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Introduction to ML

Neural Networks

Instructor: Pat Virtue



Poll 1
Logistic regression for 28x28=784 pixel hand-written digit images into 
10 classes:

How many parameters (including bias terms)?

A. 10

B. 10+784

C. 10*784

D. 10*784 + 10

E. 10*784 + 784

F. I have no idea
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Outline
Pre-reading: Neural Networks

▪ Network diagrams for linear and logistic regression

▪ Neuron and activation functions

▪ Three-neuron network

▪ Neural network structure (adding more neurons)

Today: Neural Networks

▪ Optimization (Backpropogation)

Next time: Neural Network

▪ Properties and Intuition



Neuron
Pre-reading



Single Neuron
Single neuron system
▪ Perceptron (if 𝑔 is step function)

▪ Logistic regression (if 𝑔 is sigmoid)

▪ Linear regression (if 𝑔 is nothing)

Computed Value
𝑧1∑ 𝑔

𝑥1

𝑥2

𝑤1

𝑤2

True Label
𝑦

ℎ𝒘 𝒙 = 𝑧1

ℎ𝒘 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖



Activation Functions
Pre-reading



Activation Functions

It would be really helpful to have a g(z) that was nicely differentiable

▪ Hard threshold:  𝑔 𝑧 = ቊ
1 𝑧 ≥ 0
0 𝑧 < 0

𝑑𝑔

𝑑𝑧
=  ቊ

0 𝑧 ≥ 0
0 𝑧 < 0

▪ Sigmoid: 𝑔 𝑧 =
1

1+𝑒−𝑧   
𝑑𝑔

𝑑𝑧
= 𝑔 𝑧 1 − 𝑔 𝑧

▪ (Softmax)

▪ ReLU: 𝑔 𝑧 =  𝑚𝑎𝑥(0, 𝑧)    
𝑑𝑔

𝑑𝑧
=  ቊ

1 𝑧 ≥ 0
0 𝑧 < 0

𝑧

𝑧

𝑧



Three-neuron Network
Pre-reading



Three-neuron Network
Network diagram

∑

𝑧1,1

𝑤2,1 

𝑤2,2
𝑏2,1

ො𝑦

𝑦
ℓ

𝑤1,1 

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔
𝑎1,2

∑

∑

𝑥1

ො𝑦 = ℎ𝜽 𝐱 = 𝑏2 + ∑𝑗 𝑤2,𝑗  𝑎1,𝑗

𝑎1,𝑗 = 𝑔𝑅𝑒𝐿𝑈 𝑏1,𝑗 + 𝑤1,𝑗  𝑥1



Adding More Neurons
Pre-reading



Three-layer Network
Network diagram

Parameter naming conventions
𝑤𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛𝑝𝑢𝑡

