Warm-up as You Log In

Answer any query from the joint distribution

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season Temp | Weather | P(S, T, W)
summer hot sun 0.30
summer hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Announcements

Midterm 2
= Mon, 11/9, during lecture
=  See Piazza for details
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Warm-up as You Log In

Answer any query from the joint distribution
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Season Temp | Weather | P(S, T, W)
summer hot sun 0.30
summer hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Bayesian Networks

Bayes net
One node per random variable 7
Directed-Acyclic-Graph
One CPT per node: P(node | Parents(node) ) e‘

P(4,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A, B, C) O

Encode joint distributions as product of conditional
distributions on each variable

P(X{,...,Xy) = HP(Xil Parents(X;))



Bayesian Networks

Bayes net
One node per random variable @
Directed-Acyclic-Graph
One CPT per node: P(node | Parents(node) ) e‘

P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|C) Q

Encode joint distributions as product of conditional
distributions on each variable

P(X{,...,Xy) = HP(Xil Parents(X;))
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Generative Stories and Bayes Nets

SPAM: Bag of words, naive Bayes /\»

" Generative story and Bayes net Y ~ Bern(¢) ?(V& = '3
Xm,y=0 ~ Bern(_@m,zo) ?<XN\;:\ \ \{’:03

()
/ \/\\ Xm,y=1 ~ Bern(ﬁm,y=1) P(XM:: \ \ \{-:D

= Joint distribution (\/\ P(X | ‘{\PCXZ \\{5 PCX3 \\{\?(Xq[ ;/B

No assumptions:
P(Y7X17X21X3'X4) — P(Y)P(Xl | Y)P(XZ | Y;i(l)P(XS | Y'Xl'XZ )P(X4 | Y:X1'X2JX3)




Generative Stories and Bayes Nets

News article: Bigram
" Generative story and Bayes net Y ~ Categorical(¢)

Xmy=0 ~ Categorical(¢n y=o)

@\\ Xm,y=1 ~ Categorical(¢m,y=1)

= Joint distribution P(Y)P(X; | Y)P(X, | Y, X )P(Xs|Y, X, )P(X, 1Y ,X3)

No assumptions:
P(Y,X{,X,,X3,X,) =P(Y)P(X{ | Y)P(X, | Y, X )P(X3|Y, X, X, )P(X, | Y, X{,X5,X3)

—




Generative Stories and Bayes Nets

Weather L
= Generative story and Bayes net

OO

L/

=
]

= Assumptions ?

= Joint distribution ?(L\/\ ; UZ)WS N 3—“— P(U;> P(\JZ ]\J> P(‘Jﬂuz»
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Markov Models

" Value of Y at a given time is called the state

W=~ --»

P(Yy) P(Yesr | Yo)
L !

" Parameters: called transition probabilities or dynamics, specify how the
state evolves over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times

T —




Markov Model Conditional Independence

L CTET®

Basic conditional independence: uy /
" Past and future independent given the present Y - VL \ (fc

= Each time step only depends on the previous y y
* This is called the (first order) Markov property \/é»z ﬂ L Ly \ \ ¢
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Example: Markov Chain Weather

States: Y = {rain, sun}

= |nitial distribution: 1.0 sun

= Conditional probability table
(CPT) P(Y, | Y,.,):

Yt—l Yt P(Yt | Yt—l)

sun | sun 0.9

sun | rain 01
rain | sun 03 |
rain | rain 0.7 JL

43

I||li]h

@y@

Two other ways of representing the same CPT

0.9 —

sun v sun

0.3
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Generative Stories and Bayes

Weather, Umbrella
= Generative story and Bayes net

Nets

U

| N

_J L

@ﬂ@—*@

& &

= Assumptions

7
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Hidden Markov Models

Image: http://ai.berkeley.edu/
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Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs) @ <\ e
= Underlying Markov chain over states V' J
" You observe evidence X at each time step

" Y, is a single discrete variable; X; may be continuous and
may consist of several variables

HMM conditional independence

= Past V' and future Y independent given the present V; PAS+ X j_\ cmrﬂd’)(e ‘ ‘tj(—
= Past X and future X independent given the present Y;

= Past X and future Y independent given the present V; mefc X J_(_ Xt \ L{f

= Past ¥ and future X independent given the present V;



