
Announcements
Assignments

▪ HW6

▪ Due Mon, 11/2, 11:59 pm

Midterm 2

▪ Mon, 11/9, during lecture

▪ See Piazza for details

▪ Forms for conflicts / tech issues due Fri, 10/30

Fireside Chat about the CMU ML PhD Program

▪ Fri, 10/30, 8:00 pm

▪ See Piazza for details, including form to show interest



Plan
Last Time

▪ PAC Criteria and Learning Theorems

▪ Bias-Variance trade-off as we change |ℋ| or 𝑁

▪ Started VC dimension for infinite |ℋ|

Today

▪ VC dimensions

▪ Learning theory and regularization

▪ MLE

▪ MLE for linear regression

▪ MAP (Maximum a posteriori) estimation

▪ MAP for linear regression



Wrap up Learning Theory
Learning theory slides



Introduction to 
Machine Learning

MLE & MAP

Instructor: Pat Virtue



Reminder MLE
Trick coin

෠𝜙𝑀𝐿𝐸 = argmax
𝜙

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙



Previous Piazza Poll
We model the outcome of a single mysterious weighted-coin flip as a 
Bernoulli random variable:

𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙

𝑝 𝑦 ∣ 𝜙 = ቊ
𝜙, 𝑦 = 1 (𝐻𝑒𝑎𝑑𝑠)

1 − 𝜙, 𝑦 = 0 𝑇𝑎𝑖𝑙𝑠

Given the ordered sequence of coin flip outcomes:
1, 0, 1, 1

What is the estimate of parameter ෠𝜙?

A. 0.0    B. 1/8    C. 1/4     D. 1/2     E. 3/4    F. 3/8    G. 1.0

Why? p(𝒟 ∣ 𝜙) = 𝜙3 1 − 𝜙 1

෠𝜙𝑀𝐿𝐸 = argmax
𝜙

ς𝑖
𝑁 𝑝 𝑦 𝑖 𝜙



MLE as Data Increases
Given the ordered sequence of coin flip outcomes:

1, 0, 1, 1

p(𝒟 ∣ 𝜙) =ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0

What happens as we flip more coins?



MLE for Gaussian
Gaussian distribution:

𝑌 ∼ 𝒩 𝜇, 𝜎2

𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−

𝑦−𝜇 2

2𝜎2

What is the log likelihood for three i.i.d. samples, given parameters 𝜇, 𝜎2?

𝒟 = {𝑦 1 = 65, 𝑦 2 = 95, 𝑦 3 = 85}

𝐿 𝜇, 𝜎2 =

ℓ 𝜇, 𝜎2 =

ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒
−

𝑦(𝑖)−𝜇
2

2𝜎2

෍

𝑖=1

𝑁

−log 2𝜋𝜎2 −
𝑦(𝑖) − 𝜇

2

2𝜎2

෠𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜽

෠𝜃𝑀𝐿𝐸 = argmax
𝜽

෍

𝑖

𝑁

log 𝑝 𝑦 𝑖 𝜽



Recipe for Estimation
MLE

1. Formulate the likelihood, 𝑝(𝒟 ∣ 𝜃)

2. Set objective 𝐽(𝜃) equal to negative log of likelihood

J 𝜃 = − log 𝑝 𝒟 𝜃

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



M(C)LE for Logistic Regression
Learn to predict if a patient has cancer (𝑌 = 1) or not (𝑌 = 0) given the 
input of just one test result, 𝑋𝐴.

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁
1

1 + 𝑒−𝜽
𝑇𝒙

𝑖

𝕀 𝑦 𝑖 =1

1 −
1

1 + 𝑒−𝜽
𝑇𝒙

𝑖

𝕀 𝑦(𝑖)=0



M(C)LE for Logistic Regression
Learn to predict if a patient has cancer (𝑌 = 1) or not (𝑌 = 0) given the 
input of just one test result, 𝑋𝐴.