 𝑏𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 

𝑎11

𝑎12

𝑤131

𝑤123

𝑎13

𝑤212

𝑎22

𝑤223

𝑤221

𝑤211
𝑎21

𝑤222

𝑎31 = ො𝑦
𝑤311

𝑤312

𝑤213

𝑥1

𝑥2

𝑥3

𝑤111

𝑤121

𝑤113

𝑤112

𝑤122

𝑤132

𝑤133

𝑏11

𝑏12

𝑏13

𝑏21

𝑏22

𝑏31

𝑧11

𝑧12

𝑧13

𝑔

𝑔

∑ 𝑔

∑ 𝑔

∑ 𝑔

∑

∑

𝑧22

𝑧21

∑ 𝑔
𝑧31



Three-layer Network
Different ways to define network layers: Layers of functions

𝑥1

𝑥2

𝑥3

𝑔

𝑔

∑ 𝑔

∑ 𝑔

∑ 𝑔

∑

∑ ∑ 𝑔



Three-layer Network
Different ways to define network layers: Layers of neurons

𝑥1

𝑥2

𝑥3

𝑔

𝑔

∑ 𝑔

∑ 𝑔

∑ 𝑔

∑

∑ ∑ 𝑔



Neural Network Optimization



Objective, Loss Functions, Gradient Descent

Objective

Loss functions

▪ Regression → Squared error:  ℓ 𝑦, ො𝑦 = 𝑦 − ො𝑦 2

▪ Classfication → Cross entropy: ℓ 𝒚, ෝ𝒚 = − ∑𝑘  𝑦𝑘 log ො𝑦𝑘

Gradient descent

while not converged

 𝜃 ← 𝜃 − 𝛼 𝜕𝐽/𝜕𝜃

𝐽 𝜃 =
1

𝑁
෍

𝑖=1

𝑁

𝐽(𝑖) 𝜃 𝐽(𝑖) 𝜃 = ℓ 𝑦(𝑖), ො𝑦(𝑖) ො𝑦 = ℎ(𝑥; 𝜃)



Poll 2
How many total parameters?

∑

𝑧1,1

𝑤2,1 

𝑤2,2
𝑏2,1

ො𝑦

𝑦
ℓ

𝑤1,1 

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔
𝑎1,2

∑

∑

𝑥1



Poll 3
Which of the following updates will we execute during gradient descent?

