10-315
Introduction to ML

LLMs:
Attention & Transformers

Instructor: Pat Virtue

Simple Word Embedc

ing LM

Building a language model wit

h just word embedding layers ©

Current text Really Small Next text

Language
_AMOdEI 4:— Sampling

~— ?-'c 1 A
Input tokens \/ Next token Probabilty
of each token

N
\(Embedded
Q(Q. vector
representation

in vocab
Word Output
> —
EmbEdding : % Embedding : SOftmaX
1
f\ e‘: Slmllarlty scores
for each token

in vocab

Word (Token) Embeddings

The beginning and the end of LLM networks

Current text Large Language Next text
Model
e.g GPT, Llama, etc <+—— Sampling
| A
Input tokens é/ Next token Probabilty
of each token
in vocab
Word Many layers of Output
—
Embedding ! transformer/attention blocks ! Embedding ! Softmax
| | |
1 1 1
1 1 1
1 1 1
Embedded Embedded Similarity scores
vector vector for each token

representation representation in vocab

Building up to Large Language Models

N-gram LMs
Word Embedding LMs

" \Vector representation of vocab tokens

= Sampling next token

" Learning better vectors
Transformer LMs

" |ncreasing context size
= Attention

" Tranformer blocks

More Transformers

Transformer LMs

Transformer Language Models

Increasing context size
= Uniform average of context vectors

= Position encoding

Attention

* Weighted average of context vectors
= Query Keys Values

= Expressive power of linear transforms

Transformer blocks

Attention

Learn to pay attention!

Context: V'
We can do better than uniform combination of input ontext- v
T T
: 1 ,
VvV = 2 ?Vt vV = z atvt
t=1 t=1 a. 1 a,
Context: V' /
Meh. . Want ... ' oy)
Unitoren Aelage Ve 139*6’9 5 hov
@‘P 3 S . b-‘l
el age by some e THO ™ b ¢
\
Context” Foctocs o *}Z\ N
VecTors)
o A2 I
V1 V1 V3 V4 ﬁfa{i’.
19)4
- \
I will not eat I will not eat ,mfbf’]ﬁ

Learn to pay attention!

T context
If only we had a way to measure vector similarity
T
V, — z atVt
Cosine similarity matrix! t=1 a, T,
S=vvrT
I will not eat T T

2 3 4

1
e 1 [0
o 2
mange 3 .
v1
S _

Learn to pay attention!

T context
If only we had a way to measure vector similarity
T
V, — z atVt
Cosine similarity matrix! t=1

S=vvt

I will not eat
1 2 3 4

1 [0
: .

: B

: _

Learn to pay attention!

We can do better than uniform combination of input
T

1
?Vt V = ZatVt

t=1 t=1
context

context

I will nhot eat T will

Learn to pay attention!

But...there is an issue with just doing VI/T ®

We're really just comparing input to input
- Symmetric with strong diagonal ®
S=vvT

I will not eat
1 2 3 4

w DN

will not

CO ntex

/

Learn to pay attention!

Instead learn a query vectors q; to
represent the output

I will not eat

1 3 4
» [

S = QVT 2
3
4
X, X, X,

CO ntex

/

softmax

Learn to pay attention!

Instead learn a query vectors q; to
represent the output

(And also k for the input) T will noteat

1

Ss=Qk"/Jd, 2 I B
4 B

will not

CO ntex

/

sofhnax

Learn to pay attention!

Instead learn a query vectors q; to
represent the output

(And also Kk for the input)

Attention:

Query, Key, Value

Q = XWy S =QK"/\dy
K — XWK

V= XW,

Scaled Dot-Product Attention

XZL — a4 5V
j=1
/ﬁ/ﬁl//ﬁ//l! a, = softmax(s,)attention weights

s1,; =k qq/+/djscores

q; = W, x; queries

W,
k, . k, ol
1 70 o e A o O o kj = Wi x; keys
W, " "2/ "3/ "4I T
\\IIII [T OO IIM v = W, X, values
X, X, X5 X4
1T O OO0 OO

