Announcements

Assignments

= HWS5
= Due Mon, 10/26, 11:59 pm
= Start early

Recitation

= No recitation this Friday

Educational Research

= See section added to the end of the website



Plan

Last Time
= Neural Networks
= Calculus

=  Universal Approximation Theorem
= Convolutional neural networks

Today
= Wrap up convolutional neural networks
" Learning Theory

= Bias and variance

" Learning theory model

" Introduce PAC learning



Wrap Up Neural Networks

Neural network slides
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Introduction to
Machine Learning

Learning Theory

Instructor: Pat Virtue
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Learning from Training Data

We want to learn from training data

But, we also want our hypothesis function to generalize well

* How do we characterize and quantify these properties?

= Bias and variance
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Slide credit: Andrew Ng, Stanford



Piazza Polls 1 & 2

Poll 1: [SELECT TWO] Which have high variance? Bb
Poll 2: [SELECT TWO] Which have high bias? (D




1.

Questions

Given a classifier with zero training error,
what can we say about true error%aka.
eneralization error)?
Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)
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Model for Supervised Learning
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Two Types of Error

1. True Error (aka. expected risk)
R(h) — PXNp* (x) (C* (X) -+ h(X)) 777/5

2. Train Error (aka. empirical risk) ~ “n,,
R(h) = Pms( “(x) # h(x))

= Zﬂ x0) # h(x")) [ ONithe e ths
datg "Ng
1 7 7
= Z]l(y( ) # h(x™))
=1
where S = {x(1) ... x(M)IN s the training data set, and x ~

S denotes that x is sampled from the empirical distribution.



PAC /SLT Model

. Generate instances from unknown distribution p*

x() ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*

y = *(x), Vi (2)

. Learning algorithm chooses hypothesis h € H with low(est)
training error, R(h)

h = argmin R(h) (3)
h

. Goal: Choose an h with low generalization error R(h)



Three Hypotheses of Interest

The true function c* is the one we are trying to learn and that [abeled
the training data:

y = (xV), Vi (1)
The expected risk minimizer has lowest true error:
Question:
* — ; True or False:
h” = argmin R(h) h* and c* are

heH
always equal.

The empirical risk minimizer has lowest training error:

~

h = argmin R(h) (3)
heH