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝒙 𝑖 , 𝜽



M(C)LE for Linear Regression
Probabilistic interpretation of linear regression

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝒙 𝑖 , 𝜽



FROM MLE TO MAP

13



Product Rule
Construct the joint by multiplying the conditional by the appropriate marginal

𝑃 𝐴, 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 𝑃(𝐵)

Also works when something is given everywhere

𝑃 𝐴, 𝐵 ∣ 𝐶 = 𝑃 𝐴 𝐵, 𝐶 𝑃 𝐵 𝐶

𝑃 𝐴, 𝐵 ∣ 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸



Coin Flipping Example
Trick coin: Suppose I know how many coins are in each container in the 
store. How can I use this information both before and after flipping coins? 



Likelihood, Prior, and Posterior
Likelihood: 𝑝(𝒟 ∣ 𝜃)

Prior: 𝑝 𝜃

Posterior: 𝑝(𝜃 ∣ 𝒟)

Relating these with Bayes rule

Joint: 𝑝(𝒟, 𝜃)



MLE and MAP
Likelihood: 𝑝(𝒟 ∣ 𝜃)

Prior: 𝑝 𝜃

Posterior: 𝑝(𝜃 ∣ 𝒟)

MLE: መ𝜃𝑀𝐿𝐸 = argmax
𝜃

𝑝(𝒟 ∣ 𝜃)

MAP: መ𝜃𝑀𝐴𝑃 = argmax
𝜃

𝑝 𝒟 𝜃 𝑝 𝜃

Maximum a posteriori estimation

Joint: 𝑝(𝒟, 𝜃)

𝑝 𝜃 𝒟 ∝ 𝑝 𝒟 𝜃 𝑝(𝜃)



Coin Flipping Example
Trick coin: Suppose I know how many coins are in each container in the 
store. How can I use this information both before and after flipping coins? 

መ𝜃𝑀𝐴𝑃 = argmax
𝜃

ς𝑖=1
𝑁 𝑝 𝑦(𝑖) 𝜃 𝑝 𝜃



Piazza Poll 1:

𝑝(𝜃 ∣ 𝒟) ∝ 𝑝(𝒟 𝜃 𝑝(𝜃)

𝑝(𝜃 ∣ 𝒟) ∝ ς 𝑝(𝒟 𝑛 𝜃 𝑝 𝜃

As the number of data points increases, which of the following are true?

Select ALL that apply
A. The MAP estimate approaches the MLE estimate

B. The posterior distribution approaches the prior distribution

C. The likelihood distribution approaches the prior distribution

D. The posterior distribution approaches the likelihood distribution

E. The likelihood has a lower impact on the posterior

F. The prior has a lower impact on the posterior

posterior ∝ likelihood ⋅ prior



Piazza Poll 1:

𝑝(𝜃 ∣ 𝒟) ∝ 𝑝(𝒟 𝜃 𝑝(𝜃)

𝑝(𝜃 ∣ 𝒟) ∝ ς 𝑝(𝒟 𝑛 𝜃 𝑝 𝜃

As the number of data points increases, which of the following are true?

Select ALL that apply
A. The MAP estimate approaches the MLE estimate

B. The posterior distribution approaches the prior distribution

C. The likelihood distribution approaches the prior distribution

D. The posterior distribution approaches the likelihood distribution

E. The likelihood has a lower impact on the posterior

F. The prior has a lower impact on the posterior

posterior ∝ likelihood ⋅ prior



MAP as Data Increases
Given the ordered sequence of coin flip outcomes:

𝒟 = 1, 0, 1, 1

p 𝒟 𝜙 𝑝(𝜙) =ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 𝑝 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 𝑝(𝜙)

What happens as we flip more coins?



Recipe for Estimation
MLE

1. Formulate the likelihood, 𝑝(𝒟 ∣ 𝜃)

2. Set objective 𝐽(𝜃) equal to negative log of likelihood

J 𝜃 = − log 𝑝 𝒟 𝜃

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



Recipe for Estimation
MAP

1. Formulate the likelihood times the prior, 𝑝 𝒟 𝜃 𝑝(𝜃)

2. Set objective 𝐽(𝜃) equal to negative log of likelihood times the prior

J 𝜃 = − log 𝑝 𝒟 𝜃 𝑝(𝜃)

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



M(C)LE for Linear Regression
Probabilistic interpretation of linear regression

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝒙 𝑖 , 𝜽



MAP for Linear Regression
What assumptions are we making about our parameters?


