
Warm-up as You Log In

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season Temp Weather P(S, T, W)

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Answer any query from the joint distribution



Announcements
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P(Weather | winter, hot)?

Season Temp Weather P(S, T, W)

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Answer any query from the joint distribution



One node per random variable

Directed-Acyclic-Graph

One CPT per node: P(node | Parents(node) )

Bayes net

𝐴

𝐵

𝐶

𝐷

Bayesian Networks

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋1, … , 𝑋𝑁 =ෑ

𝑖

𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))
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Outline
1. Probability primer

2. Generative stories and Bayes nets

▪ Bayes nets definition

▪ Naïve Bayes

▪ Markov chains

▪ Hidden Markov models

3. Learning HMM parameters

▪ MLE for categorical distribution

4. Inference in Bayes Nets and HMMs

Y1 Y2 Y3

X1 X2 X3



Generative Stories and Bayes Nets
SPAM: Bag of words, naïve Bayes

▪ Generative story and Bayes net

▪ Assumptions

▪ Joint distribution

𝑌 ∼ 𝐵𝑒𝑟𝑛(𝜙)

𝑋𝑚,𝑦=0 ∼ 𝐵𝑒𝑟𝑛(𝜃𝑚,𝑦=0)

𝑋𝑚,𝑦=1 ∼ 𝐵𝑒𝑟𝑛(𝜃𝑚,𝑦=1)

No assumptions:
𝑃 𝑌, 𝑋1, 𝑋2, 𝑋3, 𝑋4 = 𝑃 𝑌 𝑃 𝑋1 𝑌 𝑃 𝑋2 𝑌, 𝑋1 𝑃 𝑋3 𝑌, 𝑋1, 𝑋2 𝑃 𝑋4 𝑌, 𝑋1, 𝑋2, 𝑋3



Generative Stories and Bayes Nets
News article: Bigram

▪ Generative story and Bayes net

▪ Joint distribution

𝑌 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝓)

𝑋𝑚,𝑦=0 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝓𝑚,𝑦=0)

𝑋𝑚,𝑦=1 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝓𝑚,𝑦=1)

No assumptions:
𝑃 𝑌, 𝑋1, 𝑋2, 𝑋3, 𝑋4 = 𝑃 𝑌 𝑃 𝑋1 𝑌 𝑃 𝑋2 𝑌, 𝑋1 𝑃 𝑋3 𝑌, 𝑋1, 𝑋2 𝑃 𝑋4 𝑌, 𝑋1, 𝑋2, 𝑋3

𝑃 𝑌 𝑃 𝑋1 𝑌 𝑃 𝑋2 𝑌, 𝑋1 𝑃 𝑋3 𝑌, 𝑋2 𝑃 𝑋4 𝑌 , 𝑋3



Generative Stories and Bayes Nets
Weather

▪ Generative story and Bayes net

▪ Assumptions

▪ Joint distribution

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


Markov Models

▪ Value of Y at a given time is called the state

▪ Parameters: called transition probabilities or dynamics, specify how the 
state evolves over time (also, initial state probabilities)

▪ Stationarity assumption: transition probabilities the same at all times

Y2Y1 Y3 Y4

𝑃(𝑌1) 𝑃(𝑌𝑡+1 ∣ 𝑌𝑡)



Markov Model Conditional Independence

Basic conditional independence:

▪ Past and future independent given the present

▪ Each time step only depends on the previous

▪ This is called the (first order) Markov property

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


States: Y = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two other ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Yt-1 Yt P(Yt|Yt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun

▪ Conditional probability table 
(CPT) P(Yt | Yt-1):

Example: Markov Chain Weather

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


Generative Stories and Bayes Nets
Weather, Umbrella

▪ Generative story and Bayes net

▪ Assumptions

▪ Joint distribution

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


Hidden Markov Models

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)

▪ Underlying Markov chain over states 𝑌

▪ You observe evidence 𝑋 at each time step

▪ 𝑌𝑡 is a single discrete variable; 𝑋𝑡 may be continuous and 
may consist of several variables