16

Attention 04

Vector representation W,
Ly
0, = WOT Zy
Zt = T r 4 — SOftmaX(St) S4,j — k]-rq4_/’\/ dk
= softmax(s;) 4,1 T
t t ' d4
I f £ 1 1
St = th/ dk 1 4 KT
T
qr = Wy x¢ W,
kt —_ W;Xt WK

s T
¢ = W, x4,

Attention
Matrix representation ©
X'=X6@O0
0 —_ ZWO
ZT
/= AV
= softmax(S) row—wise
S =QK"/{dy
K —_ XWK
V — XWV

softmax(S) S = QKT/\/d_k

Q

Attention

Matrix representation © oT
X'=X6Oo
0 — ZWO WO
ZT
/ = AV

softmax(S) S = QKT/\/d_k

= SOftmaX(S) row—wise

s =QKT//d, ?
. B ¢
K
K — XWK /
V — XWV XT
W, Wy, W,

Attention X -

Matrix representation © oT
X'=X6Oo
0 — ZWO WO
ZT
/ = AV

softmax(S) S = QKT//d,

= SOftmaX(S) row—wise

SZQKT/\/dk Q
Q=XWQ T T
V:XWV XT

W, Wy, W,

Attention X -

Matrix representation © oT
X'=X6Oo
0 — ZWO WO
ZT
/ = AV

softmax(S) S = QKT//d,

= SOftmaX(S) row—wise

SZQKT/\/dk Q
Q=XWQ T T
V:XWV XT

W, Wy, W,

Attention X -

Matrix representation © oT
X'=X6Oo
0 — ZWO WO
ZT
/ = AV

softmax(S) S = QKT//d,

= SOftmaX(S) row—wise

S =QKT/Jd, 0
Q =XWQ T T
V :XWV XT

W, Wy, W,

Causal Attention X'T-

When learning to generate ®
the next token from context
1:t, we don't want to look

Wo

ahead and use any .
information fromt + 1 or z
greater = softmax(S) S =QKT"/\/d
= We apply a causal mask AR %77

to the attention scores S N\ 7 Q

 the a \ %

(filled with —oo values),

which zeros out the

appropriate attention T KT

weights in

W, Wy, W,

Causal Attention X'T-

When learning to generate ® O
the next token from context
1:t, we don't want to look w,
ahead and use any

information fromt + 1 or
greater = softmax(5) S =QKT//d,
= We apply a causal mask GH %

to the attention scores S Q
(filled with —oo values),
which zeros out the

appropriate attention T H T
weights in

Causal Attention X'T-

When learning to generate ® 0T
the next token from context
1:t, we don't want to look w,
ahead and use any

information fromt + 1 or
greater = softmax(S) S = QKT /J/d,

= We apply a causal mask NN
: NN W
to the attention scores S N\ %%

(filled with —co values),
which zeros out the

appropriate attention T T
weights in

Q

Causal Attention X'T-

When learning to generate ® 0T
the next token from context
1:t, we don't want to look w,
ahead and use any

information fromt + 1 or
greater softmax(S) S = QKT /J/d,

= We apply a causal mask
to the attention scores S % ¢
: : 7
(filled with —oo values),
which zeros out the
appropriate attention il KT
weights in

Causal Attention X'T-

When learning to generate ® 0T
the next token from context
1:t, we don't want to look w,
ahead and use any

information fromt + 1 or
greater softmax(S) S = QKT /J/d,

= We apply a causal mask
to the attention scores S Q
(filled with —oo values),
which zeros out the
appropriate attention T KT
weights in

Causal Attention ¥

©— N

Inference time o7

"= Done training. Watch
this attentioq block as W, € R%*dmodel
the context size .
increases as we Z

enerate more and
?nore tokans = softmax(S) S =0QK"/\/d

= Note how different
components build up as
the context grows

Q

KT

parameters don't

" But the size of the H
.
change!

Wy, Wy, W, are all € Rmoder*dx

Causal Attention

Inference time

= Done training. Watch
this attention block as

the context size
increases as we
enerate more and /—
?nore tokens = softmax(5) 5= QK'/yd
= Note how different 0

components build up as
the context grows

" But the size of the
parameters don't
change!