Select all that apply

A. 𝑥 ← 𝑥 − 𝛼
𝜕𝐽

𝜕𝑥

B. 𝑤1,1 ← 𝑤1,1  − 𝛼
𝜕𝐽

𝜕𝑤1,1

C. 𝑏1,1 ← 𝑏1,1  − 𝛼
𝜕𝐽

𝜕𝑏1,1

D. 𝑎1,1 ← 𝑎1,1  − 𝛼
𝜕𝐽

𝜕𝑎1,1

E. ො𝑦 ← ො𝑦 − 𝛼
𝜕𝐽

𝜕 ො𝑦

F. 𝑦 ← 𝑦 − 𝛼
𝜕𝐽

𝜕𝑦

∑

𝑧1,1

𝑤2,1 

𝑤2,2
𝑏2,1

ො𝑦

𝑦
ℓ

𝑤1,1 

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔
𝑎1,2

∑

∑

𝑥1



Optimization 
Three-neuron network

∑

𝑧1,1

𝑤2,1 

𝑤2,2
𝑏2,1

ො𝑦

𝑦
ℓ

𝑤1,1 

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔
𝑎1,2

∑

∑

𝑥1

ො𝑦 = ℎ𝜽 𝐱 = 𝑏2 + ∑𝑗 𝑤2,𝑗  𝑎1,𝑗

𝑎1,𝑗 = 𝑔 𝑏1,𝑗 + 𝑤1,𝑗  𝑥1

𝜕𝐽

𝜕𝑤2,1
=

𝜕𝐽

𝜕𝑏2,1
=



Optimization 
Three-neuron network

∑

𝑧1,1

𝑤2,1 

𝑤2,2
𝑏2,1

ො𝑦

𝑦
ℓ

𝑤1,1 

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔
𝑎1,2

∑

∑

𝑥1

ො𝑦 = ℎ𝜽 𝐱 = 𝑏2 + ∑𝑗 𝑤2,𝑗  𝑎1,𝑗

𝑎1,𝑗 = 𝑔 𝑏1,𝑗 + 𝑤1,𝑗  𝑥1

𝜕𝐽

𝜕𝑤2,1
=

𝜕ℓ

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑤2,1

𝜕𝐽

𝜕𝑏1,1
=

𝜕𝐽

𝜕𝑏2,1
=

𝜕ℓ

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑏2,1

𝜕𝐽

𝜕𝑤1,1
=



Optimization 
Three-neuron network

∑

𝑧1,1

𝑤2,1 

𝑤2,2
𝑏2,1

ො𝑦

𝑦
ℓ

𝑤1,1 

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔
𝑎1,2

∑

∑

𝑥1

ො𝑦 = ℎ𝜽 𝐱 = 𝑏2 + ∑𝑗 𝑤2,𝑗  𝑎1,𝑗

𝑎1,𝑗 = 𝑔 𝑏1,𝑗 + 𝑤1,𝑗  𝑥1

𝜕𝐽

𝜕𝑤2,𝑗
=

𝜕ℓ

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑤2,𝑗

𝜕𝐽

𝜕𝑏1,𝑗
=

𝜕ℓ

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑎1,𝑗

𝜕𝑎1,𝑗

𝜕𝑧1,𝑗

𝜕𝑧1,𝑗

𝜕𝑏1,𝑗

𝜕𝐽

𝜕𝑏2,1
=

𝜕ℓ

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑏2,1

𝜕𝐽

𝜕𝑤1,𝑗
=

𝜕ℓ

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑎1,𝑗

𝜕𝑎1,𝑗

𝜕𝑧1,𝑗

𝜕𝑧1,𝑗

𝜕𝑤1,𝑗



Neural Net Forward Pass and
Backpropagation



Forward pass
Predicting output from input

Parameter naming conventions
𝑤𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛𝑝𝑢𝑡

 𝑏𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 

𝑎11

𝑎12

𝑤131

𝑤123

𝑎13

𝑤212

𝑎22

𝑤223

𝑤221

𝑤211
𝑎21

𝑤222

𝑎31 = ො𝑦
𝑤311

𝑤312

𝑤213

𝑥1

𝑥2

𝑥3

𝑤111

𝑤121

𝑤113

𝑤112

𝑤122

𝑤132

𝑤133

𝑏11

𝑏12

𝑏13

𝑏21

𝑏22

𝑏31

𝑧11

𝑧12

𝑧13

𝑔

𝑔

∑ 𝑔

∑ 𝑔

∑ 𝑔

∑

∑

𝑧22

𝑧21

∑ 𝑔
𝑧31

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑏3,1 + ෍

𝑘

𝑤3,1,𝑘  𝑔 𝑏2,𝑘 + ෍

𝑖

𝑤2,𝑘,𝑖  𝑔 𝑏1,𝑖 + ෍

𝑗

𝑤1,𝑖,𝑗  𝑥𝑗



Optimization
Tons of repeated partial derivatives

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑏3,1 + ෍

𝑘

𝑤3,1,𝑘  𝑔 𝑏2,𝑘 + ෍

𝑖

𝑤2,𝑘,𝑖  𝑔 𝑏1,𝑖 + ෍

𝑗

𝑤1,𝑖,𝑗  𝑥𝑗

𝜕𝐽

𝜕𝑏3,1
=

𝜕ℓ

𝜕 ො𝑦

𝜕𝑎3,1

𝜕𝑧3,1

𝜕𝑧3,1

𝜕𝑏3,1

𝜕𝐽

𝜕𝑏2,𝑖
=

𝜕ℓ

𝜕 ො𝑦

𝜕𝑎3,1

𝜕𝑧3,1

𝜕𝑧3,1

𝜕𝑎2,𝑖

𝜕𝑎2,𝑖

𝜕𝑧2,𝑖

𝜕𝑧2,𝑖

𝜕𝑏2,𝑖

𝜕𝐽

𝜕𝑏1,𝑖
=

𝜕ℓ

𝜕 ො𝑦

𝜕𝑎3,1

𝜕𝑧3,1

𝜕𝑧3,1

𝜕𝐚2

𝜕𝐚2

𝜕𝐳2

𝜕𝐳2

𝜕𝑎1,𝑖

𝜕𝑎1,𝑖

𝜕𝑧1,𝑖

𝜕𝑧1,𝑖

𝜕𝑏1,𝑖

𝑥1

𝑥2

𝑥3

𝑏11

𝑏12

𝑏13

𝑏21

𝑏22

𝑏31

𝑔

𝑔

∑ 𝑔

∑ 𝑔

∑ 𝑔

∑

∑ ∑ 𝑔



Forward Pass and 
Backpropagation
Scalar's version



Forward Pass
Width 1 deep network (no bias) (dumb but will help with calculus)

