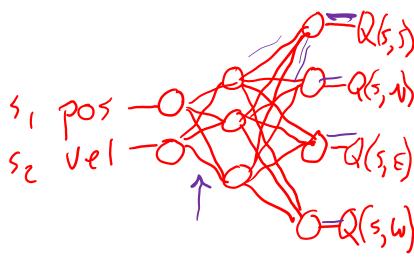


Image: ai.berkeley.edu

TDGammon

1992 by Gerald Tesauro, IBM

- → 4-ply lookahead using V(s) trained from 1,500,000 games of self-play

Input: contents of each location plus several handcrafted features

Experimental results:

- Plays approximately at parity with world champion
- Led to radical changes in the way humans play backgammon



Deep Q-Networks

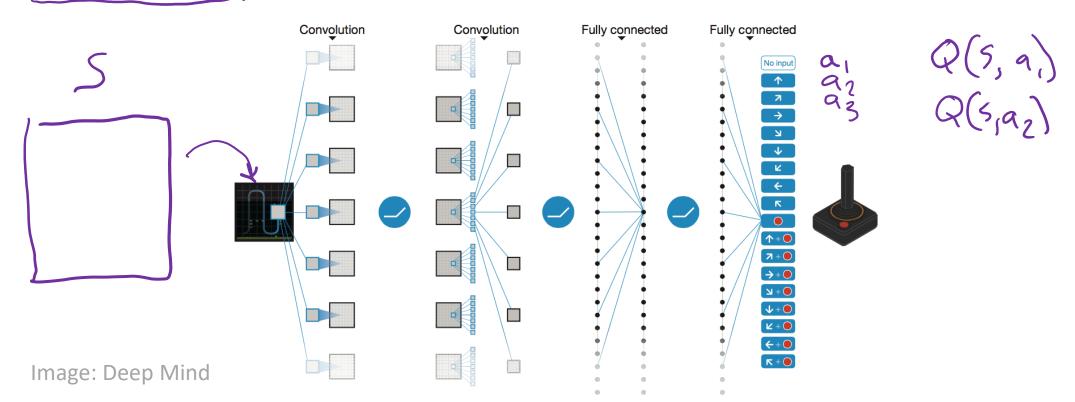
sample = r + γ max_a, Q_w (s',a') Q_w(s,a): Neural network

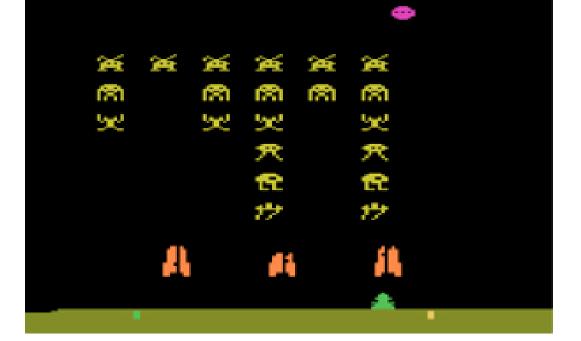
Deep Mind, 2015

Used a deep learning network to represent Q:

Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

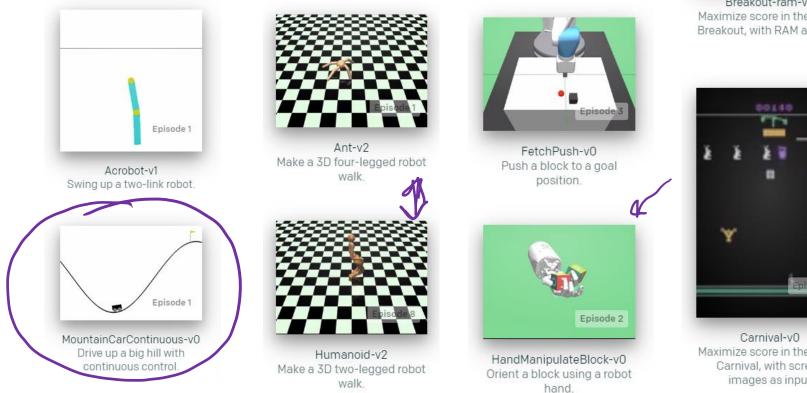




OpenAl Gym

2016+

Benchmark problems for learning agents https://gym.openai.com/envs

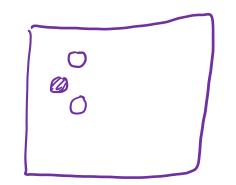


Breakout-ram-v0 Maximize score in the game Breakout, with RAM as input

Maximize score in the game Carnival, with screen images as input

Images: Open Al

Deep Mind, 2016+



Autonomous Vehicles?