HMM conditional independence

▪ Past 𝑌 and future 𝑌 independent given the present 𝑌𝑡
▪ Past 𝑋 and future 𝑋 independent given the present 𝑌𝑡
▪ Past 𝑋 and future 𝑌 independent given the present 𝑌𝑡
▪ Past 𝑌 and future 𝑋 independent given the present 𝑌𝑡

Y1Y0 Y2 Y3

X1 X2 X3



Generative Stories and Bayes Nets
Speech recognition

▪ Generative story and Bayes net

▪ Assumptions: HMM conditional independence assumptions

▪ Joint distribution: 𝑃 𝑌1, ⋯ , YT, X1, ⋯𝑋𝑇 = 𝑃 𝑌1 ∏𝑃(𝑌𝑡+1 ∣ 𝑌𝑡)∏𝑃(𝑋𝑡 ∣ 𝑌𝑡)

Image: http://ai.berkeley.edu/

Y1 Y2 Y3

X1 X2 X3

http://ai.berkeley.edu/


Example: Weather HMM

Umbrella t-1 Umbrella t Umbrella t+1

Weather t-1 Weather t Weather t+1

An HMM is defined by:
▪ Initial distribution:   P(W0)
▪ Transition model:    P(Wt | Wt-1)
▪ Emission model:      P(Ut | Wt)

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


Generative Stories and Bayes Nets
Tracking: Ghostbusting

▪ Generative story and Bayes net

▪ Assumptions: HMM conditional independence assumptions

▪ Joint distribution: 𝑃 𝑌1, ⋯ , YT, X1, ⋯𝑋𝑇 = 𝑃 𝑌1 ∏𝑃(𝑌𝑡+1 ∣ 𝑌𝑡)∏𝑃(𝑋𝑡 ∣ 𝑌𝑡)

Image: http://ai.berkeley.edu/

Y1 Y2 Y3

X1 X2 X3

http://ai.berkeley.edu/


Example: Ghostbusters HMM

▪ State: location of moving ghost

▪ Observations: Color recorded by 
ghost sensor at clicked squares

▪ P(Y0) = uniform

▪ P(Yt | Yt-1) = usually move clockwise, but 
sometimes move randomly or stay in place

▪ P(Ct | Yt) = sensor model:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(Y1)

P( Y2 | Y1=(2,3) )

1/6

0 1/6

1/2

0

0 0 0

1/6

X5

Y1Y0 Y2 Y3

C1 C2 C3

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


Outline
1. Probability primer

2. Generative stories and Bayes nets

▪ Bayes nets definition

▪ Naïve Bayes

▪ Markov chains

▪ Hidden Markov models

3. Learning HMM parameters

▪ MLE for categorical distribution

4. Inference in Bayes Nets and HMMs



Piazza Poll 1

Assume 𝑌 is a discrete random variable taking on 7 distinct values. For 
example choice of fruit on a given day:
𝑦 ∈ {𝑎𝑝𝑝𝑙𝑒, 𝑏𝑎𝑛𝑎𝑛𝑎, 𝑜𝑟𝑎𝑛𝑔𝑒, 𝑠𝑡𝑟𝑎𝑤𝑏𝑒𝑟𝑟𝑦, 𝑤𝑎𝑡𝑒𝑟𝑚𝑒𝑙𝑜𝑛, 𝑝𝑒𝑎𝑟, 𝑔𝑟𝑎𝑝𝑒}

How many entries are in the conditional probability table 𝑃(𝑌𝑡+1 ∣ 𝑌𝑡)?

A. 7

B. 14

C. 49

D. 2^7 

E. 7!



Piazza Poll 2

Which of the following expressions always equal one?

Select ALL that apply

A. 𝑃 𝑦𝑡+1 y𝑡
B. σ𝑦𝑡∈𝒴

𝑃 𝑦𝑡+1 y𝑡

C. σ𝑦𝑡+1∈𝒴
𝑃 𝑦𝑡+1 y𝑡

D. σ𝑦𝑡+1∈𝒴
σ𝑦𝑡∈𝒴

𝑃 𝑦𝑡+1 y𝑡

If it’s helpful, consider the fruit example:
𝑦 ∈ {𝑎𝑝𝑝𝑙𝑒, 𝑏𝑎𝑛𝑎𝑛𝑎, 𝑜𝑟𝑎𝑛𝑔𝑒, 𝑠𝑡𝑟𝑎𝑤𝑏𝑒𝑟𝑟𝑦, 𝑤𝑎𝑡𝑒𝑟𝑚𝑒𝑙𝑜𝑛, 𝑝𝑒𝑎𝑟, 𝑔𝑟𝑎𝑝𝑒}



Piazza Poll 3

How do could we estimate 𝑃 𝑌𝑡+1 = 𝑏 𝑌𝑡 = 𝑎) from data?

