10-315
Introduction to ML

Neural Networks

Instructor: Pat Virtue

Poll 1 N\

Logistic regression for 28x28=784 pixel hand-written digit images into
10 classes: > A

How many parameters (including bias terms)? = ﬂ'sn/k >/
A. 10 8 W |
B. 10+784 b | |—
C. 10*784 [
E. 10*784 + 784
F. I have noidea

Poll 1

Logistic regression for 28x28=784 pixel hand-written digit images into

10 classes:

How many parameters (including bias terms)?

F.

m O O ® >

10

10+784
10*784
10*784 + 10
10*784 + 784
| have no idea

<

<

I

\J

£ 76410

|

L)
j"?
—
11—

[

—

L0 €

Outline

Pre-reading: Neural Networks

= Network diagrams for linear and logistic regression
= Neuron and activation functions

* Three-neuron network

= Neural network structure (adding more neurons)

Today: Neural Networks

» Optimization (Backpropogation)

Next time: Neural Network
" Properties and Intuition

Neuron
Pre-reading

Single Neuron

Single neuron system

= Perceptron (if g is step function)
" Logistic regression (if g is sigmoid)
" Linear regression (if g is nothing)

Computed Value True Label
Z1 Y

hy, (x) = Z1

hy(x) =g Z W;X;

l

Activation Functions
Pre-reading

Activation Functions

It would be really helpful to have a g(z) that was nicely differentiable

1 z=0 d_g_{() z=0

* Hard threshold: g(z) = {O z<0 dz |0 z<0

» Sigmoid: g(z) = 1;_2 3—‘3 = g(z)(l — g(z))
= (Softmax)

= RelU: g(z) = max(0,z) Z_i = {(1) ;i 8

Three-neuron Network
Pre-reading

Three-neuron Network

Network diagram

y Z11 a1
W11 g W, 1
w Z1 2 a w by 1
1,2 Z) g 1,2 2’2 Y
b1,2

5; — he (X) —_ bz +Z]W2,] aljj

aq,j = gReLU(bl,j T+ Wy x1)

Adding More Neurons

Pre-reading

Parameter naming conventions

Three-layer Network Wiayer output input

blayer output
Network diagram

Wiiq Z11
X4 g
b1,
W311
Z1y Z31 az1 =Y
Xy g D g
12 b3,
W312
Z
13
Wi33

Three-layer Network

Different ways to define network layers: Layers of functions

2

!

g

N\

N

Jor5

Three-layer Network

Different ways to de

X1

g

=)

)

1

Linéa (‘(oxc'r

2

fine network layers: Layers of neurons

——

o

g

Q{Lm

N
7

Neural Network Optimization

Objective, Loss Functions, Gradient Descent

Objective N

1
J(©) = NZW(@) JO@©) = e(y®,50) 9= h(x;6)

Loss functions
= Regression = Squared error: £(y,9) = (y — 9)?
= Classfication = Cross entropy: £(y,y) = —)., Vi log i

Gradient descent /
while not converged

0«60 —adf/dg
<0 —adj/of

Poll 2

How many total parameters?

Poll 3

Which of the following updates will we execute during gradient descent?

Select all that apply

da]
A xe<x —a—

_/)
d]
B w4 w4 —
1,1 1,1 aW11
d
% bll(_bll —]
)) ab1,1

Optimization

Three-neuron network

y Z11
W11
X1 b1,1
W1,2 Z Zl,Z
by 5

N
NE
l

dﬁ 59
db21 é)/’m\

Optimization

Three-neuron network

X4 N HEE R
it i SN
W12 D 212 g 41,2 W32 b21 i
b1,
J 00 39 da, Jz, o) _9e 99
Jwi) 3:77@)\0\61‘ 02, dw,, MWz 0V OWan

abl’l W&a” dzh o‘lb”—‘ abz,l ay abz,l

Optimization y=he (X) =by+ X;wy;ay;

Three-neuron network A1,j = g(bl,j T Wyj xl)
oy y Z11 g ai,1 -
X4 b1,1 ’ > 5
S = - g . - szl. Q y
b1,
d] B af dy 6‘a1,j azl,j d] B af dy
Owy; 09 day; 0z, 0wy ; Owy; 09 0wy
0] 0¢ 09 0ay; 0z o] _ 0t 09y

db, ;. 09 da,; 0z;; 0b; 0byy 09 by,

Neural Net Forward Pass and
Backpropagation

Parameter naming conventions

FO rwa rd p a S S Wlayer output input

blayer output
Predicting output from input

aiq

W311

o~y

31

W31o

O pt| m |Zat|o N y=hex)=g <b3,1 + Z W31k 9 (bz,k + Z Woki 9 <b1,i + Z W1, j x])))