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

= 𝑔 𝑓 𝑔 𝑓 𝑔 𝑓 𝑔 𝑓 𝑔 𝑓 𝑥  

𝑧ℓ = 𝑓 𝑤ℓ, 𝑎ℓ−1 = 𝑤ℓ ⋅ 𝑎ℓ−1

𝑎ℓ = 𝑔 𝑧ℓ

𝐽



Forward Pass
Width 1 deep network (no bias) (dumb but will help with calculus)

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓
𝐽

With a new data point (x, y), we have our current weight values

but we don't ො𝑦 (or any of the intermediate values 𝑧ℓ and 𝑎ℓ)

or the value of our object function 𝐽

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥



Forward Pass
Width 1 deep network (no bias) (dumb but will help with calculus)

𝑥

𝑤1

𝑔𝑓

𝑦

ℓ
𝑤2

𝑔𝑓
𝑤3

𝑔𝑓
𝑤4

𝑔𝑓
𝑤5

𝑔𝑓

With a new data point (x, y), we have our current weight values

but we don't ො𝑦 (or any of the intermediate values 𝑧ℓ and 𝑎ℓ)

or the value of our object function 𝐽

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥



Forward Pass
Width 1 deep network (no bias) (dumb but will help with calculus)

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓
𝐽

With a new data point (x, y), we have our current weight values

but we don't have ො𝑦 (or any of the intermediate values 𝑧ℓ and 𝑎ℓ)

or the value of our object function 𝐽

The forward pass propagates 𝑥 (forward) through the network

to give us these values

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥



Backpropagation
Width 1 deep network (no bias) (dumb but will help with calculus)

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

To do gradient descent we need the partial derivative of the objective with 
respect to each parameter, wℓ ← 𝑤ℓ − 𝛼 𝜕𝐽/𝜕𝑤ℓ

The backward pass propagates the change in the objective with respect to 
intermediate values (𝜕𝐽/𝜕𝑧ℓ and 𝜕𝐽/𝜕𝑎ℓ) back through the network to 
produce each 𝜕𝐽/𝜕𝑤ℓ

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑤5

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑤4

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑧3

𝜕𝐽

𝜕𝑤3

𝜕𝐽

𝜕𝑎2

𝜕𝐽

𝜕𝑧2

𝜕𝐽

𝜕𝑤2

𝜕𝐽

𝜕𝑎1

𝜕𝐽

𝜕𝑧1

𝜕𝐽

𝜕𝑤1



Reminder: Calculus Chain Rule (scalar version)
Composite functions → chain rule

𝑦 = 𝑓 𝑧
𝑧 = 𝑔 𝑥

𝑑𝑓

𝑑𝑥
=

𝑑𝑓

𝑑𝑧

𝑑𝑔

𝑑𝑥

𝑦 = 𝑓 g x



𝜕𝐽

𝜕𝑤1
=

Why backwards?
Width 1 deep network (no bias) (dumb but will help with calculus)

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦



𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕 ො𝑦

𝜕𝑔

𝜕𝑧5

𝜕𝑓

𝜕𝑎4

𝜕𝑔

𝜕𝑧4

𝜕𝑓

𝜕𝑎3

𝜕𝑔

𝜕𝑧3

𝜕𝑓

𝜕𝑎2

𝜕𝑔

𝜕𝑧2

𝜕𝑓

𝜕𝑎1

𝜕𝑔

𝜕𝑧1

𝜕𝑓

𝜕𝑤1

Why backwards?
Width 1 deep network (no bias) (dumb but will help with calculus)

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑧3

𝜕𝐽

𝜕𝑎2

𝜕𝐽

𝜕𝑧2

𝜕𝐽

𝜕𝑎1

𝜕𝐽

𝜕𝑧1

𝜕𝐽

𝜕𝑤2
=



𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕 ො𝑦

𝜕𝑔

𝜕𝑧5

𝜕𝑓

𝜕𝑎4

𝜕𝑔

𝜕𝑧4

𝜕𝑓

𝜕𝑎3

𝜕𝑔

𝜕𝑧3

𝜕𝑓

𝜕𝑎2

𝜕𝑔

𝜕𝑧2

𝜕𝑓

𝜕𝑎1

𝜕𝑔

𝜕𝑧1

𝜕𝑓

𝜕𝑤1

Why backwards?
Width 1 deep network (no bias) (dumb but will help with calculus)