A. #(start in state a, end in state b) / #(start in state a)

B. #(start in state a, end in state b) / #(end in state b)

C. I have no idea

#( ) notation is the count of occurrences



HMM MLE
Estimate probabilities of categorical distributions

Y1Y0 Y2 Y3

X1 X2 X3

Parameters for:

Initial:  𝑃(𝑌0)

Transition:  𝑃 𝑌𝑡 𝑌𝑡−1

Emission:  𝑃 𝑋𝑡 𝑌𝑡



Reminder: Naïve Bayes MLE
SPAM: Bag of words, naïve Bayes

Parameters for:

Class prior:  𝑃(𝑌)

Class conditional:  𝑃 𝑋𝑚 𝑌

Y

X1 X2 X3



Reminder: Naïve Bayes MLE
𝐿 ϕ,𝚯 = 𝑝 𝒟 ϕ,𝚯)

= Π𝑛=1
𝑁 𝑝 𝒟 𝑛 ϕ,𝚯 i.i.d assumption

= Π𝑛=1
𝑁 𝑝 y 𝑛 , 𝒙 𝑛 ϕ,𝚯

= Π𝑛=1
𝑁 𝑝 y 𝑛 ϕ 𝑝 𝒙 𝑛 y 𝑛 , 𝚯 Generative model

= Π𝑛=1
𝑁 𝑝 y 𝑛 ϕ 𝑝 𝑥1

(𝑛)
, 𝑥2

(𝑛)
, … , 𝑥𝑀

(𝑛)
y 𝑛 , 𝚯

= Π𝑛=1
𝑁 𝑝 y 𝑛 ϕ Π𝑚=1

𝑀 𝑝 𝑥𝑚
(𝑛)

y 𝑛 , 𝜃𝑚,𝑦 Naïve Bayes

= Π𝑛=1
𝑁 𝜙𝑦(𝑛) 1 − 𝜙 1−𝑦(𝑛) Π𝑚=1

𝑀 𝜃𝑚,1

𝕀 𝑦 𝑛 =1 ∧ 𝑥𝑚
𝑛
=1

1 − 𝜃𝑚,1
𝕀 𝑦(𝑛)=1 ∧ 𝑥𝑚

(𝑛)
=0

𝜃𝑚,0

𝕀 𝑦 𝑛 =0 ∧ 𝑥𝑚
𝑛
=1

1 − 𝜃𝑚,0
𝕀 𝑦(𝑛)=0 ∧ 𝑥𝑚

(𝑛)
=0

= 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 Π𝑚=1
𝑀 𝜃𝑚,1

𝑁𝑦=1,𝑥𝑚=1
1 − 𝜃𝑚,1

𝑁𝑦=1,𝑥𝑚=0
𝜃𝑚,0

𝑁𝑦=0,𝑥𝑚=1
1 − 𝜃𝑚,0

𝑁𝑦=0,𝑥𝑚=0

𝒟 = 𝑦 𝑛 , 𝒙(𝑛)
𝑛=1

𝑁

𝑦(𝑛) ∈ {0,1}

𝒙(𝑛) ∈ 0,1 𝑀

𝜙 ∈ [0,1]
𝚯 ∈ 0,1 𝑀𝑥2



Reminder: Naïve Bayes MLE
𝐿 ϕ,𝚯 = 𝑝 𝒟 ϕ,𝚯)

