10-315
Introduction to ML

Clustering:
K-means

Instructor: Pat Virtue




Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification

< Structured Prediction

:Jupervised

Semi-supervised
Online

Active Learning
Imitation Learning

Reinforcement Learning
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Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar datapoints.

Question: When and why would we want to do this?

Useful for:

e Automatically organizing data.
e Understanding hidden structure in data.

* Preprocessing for further analysis.

® Representing high-dimensional data in a low-dimensional space
(e.g., for visualization purposes).



Applications (Clustering comes up everywhere...)

Cluster news articles or web pages or search results by topic.
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e Cluster users of social networks by interest (community detection).

e Facebook network .l Twitter Network

Slide credit: CMU MLD Nina Balcan
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Applications (Clustering comes up everywhere...)

Cluster customers according to purchase history.

=

Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

e And many many more applications....



Clustering Applications

Jigsaw puzzles!
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Semi-supervised Learning
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Semi-supervised Learning
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Semi-supervised Learning
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https://chrisharrison.net/index.php/Research/ListenLearner

Partitioning Algorithms

Partitioning method: Construct a partition of N objects into a set of K
clusters

Given: a set of objects and the number K

Find: a partition of K clusters that optimizes the chosen partitioning
criterion

— Globally optimal: exhaustively enumerate all partitions

— Effective heuristic method: K-means algorithm
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K-Means
Algorithm

Input — Data, x) Desired number of clusters, K
Initialize — the K cluster centers (randomly if necessary)

Ilterate —

1. Assign points to the nearest cluster centers

2. Re-estimate the K cluster centers (aka the centroid or mean), by
assuming the memberships found above are correct.

Termination —

If none of the objects changed membership in the last iteration, exit.
Otherwise go to 1.
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K-means Clustering: Assign points
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K-means Clustering: Update centers
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K-means Clustering: Assign points
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K-means Clustering: Update centers
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K-means Clustering: Assign points
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K-means Optimization

Optimization recipe

1. Formulate objective
2. Minimize objective



K-means Optimization

Question: Which of these partitions is “better”?

Slide credit: CMU MLD Matt Gormley 19



K-means Optimization

Input: K, x@, .., x®  xO e rM Num clusters, unlabeled data
Output: z®, ...,z 2z {1 .. K} Cluster assignments per point
Output: Uy, ..., g, Mx € RM Cluster centers



K-means Optimization /

Computational complexity .

Ui, ..., Ug, Z = argmin ZHx(i) — uz(i)Hi

youllK, Z 4
Hi,-BK) 2 55




K-means Optimization
Alternating minimization

a) z = argmin Y., ,
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Alternating minimization

O
Coordinate descent /Y

(8,6,)

Two different approaches

min ](611 92) —

91792

1. Step based on derivative fQr one parameter

d. 01(_61_776_]_/081 -

b. 6, 6, —1n0d]/06, |

2. Find minimum for one parameter
a. 0, < argmin](84,06,)
61

b. 68, < argmin J(84,6,)
0>




Alternating minimization

Block coordinate descent
Two different approaches

n;’%n J(a, B)

1. Step based on gradient for one set of parameters (step size n)
a. a<a—nvV,J

2. Find minimum for one set of parameter (no hyperparameters!)

a. a < argmin]j(a, f)
a

b. p < argmin](a, )
B




Issues: Seed Choice

Results are quite sensitive to seed selection.
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Issues: Seed Choice

Results are quite sensitive to seed selection.
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Issues: Seed Choice

Results are quite sensitive to seed selection.
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Issues: Seed Choice

K-means always converges, but it may converge at a local optimum
that is different from the global optimum, and in fact could be

arbitrarily worse in terms of its objective.

Slide credit: CMU MLD Nina Balcan



Issues: Seed Choice

e Results can vary based on random seed selection.

 Some seeds can result in poor convergence rate, or
convergence to sub-optimal clustering.

— Try out multiple starting points (very important!!!)
— k-means ++ algorithm of Arthur and Vassilvitskii

—

key idea: choose centers that are far apart

(probability of picking a point as cluster center X
distance from nearest center picked so far)

30



Other Issues

e Number of clusters K
— Objective function m

— Look for “Knee”
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— Can you pick K by minimizing the objective over K?
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(One) bad case for K-means

Clusters may overlap
Some clusters may be “wider” than others
Clusters may not be linearly separable




Additional Slides



Clustering Algorithms

Hierarchical algorithms
= Bottom-up: Agglomerative Clustering
= Top-down: Divisive

Partition algorithms
= K means clustering
= Mixture-Model based clustering

4

35



Hierarchical Clustering

Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:
= Joins the most similar pair of clusters,

= Update the similarity of the new cluster to others
until there is only one cluster.

Greedy - less accurate but simple to implement

Top-Down divisive

Starts with all the data in a single cluster, and repeat:

= Split each cluster into two using a partition algorithm
Until each object is a separate cluster.

More accurate but complex to implement

36
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