Tons of repeated partial derivatives

8¢ das,| 975,

@ ay 0Z31 0b31

Forward Pass and
Backpropagation

Scalar's version

Forward Pass
Width 1 deep network (no bias) (dumb but will help with calculus)

X Zq aq Z am3 a3 Zy a, Zs as =y
fr19 fr9 fil9 fr19 fr19 ¢
Wy w, ! Wy S Wy Ws
Zp = f(ﬁg, Ap-1) = Wy Qpq y=hex) =g (Ws g (W4 g (W3 ’g(Wz - g(wq x)))))

ar = 9(z) = g (f (g (f <9 (f (97 (sts <x>)))>>>)))

Forward Pass y=he(x)=g <W5 g (W4 g (Ws - g(wz - gw, -x))))>

Width 1 deep network (no bias) (dumb but will help with calculus)

Wy W, W3 Wy Wg

With a new data point (x, y), we have our current weight values
but we don't y (or any of the intermediate values z, and a,)
or the value of our object function J

Forward Pass y=hex)=g <W5 g (W4 g (Ws - g(ws - g(wy -x))))>

Width 1 deep network (no bias) (dumb but will help with calculus)
y

X
Wlf g sz g ng g W4f g st g _\E

With a new data point (x, y), we have our current weight values

but we don't ¥ (or any of the intermediate values z, and a,)
or the value of our object function J

Forward Pass y=hex)=g <W5 g (W4 g (Ws - g(ws - g(wy -x))))>

Width 1 deep network (no bias) (dumb but will help with calculus)

Wy W, W3 Wy Wg

With a new data point (x, y), we have our current weight values
but we don't have y (or any of the intermediate values z, and a,)
or the value of our object function J

The forward pass propagates x (forward) through the network
to give us these values

Backpropagation Y= he(x) = g<w5 -g(w4 g (Ws - g(ws - g(wy -x))))>
Width 1 deep network (no bias) (dumb but will help with calculus)

A g9
0z, da, 0z, da, 073 das 0z d0ay 0zs 0y \

X Z4 a, Z, a, Zy a; Z a, Zc a. =y \E¥
£
W4 f I W, f g W3 f g w nfﬁ Y A7 f

9
] KA K 0 _9) 02y PREYE !ié: -
a_wl ow, ows E;“:a:zy;\”/?‘ Ws —Jyf 4 ddg

respect to each parameter, w, <« w, —a dJ /0w,

The backward pass propagates the change in the objective with respect to

intermediate values (d//0z, and d] /da,) back through the network to
produce each d//dw,

Reminder: Calculus Chain Rule (scalar version)

Composite functions - chain rule

y = f(gx) y = f(2)
z=g(x)

df dfdg
dx dz dx

Why bhackwards? y=he(x) =g <W5 g <W4 g (w3 - g(wz - g(wy -x))))>

Width 1 deep network (no bias) (dumb but will help with calculus)
A

2y
4
. fr9 ", fr19 W, 9 " fr9 . fr9

Why bhackwards? Y= he(x) = g<w5 -g(w4-g(W3 - g(ws - g(wy -x))))>
Width 1 deep network (no bias) (dumb but will help with calculus)

v oy Y a9y Y u
aZl aal aZZ aaz aZ3 aag 6Z4 aaz]. aZS ay _Y
4
. f9 ", 19 W, fr19 " fr9 . 19

dJj _ 0] dg o0f dg O0f d0g O0f dg O0f dg Of
dw, 09 0zs 0a, 0z, daz dz3 da, 0z, da, 9z, Ow,
J

aWZ o

Why bhackwards? Y= he(x) = g<w5 -g(w4~g(W3 - g(ws - g(wy -x))))>
Width 1 deep network (no bias) (dumb but will help with calculus)

v oy Y a9y Y u
aZl aal aZZ aaz aZ3 aag 6Z4 aaz]. aZS ay _Y
4
. f9 ", 19 W, fr19 " fr9 . 19