= 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 Π𝑚=1
𝑀 𝜃𝑚,1

𝑁𝑦=1,𝑥𝑚=1
1 − 𝜃𝑚,1

𝑁𝑦=1,𝑥𝑚=0
𝜃𝑚,0

𝑁𝑦=0,𝑥𝑚=1
1 − 𝜃𝑚,0

𝑁𝑦=0,𝑥𝑚=0

ℓ ϕ,𝚯 = log 𝑝 𝒟 ϕ,𝚯)

= Ny=1log 𝜙 + Ny=0log 1 − 𝜙

+σ𝑚=1
𝑀 𝑁𝑦=1,𝑥𝑚=1 log 𝜃𝑚,1+𝑁𝑦=1,𝑥𝑚=0 log 1 − 𝜃𝑚,1

+σ𝑚=1
𝑀 𝑁𝑦=0,𝑥𝑚=1 log 𝜃𝑚,0+𝑁𝑦=0,𝑥𝑚=0 log 1 − 𝜃𝑚,0

Optimization breaks down for each parameter:

▪ Set 
𝜕ℓ

𝜕𝜙
equal to zero and solve:         𝜙 =

𝑁𝑦=1

𝑁𝑦=1+𝑁𝑦=0
=

𝑁𝑦=1

𝑁

▪ Set 
𝜕ℓ

𝜕𝜃𝑚,1
equal to zero and solve:     𝜃𝑚,1 =

𝑁𝑦=1,𝑥𝑚=1

𝑁𝑦=1,𝑥𝑚=1+𝑁𝑦=1,𝑥𝑚=0
=

𝑁𝑦=1,𝑥𝑚=1

𝑁𝑦=1



HMM MLE
Categorical distributions

▪ Initial: 𝑌0 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝓𝑖𝑛𝑖𝑡𝑖𝑎𝑙),     𝑦0 ∈ {1… 𝐽}

▪ Transition (given Yt = 𝑦𝑡): 𝑌𝑡+1 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝝓𝑡𝑟𝑎𝑛𝑠,𝑦𝑡 ,     𝑦𝑡+1 ∈ {1… 𝐽}

▪ Emission (given Yt = 𝑦𝑡):   𝑋𝑡 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝝓𝑒𝑚𝑖𝑠𝑠,𝑦𝑡 ,        𝑥𝑡 ∈ {1…𝐾}

Optimization breaks down for each parameter:

(With Lagrange multiplier trick on constraint that each 𝝓 vector sum to 1, σ𝑖𝜙𝑖 = 1)

▪ Set 
𝜕ℓ

𝜕𝜙𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑗
equal to zero and solve:       𝜙𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑗 =

#(𝑌0=𝑗)

σ
𝑖=1
𝐽

#(𝑌0=𝑖)
=

#(𝑌0=𝑗)

𝑁

▪ Set 
𝜕ℓ

𝜕𝜙𝑡𝑟𝑎𝑛𝑠,𝑦𝑡,𝑗
equal to zero and solve:    𝜙𝑡𝑟𝑎𝑛𝑠,𝑦𝑡,𝑗 =

#(𝑌𝑡+1=𝑗, 𝑌𝑡=𝑦𝑡)

σ
𝑖=1
𝐽

#(𝑌𝑡+1=𝑖, 𝑌𝑡=𝑦𝑡)
=

#(𝑌𝑡+1=𝑗, 𝑌𝑡=𝑦𝑡)

#(𝑌𝑡=𝑦𝑡)

▪ Set 
𝜕ℓ

𝜕𝜙𝑒𝑚𝑖𝑠𝑠,𝑦𝑡,𝑘
equal to zero and solve:   𝜙𝑒𝑚𝑖𝑠𝑠,𝑦𝑡,𝑘 =

#(𝑋𝑡=𝑘, 𝑌𝑡=𝑦𝑡)

σ𝑖=1
𝐾 #(𝑋𝑡=𝑖, 𝑌𝑡=𝑦𝑡)

=
#(𝑋𝑡=𝑘, 𝑌𝑡=𝑦𝑡)

#(𝑌𝑡=𝑦𝑡)
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States: Y = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two other ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Yt-1 Yt P(Yt|Yt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun

▪ Conditional probability table 
(CPT) P(Yt | Yt-1):

Example: Markov Chain Weather

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


Example: Markov Chain Weather
Initial distribution: 𝑃(𝑌1 = 𝑠𝑢𝑛) = 1.0

What is the probability distribution after one step?