W, Wy, W,

Causal Attention

Inference time

= Done training. Watch
this attention block as W,
the context size .
increases as we Z

enerate more and
?nore tokans softmax(S) S =QK'/\/d,

= Note how different
components build up as
the context grows

" But the size of the
parameters don't T KT
change!

Q

W, Wy, W,

Causal Attention

Inference time

= Done training. Watch
this attention block as W,
the context size .
increases as we Z

enerate more and
?nore tokans softmax(S) S =QKT//d,

= Note how different
components build up as ¢
the context grows

" But the size of the
parameters don't T KT
change!

W, Wy, W,

Causal Attention X'TI
®

Inference time oT
(Repeated without red arrows
showing attention combination) w,
ZT
= softmax(S) S =QKT"/\/d
Q
T KT

W, Wy, W,

Causal Attention X'T.

Inference time ® 0T
(Repeated without red arrows
showing attention combination) w,
ZT
= softmax(S) S =0QK"//d
Q
VT KT

Causal Attention X'T.

Inference time © oT

(Repeated without red arrows
showing attention combination) w,

= softmax(S) S = QKT/\/d_k
%

%%

Q

Causal Attention X'T-

Inference time ®

(Repeated without red arrows
showing attention combination)

Wo
ZT
= softmax(S) S =0QK"/\/d
NN %77
T KT

W, Wy, W,

Linear Transforms: Graphical Intuition
In Transformer models, we see quite a few linear transforms
A simple Z = W "X can move points quite a bit

Desmos example for x and z in R?
https://www.desmos.com/calculator/gl5ljvorcy

wlx
®
®
5 X ® 5 X
® O ® o ® O
o
@ o N ® °®
" 90@ -
W \’ 000
o + N N
5 0 5 5 0 5
w, ¢ o0 0 W
o o -
[

36

https://www.desmos.com/calculator/gl5ljvorcy

Linear Transforms: Graphical Intuition

Two different transforms W,z and WfT,,uitz can create two different meaningful

embeddings for the input vectors z

Desmos example for W in R?*? https://www.desmos.com/calculator/tbeclbo83h

T
I/Vz‘e'ch Z,10use
[
T 51
VVtech Zapple ¢
Zapple
® O
Lmouse Zyanana
WT zZ
. fech “banana . .
-10 5 0 5 10

T T
W N / o 74

fruit “mouse fruit zbanana
[]

/A
1 ¢ Wf ruit Zapple

https://www.desmos.com/calculator/tbeclbo83h

Transtormer Layer

Transformer Layer

IIIIIIIIIIIIIIIIII/[\II

[layer normalization]

O 0ot L] CILTl
residual connections]4—

O O COrI1J o1

/ T

[feed forward neural network

LT I—I—H?—I—I—I—I?—I—El:l:[\—-l:l—

[layer normalization]

(IO CCLO (OIT1 (OIT
1 T T T

[residual connections

]4_

[CTIT1]1] ity ey bt
A A A A

B s
B B multiheaded attention
B g

X, X, Xg X,

Each layer of a Transformer LM
consists of several sublayers:

1.

2.
3.
4.

attention

feed-forward neural network
layer normalization

residual connections

Transformer Layer

||||||||||||||||‘|‘|‘|—|
A A A

[P |] Each layer of a Transformer LM
1zation
/ : \ consists of several sublayers:
1. attention

(I Ot CEfi) Liil]

‘ : 2. feed-forward neural network
[residual connections]4— 3 layer normalization
4. residual connections

Crrr] i tiiiy il

feed forward neural network

I§yer aly

I Ot L) 11

[residual connections]4—

(11 oty oty ety
A A A A

B e
B B multiheaded attention
B g

7 7 7

X, X, Xg X,

Transformer Layer

||||||||||||||||‘|‘|‘|—|
A A A A

Each layer of a Transformer LM
/ \ consists of several sublayers:
1. attention

2. feed-forward neural network
3. layer normalization
4

. residual connections

Transformer
Layer

Transformer Layer

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

X, X, x5’ x,’
rrrJj oy ey tertl
[Transformer layer
X X X; X4

L1 L1 [T 111

Transformer Language Model

[The] [bat][made] [noise]