dJ _ 0] dg 0f 0g O0f dg Of dg Of dg Of
dw,; 09 0zs 0a, 0z, 0az dz3 da, 0z, da, 0z dwyq

dJ _ 0] ag 0f 0g of odg of dg Of
dw, 09 0z 0a, 024 0az 923 da, 07y OW,

d] _ 0] dg of dg df dg of
dws 09 0z 0a, 0z, 0az dz3 Ows

dJ _ 0] dg O0f dg Of
dw, 09 0zs 0a, 0z, 0w,

d] _ 8] ag of
dws 99 9zs Ows

Why bhackwards? Y= he(x) = g<w5 -g(w4-g(W3 - g(ws - g(wy -x))))>
Width 1 deep network (no bias) (dumb but will help with calculus)

o y
074
4
Wlf g sz g ng g W4f g st Y
aJ 0] 0g of og df dg Of dg Of dg|of
dw, | 09 0zs 0a, 0z, das 025 da, 0z, da, azgaw1

_ 9 o
o 621 awl
. d]
What if someone had already done all of the work to compute 67 ?
1

Then we just need to do the local partial derivative for f with respect to the parameter w
and then use that to compute the partial derivative for J with respect to the parameter w

Backpropagation y = he(x) = g<w5 -g(w4~g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

Yy
4
. fr9 ", fr19 W, 9 " fr9 . fr9
d] a¢

Backpropagation y = he(x) = g<w5 -g(w4~g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

Iy
- _\E
L
. fr9 ", fr19 W, 9 " fr9 . fr9
9] _ 9] 99

Backpropagation y = he(x) = g<w5 -g(w4-g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

9 9y
0zs 09 “_\E)
X Z, aq Z, a, Zs as Zy ay Zg As =Y
Wlf g sz g ng g W4f g st g t
] _ 0] Of
da, ~ 8z5da,
] _ 9] of

dws - 0Zz OwWs

Backpropagation y = he(x) = g<w5 -g(w4~g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!
9] o] 9 vy

aaél- a_ZS a_y _\:
4
. fr9 ", fr9 W, fr9 " fr9 . fIr9

d] _ 9] dg
824, o 5a4 624

Backpropagation y = he(x) = g<w5 -g(w4-g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

9 9g 9 9 y
0z, day d0zs 0y A_\: /
X 21 Cl1 22 a2 Z3 Cl3 Z4 Cl4 Z5 a5 =Yy
Wlf g sz g ng g W4f g st g 14
a] _ 0d] of
daz ~ 9z, 0as
9] _ 9] of

0W4 o 624 6W4

Backpropagation y = he(x) = g<w5 -g(w4-g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

o 9 9 9 o y
aag 6Z4 aa4 025 5? _\:
L
. f9 ", fr19 W, fr9 " fI9 . 9
3 _ 1 o

823 o aag 623

Backpropagation y = he(x) = g<w5 -g(w4-g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

9 9 9 9g 9 9 y
023 das 0z, day d0zs 0y A_\: /
X 21 Cl1 22 a2 Z3 Cl3 Z4 Cl4 Z5 a5 =Yy
Wlf g sz g ng g W4f g st g t
a] _ 9] oOf
da, ~ 923 0a,
9] _ 9] of

6W3 o 623 6W3

Backpropagation y = he(x) = g<w5 -g(w4-g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

g 99 9 o 9 9 I y
da, 023 das 0z, day d0zs 0y _\:
L
. f9 ", fr19 W, 9 " fI9 . 9
d] d] 09

Backpropagation y = he(x) = g<w5 -g(w4-g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

g 9 o4 9 9 9 g I y
0z, da, 025 das 02, day dzs 0y A_\: /
X Zq a, Zy a, Z3 a; Zy a, Zc as =Yy
Wlf g sz g ng g W4f g st g ¢
dj _ 0] Of
da; ~ 0z, 9a,
9] _ 9] OF

aWZ - aZZ aWZ

Backpropagation y = he(x) = g<w5 -g(w4-g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

L A N
da, 02 da, 023 das 0z, da, 0z 09 _\:
4
. fr9 ", fr19 W, fr9 " fr9 . fr9
d/] _ 0] dg

