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Simple Word Embedding LM
Building a language model with just word embedding layers ☺



Word (Token) Embeddings
The beginning and the end of LLM networks
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Building up to Large Language Models

N-gram LMs

Word Embedding LMs

▪ Vector representation of vocab tokens

▪ Sampling next token

▪ Learning better vectors

Transformer LMs

▪ Increasing context size

▪ Attention

▪ Tranformer blocks

More Transformers



Transformer LMs



Transformer Language Models

Increasing context size

▪ Uniform average of context vectors

▪ Position encoding

Attention

▪ Weighted average of context vectors

▪ Query Keys Values 

▪ Expressive power of linear transforms

Transformer blocks



Attention



Learn to pay attention!
We can do better than uniform combination of input
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Learn to pay attention!
If only we had a way to measure vector similarity

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

context

Cosine similarity matrix!
𝑆 = 𝑉𝑉𝑇

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡
a1 a2 a3 a4

I will not eat
1 2 3 4

1

2

3

4

Je

na

mange

pas



Learn to pay attention!
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Learn to pay attention!
We can do better than uniform combination of input
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Learn to pay attention!
But...there is an issue with just doing 𝑉𝑉𝑇  

We're really just comparing input to input
→ Symmetric with strong diagonal 
             𝑆 = 𝑉𝑉𝑇 
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Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to 
represent the output

𝑄 = 𝑋𝑊𝑄
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Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to 
represent the output

(And also 𝐤𝑡 for the input)
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Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to 
represent the output

(And also 𝐤𝑡 for the input)

Attention:

Query, Key, Value

𝑄 = 𝑋𝑊𝑄 𝑆 = 𝑄𝐾𝑇/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

𝐾 = 𝑋𝑊𝐾
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Scaled Dot-Product Attention
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𝑊𝑂Vector representation
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𝑊𝑂

Matrix representation
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𝑊𝑂

When learning to generate 
the next token from context 
1: 𝑡, we don't want to look 
ahead and use any 
information from 𝑡 + 1 or 
greater

▪ We apply a causal mask 
to the attention scores 𝑆 
(filled with −∞ values), 
which zeros out the 
appropriate attention 
weights in 𝐴

Causal Attention
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𝑊𝑂 ∈ ℝ𝑑𝑘×𝑑𝑚𝑜𝑑𝑒𝑙

Inference time

▪ Done training. Watch 
this attention block as 
the context size 
increases as we 
generate more and 
more tokens

▪ Note how different 
components build up as 
the context grows

▪ But the size of the 
parameters don't 
change!

Causal Attention
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Inference time

(Repeated without red arrows 
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Linear Transforms: Graphical Intuition

https://www.desmos.com/calculator/gl5ljvorcy

In Transformer models, we see quite a few linear transforms

A simple 𝐳 = 𝑊⊤𝐱 can move points quite a bit

Desmos example for 𝒙 and 𝐳 in ℝ2 
https://www.desmos.com/calculator/gl5ljvorcy

36

https://www.desmos.com/calculator/gl5ljvorcy


Linear Transforms: Graphical Intuition

https://www.desmos.com/calculator/tbeclbo83h

Two different transforms 𝑊𝑡𝑒𝑐ℎ
⊤ 𝐳 and W𝑓𝑟𝑢𝑖𝑡

⊤ 𝐳 can create two different meaningful 
embeddings for the input vectors 𝐳

Desmos example for 𝑊 in ℝ2×2 https://www.desmos.com/calculator/tbeclbo83h
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Transformer Layer



Transformer Layer

39

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization



Transformer Layer

40

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq
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Transformer Layer

42

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

x1’ x2’ x3’ x4’

Transformer layer



Transformer Language Model

43

x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…
The bat madeSTART

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM!

Transformer layer

Transformer layer

Transformer layer



More Transformers



More Transformers

Multihead Attention

Different types of attention

▪ Causal self attention

▪ Self attention

▪ Cross attention

Vision Transformers



MinGPT  Femto

Combined 
Context: 𝐯′

GPT

2-D embedded space

1 attention layer

1 attention head 
(think channel)

v1 v2 v3 v4



MinGPT  Pico

Combined 
Context: 𝐯′

GPT

2-D embedded space

3 attention layer

3 attention heads 
(think channels)

v1 v2 v3 v4



MinGPT Pico: Output embedded space - 3 heads



MinGPT Pico: Attention Weights – 3 layers, 3 heads



Vision Transformers



Vision 
Transformer 
(ViT)

51

 Instead of words as input, the inputs are 𝑃 × 𝑃 pixel 
patches

 Each patch is embedded linearly into a vector of size 1024 

 Uses 1D positional embeddings

 Pre-trained on a large, supervised dataset (e.g., ImageNet 
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929 

https://arxiv.org/pdf/2010.11929


IN-CONTEXT LEARNING

52



Few-shot Learning

• Definition: in few-shot learning we assume that training data contains 
a handful (maybe two, three, or four) examples of each label

53
Figure from https://dl.acm.org/doi/10.1145/3386252



Few-shot Learning with LLMs

• Definition: fine-tune the LLM on the training data 
using… 
– a standard supervised objective
– backpropagation to compute gradients
– your favorite optimizer (e.g. Adam) 

• Pro: fits into the standard ML recipe
• Pro: still works if N is large
• Con: backpropagation requires ~3x the memory 

and computation time as the forward 
computation

• Con: you might not have access to the model 
weights at all (e.g. because the model is 
proprietary)

Option B: In-context learning

• Definition: 
1. feed training examples to the LLM as a 

prompt
2. allow the LLM to infer patterns in the training 

examples during inference (i.e. decoding)
3. take the output of the LLM following the 

prompt as its prediction
• Con: the prompt may be very long and 

Transformer LMs require O(N2) time/space where 
N = length of context

• Pro: no backpropagation required and only one 
pass through the training data

• Pro: does not require model weights, only API 
access 54

Option A: Supervised fine-tuning

Suppose you have…
• a dataset D = {(xi, yi)}i=1

N and N is rather small (i.e. few-shot setting)
• a very large (billions of parameters) pre-trained language model
There are two ways to “learn”

This section!



Few-shot
In-context 
Learning

• Few-shot learning can 
be done via in-
context learning

• Typically, a task 
description is 
presented first

• Then a sequence of 
input/output pairs 
from a training 
dataset are 
presented in 
sequence

55
Figure from https://arxiv.org/pdf/2310.09881.pdf



Few-shot
In-context 
Learning

• Few-shot learning can 
be done via in-
context learning

• Typically, a task 
description is 
presented first

• Then a sequence of 
input/output pairs 
from a training 
dataset are 
presented in 
sequence

56
Figure from http://arxiv.org/abs/2005.14165 
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