[

Tp(w1|h1) TP(WZIhZ) Tp(w3|h3) Tp(w4|h4)
> > > >

S S

WWM

[Transformer layer

%IIII%%

[Transformer layer

W%}%II%IIII [|

)

[Transformer layer
X

IHT%IIIBIIII)I%IIII
[1 1

(START) [The | [bat | [made |

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

More Transformers

More Transformers

Multihead Attention
Different types of attention
= Causal self attention

= Self attention

" Cross attention

Vision Transformers

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

7

MIinGPT Femto

2-D embedded space
1 attention layer

1 attention head

(think channel)
Combined

Context: v’

DV

Embedded words/tokens

1.5
1.0 -
0.5 A |
0.0 :
—0.5 1 . <
~1.0 1\ N
—1.51
Input:['n_ol:tl: ho:)se‘, t lt?]
To5 smal I to
} éasn 5009
otfention
Weights
3 (p\ & ? \){96

MinGPT Pico

2-D embedded space

3 attention layer

3 attention heads Combined
(think channels) Context: v

!

Vy

| . —
Input: ['not’, 'in', 'a', 'houss’, .
Vv / V3

Embedded words/tokens

Head 1

Embedded words/tokens

Head 2
1.5 1
In%yéifnot,Wnﬁ'aﬁ‘housey'ﬁfnotﬁ'wnhh'a1
0.5 A
0.0

Embedded words/tokens
Head 3

1:57

1.0

0.5

0.0

—0.5 1

—1.0 -

—1.5 -

t: ['nok’;-"in'; "a’; "houseée’; ".*; *

Otl, 1

MinGPT Pico: Output embedded space - 3 heads

Embedded WordS/tOkenS Embedded WordS/tC)kenS Embedded Words/tokens
Head 1 Head 2 Head 3
157 1.5 1.5
I : 1 l, 1 : A l,)
10+ n;iu(g ['not’,"%in!, 'a’, 'house i
ty Y
0.5 1 0.5 1 0.5
, '"housd
0.0 0.0 0.0
-0.5 -0.5 -0.5
—-1.01 —1.0 A —1.0 1
Input: ['noft', 'in', 'a', 'house’, '., 'npt’
—-1.5 P —-1.51 -1.51

Three \\mds allows Male
coorm 1o Jealn A FLoncr
FeaXuie (Ve sentTaons

MinGPT Pico: Attention Weights — 3 layers, 3 heads
®,

Head 1

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

i
|

Attention
Head 2

/

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

L7 \}‘JQI

ol £
< <
& N0 &
& V Head 3 o

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Vision Transformers

Transformer Encoder

- n ‘
MLP kX (:)4———
Head

/ [wp |

Transformer Encoder [Norm]

Patch + Position
Embedding

* Extra learnable _ .
[class] embedding Linear Projection of Flattened Patches

Multi-Head
Attention

Vision

|

[Embedded
Patches

Transformer
(ViT) * Instead of words as input, the inputs are P X P pixel

patches

* Each patch is embedded linearly into a vector of size 1024
* Uses 1D positional embeddings

* Pre-trained on a large, supervised dataset (e.g., ImageNet
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929 51

https://arxiv.org/pdf/2010.11929

IN-CONTEXT LEARNING

Few-shot Learning

* Definition: in few-shot learning we assume that training data contains
a handful (maybe two, three, or four) examples of each label

..
-
o ‘.

prior knowledge

few-shot i, lembedding] .
training set { g éprediction
Dirain [E]
test sample emb}ddlng
Ttest

Figure from https://dl.acm.org/doi/10.1145/3386252

Few-shot Learning with LLMs

Suppose you have...
« adataset D = {(x;, y)}-,"N and N is rather small (i.e. few-shot setting) | This section!