Generative Stories and Bayes Nets

Speech recognition

" Generative story and Bayes net
cats  love  piea

Q {, : worde
@ @ @ XJC - audho for \,Jz}rdﬁ
~N\ L S

" Assumptions: HMM conditional independence assumptions

= Joint distribution: P(Yy, -+, Y, Xy, - X7) = P(YOTIP (Yerq | YOTIP (X, | V})

D
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Example: Weather HMM

An HMM is defined by:

" |nitial distribution: P(W,)

®» Transition model:
" Emission model:

/

6——-
P( th Wt—l) Wil PWiw.y
’D(Utl Wt) sun rain
sun 0.9 0.1
rain 0.3 0.7
VVeathert_l VVeathert
W, P(Ut|Wt)
true false
sun 0.2 0.8
rain 0.9 0.1

| [

T

L

J

Weather 4
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Generative Stories and Bayes Nets

Tracking: Ghostbusting
" Generative story and Bayes net

DUON0 Al

®® © s

" Assumptions: HMM conditional independence assumptions

» Joint distribution: P(Yy, -+, Y1, Xy, - X7) = P(YOIIP (Yeaeq | YOITP (X | V)

Image: http://ai.berkeley.edu/
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Example: Ghostbusters HMM

= State: location of moving ghost

= QObservations: Color recorded by
ghost sensor at clicked squares

= P(Y,) = uniform

" P(Y, | Y,,) = usually move clockwise, but
sometimes move randomly or stay in place

" P(C, | Y,) =sensor model:
/ red means close, green means far away.

- (-
© ©©

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

P(Y,)
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Outline

f
3. Learning HMM parameters
" MLE for categorical distribution

?(YB\ C|>CZ) Cb



Piazza Poll 1

Assume Y is a discrete random variable taking on 7 distinct values. For
example choice of fruit on a given day:

y € {apple, banana, orange, strawberry, watermelon, pear, grape}

How many entries are in the conditional probability table P(Y; ;1 | Y;)?

T T



Piazza Poll 2

Which of the following expressions always equal one?
a pple >
Select ALL that apply el

A P(Yey1 1 Ve
B. 5y ey P(eas Lyp) Orens O—>1

Z)ﬂey P(yii1 1 ye)

’% D’ Zyt+1€‘yzyte‘yp(yt+1 | Yt) :7

If it’s helpful, consider the fruit example:
y € {apple, banana, orange, strawberry, watermelon, pear, grape}

/7



6)3\ S)r\ (\»]r\ S')r\)(\)g)6

Piazza Poll 3

How do could we estimate P(Y;,; = b |Y; = a) from data?

@#(start in state a, end in state b) / #(start in state a)

B. #(startin state a, end in state b) / #(end in state b)

C. | have noidea

#( ) notation is the count of occurrences



HMM MLE

Estimate probabilities of categorical distributions

@ @ e -———> Parameters for: \%Y\
N e 3
Initial: P(Yy) \Lj\
ORONO X s
Transition: P(Y; | Yi—1)
Emission: P(X; | Y;) € \ \j\ \](\



Reminder: Naive Bayes MLE
SPAM: Bag of words, naive Bayes

Parameters for:

Class prior: P(Y) ¢

Class conditional: P(X,, 1Y)

@r’\)\/:()
B m= |



D = {y™, x(")}:ﬂ

Reminder: Naive Bayes MLE

y™ € {0,1)
L($,0) =p(D |, 0) x™ e {0,1}
=T_, p(D(n) | c|),®) I.i.d assumption ¢ € [0,1]
" 0 € [0,1]Mx2

= My P(Y(n)»x(n) | ¢»®)
=1N_; p(y™ | d) p(x™ | y™,®) Generative model

=IN_, p(y(") ))p(xf ),xé ) ,xlgﬂ ‘y(n),ﬁ))

=1_; p(y™ | ) IM_, p( (m) ‘y(") 0., ) Naive Bayes
(n) _ (n) _

(y =1 A xS 1)(1_9m1)

Hm(j(;(")=OAx,(ﬁ)=1) (1 B mo) (y(n) —o A )—O)

e

e

e

() () I y(")=1/\x,(,,7,f)=0
=H11¥=1 ¢r (11— ¢)1 Y H% 13 ( )

— ¢Ny=1(1 ¢)Ny 0 H 1 QNy 1Lxm=1 (1 _ Hm’l)Ny—l,xm—Oeﬁfo—o,xmA (1 . em,O)Ny=o,xm=o



