10-315
Introduction to ML

Dimensionality Reduction:
PCA, Autoencoders, and
~eature Learning

Instructor: Pat Virtue




Learning Paradigms

Paradigm Data

Supervised D= {x® yN ~ x~p*()andy =c*(-)
— Regression y® € R

< Classification y@e{l,... K}

<3 Binary classification ~ y(® € {+1, -1}

< Structured Prediction y(¥) is a vector

Unsupervised D={xO}N, x~p()

Semi-supervised D = {x®,y®O}" U {xD}2

Online D = {(xM),yW), (x@), y@), (x3) 4B, . .}
Active Learning D = {x®}N . and can query y(¥) = ¢*(-) at a cost
Imitation Learning D = {(sW),aV)), (s?,a?),...}

Reinforcement Learning D = {(sY), a1, r(1)) (52 q(2 r(2)) .}



Outline

Unsupervised Learning

Dimensionality Reduction

Embedded Spaces and Feature Learning
Autoencoders

Principal Component Analysis (PCA)

= Examples: 2D and 3D

= PCA algorithm

" PCA, eigenvectors, and eigenvalues
= PCA objective and optimization



Dimensionality Reduction



Dimensionality Reduction

For each x(¥ € RM find representation z(!) € RX where K « M



Dimensionality Reduction

http://timbaumann.info/svd-image-compression-demo/

Image Compression with
Singular Value Decomposition

—

IMAGE SIZE 600 x 402
####### = 241200

EEEEEEEEEEEEEEEEE
proportional to number of pixels

COMPRESSED SIZE
approximately proportional to
402x5 +5 + 5x600

= 5015

COMPRESSION RATIO
241200 / 5015 = 48.10

Show singular values
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http://timbaumann.info/svd-image-compression-demo/

Dimensionality Reduction

http://timbaumann.info/svd-image-compression-demo/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



http://timbaumann.info/svd-image-compression-demo/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Feature Learning

Learning a lower dimensional representation of our data rather than
doing feature engineering to represent the data

Also called feature embedding
(embedding data in a lower/different dimensional space)



Word Embeddings

Vector representation for each token in vocabulary (initially random)

Random initialization

V: Previous ’ U: Next

V: 2. U:

! e 0.884, 0.196 i ! s -0.044, 1.568
0.358, -2.343 | E 1.051, 0.406

ate: -1.085, 0.560 ate: -0.169, -3.190

cat: 0.939, -0.978 cat: 1.120, 1.333

dog: 0.503, 0.406 0 dog: -0.243, -0.130

ran: 0.323, -0.493 ran: -0.109, 1.556

the: -0.792, -0.842 -1 the: 0.129, -2.067

zoo: -1.280, 0.246 zoo: -0.885, -1.105




Learning to Organize Data

Neural networks can learn to organization t

apP ) 4
apPp o dn

Z

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Digit Autoencoder

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Digit Autoencoder

Demo: Using a learned feature space

® ®




0

Variational Autoencoder Demo
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Feature Learning

Listen Learner

https://chrisharrison.net/index.php/Research/ListenLearner



https://chrisharrison.net/index.php/Research/ListenLearner

Exploring Feature Space

https://experiments.withgoogle.com/ai/melody-mixer/view/

Twinkle H ° Sparse H




Exploring Feature Space

https://experiments.withgoogle.com/ai/beat-blender/view/




Feature Learning

CLIP: Connecting text and images

pepper the Text
aussie pup ' Encoder

Image

Encoder

https://openai.com/research/clip
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Feature Learning

CLIP: Connecting text and images

3. Use for zero-shot prediction

Image
Encoder

https://openai.com/research/clip

a photo of
a {object}.

Text
Encoder

- I

L, LT, ILT; s I; Ty

a photo of
a dog.




Outline

Unsupervised Learning

Dimensionality Reduction

Embedded Spaces and Feature Learning
Autoencoders

Principal Component Analysis (PCA)

= Examples: 2D and 3D

= PCA algorithm

" PCA, eigenvectors, and eigenvalues
= PCA objective and optimization

19



Autoencoders



Exercise: Human-defined Feature Space

Step 4: Creation!
1. Select three students: A,B,C
2. Student A draws a new digit and h

3. Student B thinks about where to p
coordinate, (X, y)

4. Student Clooks at the coordinate «
from A) and draws a new digit




Exercise: Human-defined Feature Space
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Learning to Organize Data

Neural networks can learn to organizatic
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.

..........................................

RBM | Encoder

Pretraining Unrolling Fine-tuning



Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.