» avery large (billions of parameters) pre-trained language model Q

There are two ways to “learn”

Option A: Supervised fine-tuning Option B: In-context learning
* Definition: fine-tune the LLM on the training data * Definition:
using... 1. feed training examples to the LLM as a
— astandard supervised objective prompt
— backpropagation to compute gradients 2. allow the LLM to infer patterns in the training
— your favorite optimizer (e.g. Adam) examples during inference (i.e. decoding)
* Pro:fits into the standard ML recipe 3. take the output of the LLM following the
* Pro:still works if Nis large prompt as its prediction
e Con: backpropagation requires ~3x the memory * Con:the prompt may be very long and
and computation time as the forward Transformer LMs require O(N?) time/space where
computation N = length of context
e Con: you might not have access to the model e Pro: no backpropagation required and only one
weights at all (e.g. because the modelis pass through the training data
proprietary) * Pro: does not require model weights, only API

access

Few-shot
INn-context
Learning

* Few-shot learning can
be done viain-
context learning

* Typically, a task
description is
presented first

* Then asequence of
input/output pairs
from a training
dataset are
presentedin
sequence

Figure from https://arxiv.org/pdf/2310.09881.pdf

| Review: Good movie!

I Review: It is terrible.

I Review: The movie is great!

[
l Review: | like this movie.

Output

O

Sentiment: Positive |
Sentiment: Negative :

I
Sentiment: Positive |

Sentiment:

Frozen Large

(m Language Model

Positive

55

Few-shot
INn-context
Learning

* Few-shot learning can
be done viain-
context learning

* Typically, a task
description is
presented first

* Then asequence of
input/output pairs
from a training
dataset are
presentedin
sequence

Figure from http://arxiv.org/abs/2005.14165

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
chegse == prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter == loutre de mer example

cheese == promp
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

lranslate English to French: task descri ption
sea otter => loutre de mer examples
peppermint => menthe poivreée

plush girafe == girafe peluche

cheese =» prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter =» loutre de mer example #1
peppermint == menthe poivrée example #2
plush giraffe == girafe peluche example #N
cheese => prompt

	Slide 1: 10-315 Introduction to ML LLMs: Attention & Transformers
	Slide 2: Simple Word Embedding LM
	Slide 3: Word (Token) Embeddings
	Slide 4: Building up to Large Language Models
	Slide 5: Transformer LMs
	Slide 6: Transformer Language Models
	Slide 7: Attention
	Slide 8: Learn to pay attention!
	Slide 9: Learn to pay attention!
	Slide 10: Learn to pay attention!
	Slide 11: Learn to pay attention!
	Slide 12: Learn to pay attention!
	Slide 13: Learn to pay attention!
	Slide 14: Learn to pay attention!
	Slide 15: Learn to pay attention!
	Slide 16: Scaled Dot-Product Attention
	Slide 17: Attention
	Slide 18: Attention
	Slide 19: Attention
	Slide 20: Attention
	Slide 21: Attention
	Slide 22: Attention
	Slide 23: Causal Attention
	Slide 24: Causal Attention
	Slide 25: Causal Attention
	Slide 26: Causal Attention
	Slide 27: Causal Attention
	Slide 28: Causal Attention
	Slide 29: Causal Attention
	Slide 30: Causal Attention
	Slide 31: Causal Attention
	Slide 32: Causal Attention
	Slide 33: Causal Attention
	Slide 34: Causal Attention
	Slide 35: Causal Attention
	Slide 36: Linear Transforms: Graphical Intuition
	Slide 37: Linear Transforms: Graphical Intuition
	Slide 38: Transformer Layer
	Slide 39: Transformer Layer
	Slide 40: Transformer Layer
	Slide 41: Transformer Layer
	Slide 42: Transformer Layer
	Slide 43: Transformer Language Model
	Slide 44: More Transformers
	Slide 45: More Transformers
	Slide 46: MinGPT Femto
	Slide 47: MinGPT Pico
	Slide 48: MinGPT Pico: Output embedded space - 3 heads
	Slide 49: MinGPT Pico: Attention Weights – 3 layers, 3 heads
	Slide 50: Vision Transformers
	Slide 51: Vision Transformer (ViT)
	Slide 52: In-Context Learning
	Slide 53: Few-shot Learning
	Slide 54: Few-shot Learning with LLMs
	Slide 55: Few-shot In-context Learning
	Slide 56: Few-shot In-context Learning