𝑃(𝑌2 = 𝑠𝑢𝑛) = ?

rain sun

0.9

0.7

0.3

0.1



Example: Markov Chain Weather
Initial distribution: 𝑃(𝑌1 = 𝑠𝑢𝑛) = 1.0

What is the probability distribution after one step?

𝑃(𝑌2 = 𝑠𝑢𝑛) = ?

𝑃 𝑌2 = 𝑠𝑢𝑛 = σ𝑦1 𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑠𝑢𝑛)

= σ𝑦1 𝑃 𝑌2 = 𝑠𝑢𝑛 𝑌1 = 𝑦1 𝑃(𝑌1 = 𝑦1)

= 𝑃 𝑌2 = 𝑠𝑢𝑛 𝑌1 = 𝑠𝑢𝑛 𝑃 𝑌1 = 𝑠𝑢𝑛 +

𝑃 𝑌2 = 𝑠𝑢𝑛 𝑌1 = 𝑟𝑎𝑖𝑛 𝑃 𝑌1 = 𝑟𝑎𝑖𝑛

= 0.9 ⋅ 1.0 + 0.3 ⋅ 0.0 = 0.9

rain sun

0.9

0.7

0.3

0.1



Piazza Poll 4
Initial distribution: 𝑃(𝑌2 = 𝑠𝑢𝑛) = 0.9

What is the probability distribution after the next step?

𝑃(𝑌3 = 𝑠𝑢𝑛) = ?

A) 0.81

B) 0.84

C) 0.9

D) 1.0

E) 1.2

rain sun

0.9

0.7

0.3

0.1



Piazza Poll 4
Initial distribution: 𝑃(𝑌2 = 𝑠𝑢𝑛) = 0.9

What is the probability distribution after the next step?

𝑃(𝑌3 = 𝑠𝑢𝑛) = ?

A) 0.81

B) 0.84

C) 0.9

D) 1.0

E) 1.2

rain sun

0.9

0.7

0.3

0.1

𝑃 𝑌3 = 𝑠𝑢𝑛 = σ𝑦2 𝑃(𝑌2 = 𝑦2, 𝑌3 = 𝑠𝑢𝑛)

= σ𝑦2 𝑃 𝑌3 = 𝑠𝑢𝑛 𝑌2 = 𝑦2 𝑃(𝑌2 = 𝑦2)

= 𝑃 𝑌3 = 𝑠𝑢𝑛 𝑌2 = 𝑠𝑢𝑛 𝑃 𝑌2 = 𝑠𝑢𝑛 +
𝑃 𝑌3 = 𝑠𝑢𝑛 𝑌2 = 𝑟𝑎𝑖𝑛 𝑃 𝑌2 = 𝑟𝑎𝑖𝑛

= 0.9 ⋅ 0.9 + 0.3 ⋅ 0.1
= 0.81 + 0.3
= 0.84



Markov Chain Inference

If you know the transition probabilities, 𝑃(𝑌𝑡 ∣ 𝑌𝑡−1), and you know 𝑃(𝑌4),

write an equation to compute  𝑃(𝑌5).

Y2Y1 Y3 Y4

Image: http://ai.berkeley.edu/
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Markov Chain Inference

If you know the transition probabilities, 𝑃(𝑌𝑡 ∣ 𝑌𝑡−1), and you know 𝑃(𝑌4),

write an equation to compute  𝑃(𝑌5).

𝑃 𝑌5 = σ𝑦4 𝑃 𝑦4, 𝑌5

= σ𝑦4 𝑃 𝑌5 𝑦4 𝑃 𝑦4

Y2Y1 Y3 Y4



Markov Chain Inference

If you know the transition probabilities, 𝑃(𝑌𝑡 ∣ 𝑌𝑡−1), and you know 𝑃(𝑌4),

write an equation to compute  𝑃(𝑌5).