Reminder: Naive Bayes MLE
L(¢,0) =p(D | ¢,0)

— ¢Ny=1(1 _ ¢)Ny 0 l—[ 4 HNy 1, Xm=1 (1 . Hm’l)Ny=1,xm=09Ny=0,xm=1 (1 . HmIO)Nyz(),xm:O

m,0

£($,0) =logp(D | ¢, 0)
= Ny_,log qb + Ny—olog (1 — ¢)
+Ym=1 Ny—1x =1108 61+ Ny_1, —olog (1 - 9m,1)
+Ym=1 Ny=ox, =1 108 0pmo+ Ny=oy =0 log (1—6m0)

Optimization breaks down for each parameter: /
af N =1 N =1
" Set——equal to zero and solve: ¢ = - =2
Ny=1xm=1
= Set equal to zero and solve: 0,1 = y=—rm
ale ’ Ny=1xm=1TNy=1xm=0

— Ny=1,xm=1

Ny=1



HMM MLE ?>v:>

\
Categorical distributions /

* nitial: Yy ~ Categorical(Pnitia1), Yo € {1...J}
* Transition (given Yy = y;): Y1 ~ Categorical(qbtmns,yt ), Ver1 €{1...]}
=  Emission (given Yy = y;): X; ~ Categorical(qbemiss,yt ), x; €{1..K}

Q/P (\<4_4-\ \\/D

Optimization breaks down for each parameter:

(With Lagrange multiplier trick on constraint that each ¢ vector sumto 1, },; ¢; = 1)

oL (Y i e
= Set equal to zero and solve: quitial,j — Yo=J)  _ #(%=J))

dPinitial,j Z{=1 #(Yo=1) N
Gl #(Ypq1=J, Y= #(Ypq1=J, Vi=
= Set equal to zero and solve:  Prransy, i = Uet1=), %e=ye) _ #UWera=) =)
a¢trans,yt,j W Zi=1 #(Yer1=L Yr=Y¢) #(Yt=Yt)
04 #(Xe=k, Y= #(Xe=k, Y=
= Set equal to zero and solve: Qemiss,y, k = K( T ) Bk ey
aqbemiss,y,;,k ou Zi=1 #(Xe=1, Yt=Y¢) #(Yt=yt)



Outline

3. Learning HMM parameters
" MLE for categorical distribution
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= Bayes nets definition
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3. Learning HMM parameters
= MLE for categorical distribution
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Example: Markov Chain Weather

States: Y = {rain, sun}

O. 0 Fa(/\

= |nitial distribution:Ll.O sunj

= Conditional probability table
(CPT) P(Y, | Y,.,): /

Two other ways of representing the same CPT

0.9
0.3

sun sun

0.1
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Example: Markov Chain Weather
Initial distribution: P(Y; = sun) = 1.0

P(Y, = tain) = D.0
What is the probability distribution after one step?
P(Y, =sun) =7




Example: Markov Chain Weather
Initial distribution: P(Y; = sun) = 1.0

What is the probability distribution after one step?

P(Y, =sun) =7 ®~9@

P(YZ — Sun) — Z.XJ.-P(Yl = V1, Y2 — Sun)

= Zylp(Yz =sun|Y; =y, )P(Y1 = y1)

=P(Y, =sun|Y; = sun)P(Y; = sun) +
P(Y, =sun|Y; =rain)P(Y; = rain)

=09-1.0+03-0.0=09

/—\




Piazza Poll 4
Initial distribution: P(Y, = sun) = 0.9

P(\‘/Z: /a(r\\ =0, |
What is the probability distribution after the next step?
P(Y; =sun) =7

A) 0.81
(B))0.84
C) 0.9
D) 1.0
F) 1.2

0.7

0.3

0.1

0.9



0.9

Piazza Poll 4 0.3

Initial distribution: P(Y, = sun) = 0.9

0.7
What is the probability distribution after the next step?

P(Y; = sun) =7 __9@

0.1

A) 0.81 P(Y; = sun) = ), P(Y, = y,,Y; = sun)

B) 0.84 =Yy, P(Y3 =sun | Y, =y, )P(Y, = y;)

C) 0.9 =P(Y; =sun|Y, =sun)P(Y, = sun) +

D) 1.0 P(Y; = sun | Y, = rain)P(Y, = rain)
=09-09+4+0.3-0.1

E) 1.2

=0.81+0.3
= (.84



Markov Chain Inference

ofororos

If you know the transition probabilities, P(Y; | Y;_;), and you know P (Y,),
write an equation to compute P(Ys).