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑧3

𝜕𝐽

𝜕𝑎2

𝜕𝐽

𝜕𝑧2

𝜕𝐽

𝜕𝑎1

𝜕𝐽

𝜕𝑧1

𝜕𝐽

𝜕𝑤5
=

𝜕𝐽

𝜕 ො𝑦

𝜕𝑔

𝜕𝑧5

𝜕𝑓

𝜕𝑤5

𝜕𝐽

𝜕𝑤2
=

𝜕𝐽

𝜕 ො𝑦

𝜕𝑔

𝜕𝑧5

𝜕𝑓

𝜕𝑎4

𝜕𝑔

𝜕𝑧4

𝜕𝑓

𝜕𝑎3

𝜕𝑔

𝜕𝑧3

𝜕𝑓

𝜕𝑎2

𝜕𝑔

𝜕𝑧2

𝜕𝑓

𝜕𝑤2

𝜕𝐽

𝜕𝑤3
=

𝜕𝐽

𝜕 ො𝑦

𝜕𝑔

𝜕𝑧5

𝜕𝑓

𝜕𝑎4

𝜕𝑔

𝜕𝑧4

𝜕𝑓

𝜕𝑎3

𝜕𝑔

𝜕𝑧3

𝜕𝑓

𝜕𝑤3

𝜕𝐽

𝜕𝑤4
=

𝜕𝐽

𝜕 ො𝑦

𝜕𝑔

𝜕𝑧5

𝜕𝑓

𝜕𝑎4

𝜕𝑔

𝜕𝑧4

𝜕𝑓

𝜕𝑤4



𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕 ො𝑦

𝜕𝑔

𝜕𝑧5

𝜕𝑓

𝜕𝑎4

𝜕𝑔

𝜕𝑧4

𝜕𝑓

𝜕𝑎3

𝜕𝑔

𝜕𝑧3

𝜕𝑓

𝜕𝑎2

𝜕𝑔

𝜕𝑧2

𝜕𝑓

𝜕𝑎1

𝜕𝑔

𝜕𝑧1

𝜕𝑓

𝜕𝑤1

Why backwards?
Width 1 deep network (no bias) (dumb but will help with calculus)

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕𝑧1

=
𝜕𝐽

𝜕𝑧1

𝜕𝑓

𝜕𝑤1

What if someone had already done all of the work to compute 
𝜕𝐽

𝜕𝑧1
 ?

Then we just need to do the local partial derivative for f with respect to the parameter w 
and then use that to compute the partial derivative for J with respect to the parameter w