𝑃 𝑌5 = σ𝑦1,𝑦2,𝑦3,𝑦4 𝑃 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑌5

= σ𝑦1,𝑦2,𝑦3,𝑦4 𝑃 𝑌5 𝑦4 𝑃 𝑦4 ∣ 𝑦3 𝑃 𝑦3 ∣ 𝑦2 𝑃 𝑦2 ∣ 𝑦1 𝑃 𝑦1

= σ𝑦4 𝑃 𝑌5 𝑦4 σ𝑦1,𝑦2,𝑦3 𝑃 𝑦4 ∣ 𝑦3 𝑃 𝑦3 ∣ 𝑦2 𝑃 𝑦2 ∣ 𝑦1 𝑃 𝑦1

= σ𝑦4 𝑃 𝑌5 𝑦4 σ𝑦1,𝑦2,𝑦3 𝑃(𝑦1, 𝑦2, 𝑦3, 𝑦4)

= σ𝑦4 𝑃 𝑌5 𝑦4 𝑃 𝑦4

Y2Y1 Y3 Y4



rain sun

0.9

0.7

0.3

0.1

Two other ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Example: Markov Chain Weather

Image: http://ai.berkeley.edu/

States {rain, sun}

Yt-1 P(Yt|Yt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

▪ Initial distribution P(Y0) 

▪ Transition model P(Xt | Xt-1)

P(Y0)

sun rain

0.5 0.5

http://ai.berkeley.edu/


Weather prediction

Time 0: P(Y0) =<0.5,0.5>

What is the weather like at time 1?
P(Y1) =

Y1Y0

y0
P(Y0=y0, Y1)

= y0
P(Y1| Y0=y0) P(Y0=y0)

= 0.5<0.9,0.1> + 0.5<0.3,0.7>

= <0.6,0.4>

Yt-1 P(Yt|Yt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


y1
P(Y1=y1, Y2)

= y1
P(Y2| Y1=y1) P(Y1=y1)

= 0.6<0.9,0.1> + 0.4<0.3,0.7>

= <0.66,0.34>
Y0

Weather prediction, contd.

Time 1: P(Y1) =<0.6,0.4>

What is the weather like at time 2?
P(Y2) =

Y2Y1

Yt-1 P(Yt|Yt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Image: http://ai.berkeley.edu/
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y2
P(Y2=y2, Y3)

= y2
P(Y3| Y2=y2) P(Y2=y2)

= 0.66<0.9,0.1> + 0.34<0.3,0.7>

= <0.696,0.304>

Weather prediction, contd.

Time 2: P(Y2) =<0.66,0.34>

What is the weather like at time 3?
P(Y3) =

Y3Y2Y1

Yt-1 P(Yt|Yt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Image: http://ai.berkeley.edu/
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Forward algorithm (simple form)

What is the state at time t?
P(Yt) = yt-1

P(Yt-1=yt-1, Yt)

= yt-1
P(Yt| Yt-1=yt-1) P(Yt-1=yt-1)

Iterate this update starting at t=1

Probability from 
previous iteration

Transition model



Inference: Hidden Markov Models

Image: http://ai.berkeley.edu/
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HMM as Probability Model

▪ Joint distribution for Markov model: 

P(Y0,…, YT) = P(Y0)t=1:T P(Yt | Yt-1)

▪ Joint distribution for hidden Markov model:                                                                 

P(Y0, Y1,X1, …, YT,XT) = P(Y0) t=1:T P(Yt | Yt-1) P(Xt | Yt)

▪ Future states are independent of the past given the present

▪ Current evidence is independent of everything else given the current state

▪ Are evidence variables independent of each other?

X5Y1Y0 Y2 Y3

x1 x2 x3 E5

Notation alert!

Useful notation: Ya:b = Ya , Ya+1, …, Yb

For example: P(Y1:2 | x1:3) = P(Y1, Y2, | x1 , x2, x3)



Y2

x1

Y1 Y3 Y4

x2 x3 x4

Smoothing: P(Yk|x1:t), k<t

Y2

x1

Y1 Y3 Y4

x2 x3 x4

Explanation: P(Y1:t|x1:t)

HMM Queries

Filtering: P(Yt|x1:t)

Y2

x1

Y1 Y3 Y4

x2 x3 x4

Y2

x1

Y1 Y3 Y4

x2 x3

Prediction: P(Yt+k|x1:t)

Y5