Image: http://ai.berkeley.edu/
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Markov Chain Inference

OO OO

If you know the transition probabilities, P(Y; | Y;_;), and you know P (Y,),
write an equation to compute P(Ys).

'4
P(YS) — Zy4p(y4r YS)

=2y, P(Ys | ¥4 )P (y4)



Markov Chain Inference

OO OO

If you know the transition probabilities, P(Y; | Y;_;), and you know P (Y,),
write an equation to compute P(Y:z).
q e Vo Ve s Ty TS
P(Ys) = Zyl,yz,yg,y4 11(3’14’_2:_)’3;3’4» Ye)
= ZW‘* P(Ys | ya )P(ya 1 y3)P(ys | y2)P(y, | y1)P(y1)
=2y, P(Ys
=Yy, P(Ys
= 2y, P(Ys




Example: Markov Chain Weather

States {rain, sun}

\Mf'r Jy
2 80

= |nitial distribution P(Y,)
’ S48
P(Y,) l
sun rain
0> 0> Two other ways of representing the same CPT

= Transition model P(X, | X, ) 0.9
0.3 '

Yia P(Y;| Y1) sun sun
sun rain @
)
sun 0.9 0.1 A
rain | 0.3 0.7 0.7
0.1
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Weather prediction

Time O: P(Y,) =<0.5,0.5>

Vi P(Ye|Yia)
sun rain

sun 0.9 0.1

rain 0.3 0.7

What is the weather like at time 17
P(Y1) = 2., P(Yo=yo Y1)

= Zyo P(Y1| Yozyo) P(Yozyo)

= 0.5<0.9,0.1> + 0.5<0.3,0.7>

=<0.6,0.4>

Image: http://ai.berkeley.edu/
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Weather prediction, contd.

Time 1: P(Yl) =<O.6,0.4> Yia P(Y;Yea)

sun rain
sun 0.9 0.1
rain 0.3 0.7

What is the weather like at time 27
P(Yz) = Zyl P(Y1=y1/ Yz)
= Zyl P(Y,| Y,=y,) P(Yi=y,)
= 0.6<0.9,0.1> + 0.4<0.3,0.7>
= <0.66,0.34>

Image: http://ai.berkeley.edu/
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Weather prediction, contd.

Time 2: P(Y,) =<0.66,0.34> Vo | PMYilYed)

sun rain
sun 0.9 0.1
rain 0.3 0.7

What is the weather like at time 37
P(Y3) = Zyz P(Y2=y2, Y3)
= Zyz P(Y3| Y,=y,) P(Y,=y,)
= 0.66<0.9,0.1> + 0.34<0.3,0.7>
=<0.696,0.304>

Image: http://ai.berkeley.edu/
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Forward algorithm (simple form)

Probability from ]

Transition model } . . .
previous iteration

What is the state at time t?
P(Y) =X,  P(Y1=Ves, Y

- Zyt-l EiYA Yt'lz)ﬁ'l)

Iterate this update starting at t=1




Inference: Hidden Markov Models
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HMM as Probability Model

= Joint distribution for Markov model:

P(Ygyeeey Y1) = P(Yo) I Licqy.7 PUY, | Yiy)
= Joint distribution for hidden Markov model: /
——> P(Yg, Y,X1, weey Y1 X7) = POYQ) L Lecq 7 POV, | Yeq) PIX, | Y,)
= Future states are independent of the past given the present

= Current evidence is independent of everything else given the current state
= Are evidence variables independent of each other?

Notation alert!

Useful notation: V., = Y, , Y, .1, ...,

—

p

Forexample: P(Y;., | x4.5) = P(Yq, Yy, | X1, X5, X3)



HMM Queries

Filtering: P(Y,|x,.,)

DO~OHG
© ® ® ®

Smoothing: P(Y,|x,.,), k<t
DOHDP®
W @ ® ®

Prediction: P(Y,,.|x,.)

D OO~HD)
&) &

Explanation: P(Y,.,|x,.,)

ofoole