"~ Neural
' Network
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Digit Autoencoder

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Digit Autoencoder

Demo: Using a learned feature space

® ®




Autoencoder objective

Minimize reconstruction error

np:dn



Autoencoder objective

What if networks are just one linear layer?

np:dn



Outline

Unsupervised Learning

Dimensionality Reduction

Embedded Spaces and Feature Learning
Autoencoders

Principal Component Analysis (PCA)

= Examples: 2D and 3D

= PCAalgorithm

" PCA, eigenvectors, and eigenvalues
= PCA objective and optimization

30



Principal Component Analysis (PCA)



Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.

-~ Autoencoder

oOoONOOSHEWN-O




Principle Component Axes

2-D Gaussian Data: 1st and 2nd principle component axes

10

_10_

— U
0 8 g

10

Spoiler: The PCA axes can be
found using eigenvectors!



PCA Dimensionality Reduction

2-D Gaussian Data: Reduced along 1st principle component
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PCA Axes
3-D Data



PCA: Pre-processing

What if the data isn't centered

20 1

10 -

X orig

10

20

101

_10_

X (centered)

~10

10




PCA: Centering Data
T (x(WT -
(x2)T
D — {X(%’) ?{:\;1 X —

()T

We assume the data is centered

|
_ (1) _
M—Ng_lx =0

Q: What if A: Subtract
your data is off the
not centered? sample mean

Slide from Matt Gormley



Rotation of Data (and back)

1. For any orthogonal matrix V € RM*M

2. Rotate to new space:
3. (Un)rotate back:
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PCA Algorithm



PCA Algorithm

Input: X, Xoqr, K

1. Center data (and scale each axis) based on training data =2 X, Xt
2. V =eigenvectors(XTX)

3. Keep only the top K eigenvectors:



PCA Algorithm

Input: X, X¢eor, K

1. Center data (and scale each axis) based on training data =2 X, X;.¢¢
2. V =-eigenvectors(XTX)

3. Keep only the top K eigenvectors: Vi




PCA Algorithm

Input: X, X¢pgr, K

1. Center data (and scale each axis) based on training data =2 X, X+
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vy

4

Liest = Xtest Vi

® - = e —_@o—o0o—o o




PCA Algorithm

Input: X, Xiosr, K

1. Center data (and scale each axis) based on training data =2 X, X;.¢¢
2. V =-eigenvectors(XTX)

3. Keep only the top K eigenvectors: V/x

4. Ziest = XtestVk

Optionally, use V' to rotate Z,.s; back to original subspace X';.¢; and
uncenter

e e
o
b © O e
® — =0 e —_@o—o0o—o o
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PCA Examples



Projecting MINIST digits
Task Setting

1.
2.
3.

Take 28x28 images of digits and project them down to K components
Report percent of variance explained for K components
Then project back up to 28x28 image to visualize how much information was preserved

Original image 95% of Explained Variance 0% of Explained Variance 20% of Explained Variance 50% of Explained Variance
> > 5
" " 1% ] 1
15 15 1 3 3 1
9 " 0 » al ’
e o * a *
) ] " ; ’ » 13 ’ » " ? > 1 > » ) > ) . by ¢ L ? > < 1
184 components 154 components 87 companents 43 components 11 components

45



Projecting MNIST digits

Task Setting:
1. Take 28x28 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

3.0

2.5

-2,0

F RS

- 1,0

0.5

0.0



Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy

, 8 year-old boy with previous fracture
and 4cm leg length discrepancy

Images Courtesy

H. Potter, H.S.S.
imagination at work 47
GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy

8 year-old boy with previous fracture
and 4cm leg length discrepancy

Images Courtesy

H. Potter, H.S.S.
imagination at work 48
GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging

Area Measurement

imagination at work 49
GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging

Area Measurement

P

/ \\\
=

-~

Flatten Growth Plate to Enable 2D Area Measurement

@ imagination at work 50
GLBC — MSK Image Analysis

April 23,2010
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= Examples: 2D and 3D

= PCA algorithm

" PCA, eigenvectors, and eigenvalues
= PCA objective and optimization
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PCA Objective



Poll 1

What is the projection of point x onto vector v, assuming that ||v||, = 17?

A. VX
B. v'x
C. (vTx)v

D. vixxly



PCA Algorithm

Input: X, Xiosr, K

1. Center data (and scale each axis) based on training data =2 X, X;.¢¢
2. V =-eigenvectors(XTX)

3. Keep only the top K eigenvectors: V/x

4. Ziest = XtestVk

Optionally, use V' to rotate Z,.s; back to original subspace X';.¢; and
uncenter

e e
o
b © O e
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Sketch of PCA

1. Select "best" V € RM*K
2. Project down: zD) =7 Tx® vy

3. Reconstruct up: x'W =ypyz0 vi



Select “Best” Vector

Reconstruction Error vs Variance of Projection



Poll 2 & Poll 3

Consider the two projections below
Poll 2: Which maximizes the variance?
Poll 3: Which minimizes the reconstruction error?