621 o aal 6Z1

Backpropagation y = he(x) = g<w5 -g(w4-g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

v oy Y o a9y Y u
aZl aal aZZ aaz aZ3 aag 6Z4 aaz]. aZS ay _Y
4
. fr9 ", 19 W, fr19 " fr9 . 19
9] _ 9] 9

aW1 - 621 aW1

Backpropagation y = he(x) = g<w5 -g(w4~g(W3 - g(wz - g(wy -x))))>

More efficient to start at the end and reuse values!

g 4 9 o9 9 9 o I 9 I y
021 aal aZZ aaz 023 (9613 6Z4 aa4 025 ay
4
. 9 ", 19 W, fr19 " fr9 . /19
y o 3 o o
ow, ow, 0w, odw, 0ws

To do gradient descent we need the partial derivative of the objective with
respect to each parameter, w, <« w, —a dJ /0w,

The backward pass propagates the change in the objective with respect to

intermediate values (d//0z, and d] /da,) back through the network to
produce each d//dw,

Generic Layer Implementation (so-far)

Compute derivatives per layer, utilizing previous derivatives

Objective: J(8) 2in [Zou

Arbitrary layer: zyyt = f(Zin, 0) -

Need:

laa] = aa] aaf Zin_> I—ayer Zout=f(zin»9)
Zin Zout 9Zin AJ _ of 07)__

_ 9 _ o) of U e[Ozin~ 02in Jour
00~ 0zgy; 06 0Zin N o o)

8_6/ 00 dZo,,(‘l"
o o

90

> Zout

0Zpyt

Additional Slides

Three-neuron network

Interactive demo: three neuron interactive.ipynb on course website

w1

b1

w2

b2

w31

w32

b3

OO0 00O O O

0.00

0.00

0.00

0.00

1.00

1.00

0.00

10.0

7.5 A

5.0 A

2.5 A

-5.0 1

-7.5 4

-10.0

MSE: 37.43
W(FT Y
G)J)L
N
O
—1]0.0 —7].5 —51.0 -2;.5 010 2.15 510 7.]5 1(;.0

https://drive.google.com/file/d/1vGMwv1tvdSMgfK16cLlBX7GrGOgU0eYH/view?usp=drive_link

Poll

Interactive demo: three neuron interactive.ipynb on course website
What's the smallest MSE that you can find?

w1

b1

w2

b2

w31

w32

b3

O

O
O
O
O
O
O

0.00

0.00

0.00

0.00

1.00

1.00

0.00

10.0

7.5 A

5.0 A

2.5 1

-=5.0 1

-7.5 4

-10.0

MSE: 37.43

W‘PT ?
o%

%

O

-10.0 -7.5 -5.0 =25 0.0 2.5

5.0 7.5

10.0

https://drive.google.com/file/d/1vGMwv1tvdSMgfK16cLlBX7GrGOgU0eYH/view?usp=drive_link

Traffic Data Example

Quadratic feature engineering vs three-neuron network

X1
Wi
y Piy
2 LTasnmmnt
Xy =Xy Sw, b
Z11 a1
W)
11 2. g Wy 1
b1,1 5
W12y 21,2 g 12 ~W;, bz 1

(o))

ol

Traffic volume

-

w

g q] O Training data
gglfo® —— Prediction
® Prediction 8 am
0 4 B 12 16 20 24
Hour of day

Traffic Data Example

Three-neuron network

Parameters

W1’1: 0.4 bl,l: -5.9

W1’2: -0.6 b1,2: 5.2

W2,1: -1.0 b2,1: 5.1
W2,2: -1.0
W3 1
P b
Wy “21

= (8]

w

Traffic volume

O Training data
- Prediction
® Prediction 8 am

8

12 16 20 24
Hour of day

Traffic Data Example

Three-neuron network

Parameters

W1’1: 0.4 bl,l: -5.9

W1’2: -0.6 b1,2: 5.2

W2,1: -1.0 b2,1: 5.1
W2,2: -1.0
W3 1
P b
Wy “21

= (8]

w

Traffic volume

O Training data
- Prediction
® Prediction 8 am

8

12 16 20 24
Hour of day

Simple Network

What do the colors of the lines represent?