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦
=

𝜕ℓ

𝜕 ො𝑦
 

𝜕𝐽

𝜕 ො𝑦



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5
=

𝜕𝐽

𝜕 ො𝑦

𝜕𝑔

𝜕𝑧5
 

𝜕𝐽

𝜕𝑧5



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕𝑤5
=

𝜕𝐽

𝜕𝑧5

𝜕𝑓

𝜕𝑤5

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑎4
=

𝜕𝐽

𝜕𝑧5

𝜕𝑓

𝜕𝑎4
 

𝜕𝐽

𝜕𝑎4



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑧4
=

𝜕𝐽

𝜕𝑎4

𝜕𝑔

𝜕𝑧4
 

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕𝑤4
=

𝜕𝐽

𝜕𝑧4

𝜕𝑓

𝜕𝑤4

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑎3
=

𝜕𝐽

𝜕𝑧4

𝜕𝑓

𝜕𝑎3
 

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑧3
=

𝜕𝐽

𝜕𝑎3

𝜕𝑔

𝜕𝑧3
 

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧3

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑎3



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕𝑤3
=

𝜕𝐽

𝜕𝑧3

𝜕𝑓

𝜕𝑤3

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑎2
=

𝜕𝐽

𝜕𝑧3

𝜕𝑓

𝜕𝑎2
 

𝜕𝐽

𝜕𝑎2

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑧3



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑧2
=

𝜕𝐽

𝜕𝑎2

𝜕𝑔

𝜕𝑧2
 

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑧3

𝜕𝐽

𝜕𝑎2



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕𝑤2
=

𝜕𝐽

𝜕𝑧2

𝜕𝑓

𝜕𝑤2

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑎1
=

𝜕𝐽

𝜕𝑧2

𝜕𝑓

𝜕𝑎1
 

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑧3

𝜕𝐽

𝜕𝑎2

𝜕𝐽

𝜕𝑧2



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑧1
=

𝜕𝐽

𝜕𝑎1

𝜕𝑔

𝜕𝑧1
 

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑧3

𝜕𝐽

𝜕𝑎2

𝜕𝐽

𝜕𝑧2

𝜕𝐽

𝜕𝑎1



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑧3

𝜕𝐽

𝜕𝑎2

𝜕𝐽

𝜕𝑧2

𝜕𝐽

𝜕𝑎1

𝜕𝐽

𝜕𝑧1

𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕𝑧1

𝜕𝑓

𝜕𝑤1



Backpropagation
More efficient to start at the end and reuse values!

𝑥 𝑎1

𝑤1

𝑧1 𝑔𝑓

𝑦

ℓ
𝑎2

𝑤2

𝑧2 𝑔𝑓
𝑎3

𝑤3

𝑧3 𝑔𝑓
𝑎4

𝑤4

𝑧4 𝑔𝑓
𝑎5 = ො𝑦

𝑤5

𝑧5 𝑔𝑓

ො𝑦 =  ℎ𝜽 𝐱 = 𝑔 𝑤5 ⋅ 𝑔 𝑤4 ⋅ 𝑔 𝑤3 ⋅ 𝑔 𝑤2 ⋅ 𝑔 𝑤1 ⋅ 𝑥

To do gradient descent we need the partial derivative of the objective with 
respect to each parameter, wℓ ← 𝑤ℓ − 𝛼 𝜕𝐽/𝜕𝑤ℓ

The backward pass propagates the change in the objective with respect to 
intermediate values (𝜕𝐽/𝜕𝑧ℓ and 𝜕𝐽/𝜕𝑎ℓ) back through the network to 
produce each 𝜕𝐽/𝜕𝑤ℓ

𝐽

𝜕𝐽

𝜕 ො𝑦

𝜕𝐽

𝜕𝑧5

𝜕𝐽

𝜕𝑤5

𝜕𝐽

𝜕𝑎4

𝜕𝐽

𝜕𝑧4

𝜕𝐽

𝜕𝑤4

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑧3

𝜕𝐽

𝜕𝑤3

𝜕𝐽

𝜕𝑎2

𝜕𝐽

𝜕𝑧2

𝜕𝐽

𝜕𝑤2

𝜕𝐽

𝜕𝑎1

𝜕𝐽

𝜕𝑧1

𝜕𝐽

𝜕𝑤1



Generic Layer Implementation (so-far)
Compute derivatives per layer, utilizing previous derivatives

Objective: 𝐽 𝜃

Arbitrary layer: zout = 𝑓 zin, 𝜃

Need: 