Option A Option B




Select “Best” Vector

Reconstruction Error vs Variance of Projection

O
S ° ®
® o
® o
Reconstruction Error Variance of Projectiﬁm

I -

1N 2
v* = argmax Z(VTX("))
\Y
s.t.v|l,=1 t=1

v' = argmin Zuxm — (vTx®)v|?

s.t. IIvIIz 1 =1



PCA Objective Equivalence

Equivalence of Maximizing Variance and Minimizing Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
I = (P xO)] = x| - (v"x)? 0

since viv = ||v||?* = L.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

v* = argmin —ZH){ (vIx@)v||? (2)
v ||“"||2_1
1 ; '
= argmin Z |[xD][2 — (vTx())? (3)
vi||v]|*=1 =
1 |
= argmax — (VTxm]Q (4)
v:||v]|?=1 N 2



Sketch of PCA

1. Select "best" V € RM*X
2. Project down: zD) =7 Tx® vy

3. Reconstruct up: x'W =ypyz0 vi

Definition of PCA
1. Select v4 that best explains data

2. Select next v; that
. Isorthogonal to vy, ...,Vj_4
Ii. Best explains remaining data

3. Repeat 2 until desired amount of data is explained



PCA Eigenvalues and Eigenvectors



PCA: The First Principal Component

Use method of Lagrange multipliers to show that the first principle
component is an eigenvalue of the covariance matrix



Poll 4

Given X € RV*M with N M-dimensional datapoints, which is the covariance
matrix?

1
A = XX

N

B ~XTx
M

c L xxT



PCA: the First Principal Component

To find the first principal component, we wish to solve the fol-
lowing constrained optimization problem (variance maximization).

v, = argmax v! Xv (1)
vi|[v]|?=1

So we turn to the method of Lagrange multipliers. The Lagrangian
is:

Lv,\)=vIZv-Aviv-1) (2)

Taking the derivative of the Lagrangian and setting to zero gives:

% (vIZv - A(viv—-1))=0 (3)
Yv—-Av=0 (4)
v =Jv (5)

Recall: For a square matrix A, the vector v is an eigenvector iff
there exists eigenvalue A such that:

Av = Av (6)

64



PCA: The Next Principal Component

Compute the next principal component from the residuals



Principal Component Analysis (PCA)

(XTX )v = Av, so v (the first PC) is the eigenvector of
sample covariance matrix X X

Sample variance of projectionv’ X" X v =Aviv= 1

Eigenvaluesi, =2 4, = 13 = -~

* The 15t PC v, is the eigenvector of the sample covariance
matrixX " X associated with the largest eigenvalue

* The 2nd PC v, is the eigenvector of the sample covariance
matrixX” X associated with the second largest eigenvalue

e Andsoon...

Slide from Nina Balcan



How Many PCs?

® For M original dimensions, sample covariance matrix is MxM, and has up to M eigenvectors. So
M PCs.

©® Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

25 _
20_ ‘
%15'
E"IU
-

5 I

AN EEmE e =

PC1

PC2 PC3 PC4 PCs PC& PCY PCEB PC3 PCI10

*  Youdo lose some information, but if the eigenvalues are small, you don’t lose
much
— Mdimensions in original data
— calculate M eigenvectors and eigenvalues

— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011 67



SVD for PCA

SVD matrix factorization

X =USvT, A e RV*M

U. N X N orthogonal matrix

= Columns of U are left singular vectors of X
= Columns of U are eigenvectors of XX7'

V: M X M orthogonal matrix

= Columns of V' are right singular vectors of X
= Columns of V are eigenvectors of X7 X

S: N X M diagonal matrix

= Diagonal entries are singular values of X, gy,
= Each g are the eigenvalues of both XX7 and X7 X!



SVD for PCA

For any arbitrary matrix A, SVD gives a decomposition:
A =UAVT (1)
where A is a diagonal matrix, and U and V are orthogonal matrices.

Suppose we obtain an SVD of our data matrix X, so that:

X = UAVT (1)
Now consider what happens when we rewrite ¥ = %XTX terms
of this SVD.
1
¥ =_—_X'X
~ ()
1
= (UAV!)T(UAVT) 3)
1
= +(VATUT)(UAVT) (4)
_ L ATy
= VATAV (5)
— %V(A)EVT (6)

Above we used the fact that UTU = I since U is orthogonal by
definition.

69
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