A. Weight

Epoch Learning rate Activation Regularization Regularization rate Problem type
B V I f ° 000,349 0.03 RelLU v None 0 Regression
. dlue 1Trom previous neuron
FEATURES + — 2 HIDDEN LAYERS OUTPUT NEURON
Which propert Test loss 0.025
do you want t _ _ Training loss 0.022
feed in? + +
4 neurons 2 neurons
P~ 49
., /,
—t 8 A
rd]
s/ - L
/l /’f/’
/’ /’, \
B Vi \ The outputs are
o /’ /// mixed with varying
,’,’/’ weights, shown
== by the thickness of
o the lines.
’i
{
N This is the output
from one neuron
Hover fo see it
larger.

https://playground.tensorflow.org/

https://www.cs.cmu.edu/~pvirtue/tfp

https://playground.tensorflow.org/
https://www.cs.cmu.edu/~pvirtue/tfp

Image Classification

Demo of (Fully-connected) neural network to classify images of hand-
written digits

https://adamharley.com/nn_vis/mlp/3d.html

Reminder: Image Classification

Demo of (Fully-connected) neural network to classify images of hand-
written digits

https://adamharley.com/nn vis/mlp/3d.html

Digit network

Output layer | 10 neurons

Hidden layer 2 100 neurons

Hidden layer 1

300 neurons

Input / 784 pixels \

https://adamharley.com/nn_vis/mlp/3d.html

Image Classification

Demo of (Fully-connected) neural network to classify images of hand-
written digits

https://adamharley.com/nn_vis/mlp/3d.html

Poll

How many parameters does one neuron in the output layer have?
1

2 . e e e

10

.11
100

101 - B = EEEE B B N EE N ER ER CEEE EER EERDE]

mm g 0O w >

I e

e

https://adamharley.com/nn vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html

Poll

How many parameters does one neuron in the first hidden layer have?
1

2 0123456789
"N

300
. 301
784

785 5= = mEss = = = EE m EE a5 sses ssl sses

mm g 0O w >

https://adamharley.com/nn vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html

Poll

What do the colors of the lines represent?
A. Weight
B. Value from previous neuron

0123456789
|

https://adamharley.com/nn vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html

Poll

What do the colors of the neuron squares represent?
A. Weight

B. Output value of the neuron

C. Input value of the neuron

0123456789
LI |

https://adamharley.com/nn vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html

	Slide 1: 10-315 Introduction to ML Neural Networks
	Slide 2: Poll 1
	Slide 3: Poll 1
	Slide 4: Outline
	Slide 5: Neuron
	Slide 6: Single Neuron
	Slide 7: Activation Functions
	Slide 8: Activation Functions
	Slide 9: Three-neuron Network
	Slide 10: Three-neuron Network
	Slide 11: Adding More Neurons
	Slide 12: Three-layer Network
	Slide 13: Three-layer Network
	Slide 14: Three-layer Network
	Slide 15: Neural Network Optimization
	Slide 16: Objective, Loss Functions, Gradient Descent
	Slide 17: Poll 2
	Slide 18: Poll 3
	Slide 19: Optimization
	Slide 20: Optimization
	Slide 21: Optimization
	Slide 22: Neural Net Forward Pass and Backpropagation
	Slide 23: Forward pass
	Slide 24: Optimization
	Slide 25: Forward Pass and Backpropagation
	Slide 26: Forward Pass
	Slide 27: Forward Pass
	Slide 28: Forward Pass
	Slide 29: Forward Pass
	Slide 30: Backpropagation
	Slide 31: Reminder: Calculus Chain Rule (scalar version)
	Slide 32: Why backwards?
	Slide 33: Why backwards?
	Slide 34: Why backwards?
	Slide 35: Why backwards?
	Slide 36: Backpropagation
	Slide 37: Backpropagation
	Slide 38: Backpropagation
	Slide 39: Backpropagation
	Slide 40: Backpropagation
	Slide 41: Backpropagation
	Slide 42: Backpropagation
	Slide 43: Backpropagation
	Slide 44: Backpropagation
	Slide 45: Backpropagation
	Slide 46: Backpropagation
	Slide 47: Backpropagation
	Slide 49: Generic Layer Implementation (so-far)
	Slide 50: Additional Slides
	Slide 51: Three-neuron network
	Slide 52: Poll
	Slide 53: Traffic Data Example
	Slide 54: Traffic Data Example
	Slide 55: Traffic Data Example
	Slide 56: Simple Network
	Slide 57: Image Classification
	Slide 58: Reminder: Image Classification
	Slide 59: Image Classification
	Slide 60: Poll
	Slide 61: Poll
	Slide 62: Poll
	Slide 63: Poll