▪
𝜕𝐽

𝜕𝑧𝑖𝑛
=

𝜕𝐽

𝜕𝑧𝑜𝑢𝑡

𝜕𝑓

𝜕𝑧𝑖𝑛

▪  
𝜕𝐽

𝜕𝜃
 =

𝜕𝐽

𝜕𝑧𝑜𝑢𝑡

𝜕𝑓

𝜕𝜃

Layer  zout = 𝑓 zin, 𝜃

 
𝜕𝑓

𝜕𝑧𝑖𝑛

 
𝜕𝑓

𝜕𝜃

Layer  zout = 𝑓 zin, 𝜃

 
𝜕𝑓

𝜕𝑧𝑖𝑛

 
𝜕𝑓

𝜕𝜃

𝜕𝐽

𝜕𝑧𝑜𝑢𝑡

𝑧𝑜𝑢𝑡

𝜕𝐽

𝜕𝑧𝑖𝑛

𝑧𝑖𝑛

𝜕𝐽

𝜕𝜃

𝜃

𝑧𝑖𝑛

𝜃

𝑧𝑜𝑢𝑡
𝑓

𝐽



Additional Slides



Three-neuron network
Interactive demo: three_neuron_interactive.ipynb on course website

https://drive.google.com/file/d/1vGMwv1tvdSMgfK16cLlBX7GrGOgU0eYH/view?usp=drive_link


Poll
Interactive demo: three_neuron_interactive.ipynb on course website

What's the smallest MSE that you can find?

https://drive.google.com/file/d/1vGMwv1tvdSMgfK16cLlBX7GrGOgU0eYH/view?usp=drive_link


Traffic Data Example
Quadratic feature engineering vs three-neuron network

∑

𝑧1,1

𝑤2,1 

𝑤2,2
𝑏2,1

ො𝑦

𝑤1,1 

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔
𝑎1,2

∑

∑

𝑥1

∑

𝑥1

𝑤1

𝑤2
𝑏

ො𝑦

𝑥1
2 → 𝑥2



Traffic Data Example
Three-neuron network

Parameters

𝑤1,1:    0.4       𝑏1,1: -5.9

𝑤1,2:    -0.6     𝑏1,2: 5.2

𝑤2,1:  -1.0      𝑏2,1: 5.1

𝑤2,2:  -1.0

∑

𝑧1,1

𝑤2,1 

𝑤2,2
𝑏2,1

ො𝑦

𝑦
ℓ

𝑤1,1 

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔
𝑎1,2

∑

∑

𝑥1



Traffic Data Example
Three-neuron network

Parameters

𝑤1,1:    0.4       𝑏1,1: -5.9

𝑤1,2:    -0.6     𝑏1,2: 5.2

𝑤2,1:  -1.0      𝑏2,1: 5.1

𝑤2,2:  -1.0

∑

𝑧1,1

𝑤2,1 

𝑤2,2
𝑏2,1

ො𝑦

𝑦
ℓ

𝑤1,1 

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔
𝑎1,2

∑

∑

𝑥1



Simple Network
What do the colors of the lines represent?

A. Weight

B. Value from previous neuron

https://playground.tensorflow.org/

https://www.cs.cmu.edu/~pvirtue/tfp

https://playground.tensorflow.org/
https://www.cs.cmu.edu/~pvirtue/tfp


Image Classification
Demo of (Fully-connected) neural network to classify images of hand-
written digits

https://adamharley.com/nn_vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html


Reminder: Image Classification
Demo of (Fully-connected) neural network to classify images of hand-
written digits

https://adamharley.com/nn_vis/mlp/3d.html

300 neurons

784 pixels

100 neurons

10 neuronsOutput layer

Hidden layer 2

Hidden layer 1

Input

Digit network

https://adamharley.com/nn_vis/mlp/3d.html


Image Classification
Demo of (Fully-connected) neural network to classify images of hand-
written digits

https://adamharley.com/nn_vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html


Poll
How many parameters does one neuron in the output layer have?

A. 1

B. 2

C. 10

D. 11

E. 100

F. 101

https://adamharley.com/nn_vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html


Poll
How many parameters does one neuron in the first hidden layer have?

A. 1

B. 2

C. 300

D. 301

E. 784

F. 785

https://adamharley.com/nn_vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html


Poll
What do the colors of the lines represent?

A. Weight

B. Value from previous neuron

https://adamharley.com/nn_vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html


Poll
What do the colors of the neuron squares represent?

A. Weight

B. Output value of the neuron

C. Input value of the neuron

https://adamharley.com/nn_vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html
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