
10-315
Introduction to ML

LLMs:
Attention & Transformers

Instructor: Pat Virtue

Current text

Word
Embedding

Output
Embedding

Tokenizer

Input tokens

Similarity scores
for each token

in vocab

Tokenizer

Next text

Softmax

Sampling

Probabilty
of each token

in vocab

Next token

Embedded
vector

representation

Really Small
Language

Model

Simple Word Embedding LM
Building a language model with just word embedding layers ☺

Word (Token) Embeddings
The beginning and the end of LLM networks

Current text

Many layers of
transformer/attention blocks

Word
Embedding

Output
Embedding

Tokenizer

Input tokens

Similarity scores
for each token

in vocab

Tokenizer

Next text

Softmax

Sampling

Probabilty
of each token

in vocab

Next token

Embedded
vector

representation

Embedded
vector

representation

Large Language
Model

 e.g GPT, Llama, etc

Building up to Large Language Models

N-gram LMs

Word Embedding LMs

▪ Vector representation of vocab tokens

▪ Sampling next token

▪ Learning better vectors

Transformer LMs

▪ Increasing context size

▪ Attention

▪ Tranformer blocks

More Transformers

Transformer LMs

Transformer Language Models

Increasing context size

▪ Uniform average of context vectors

▪ Position encoding

Attention

▪ Weighted average of context vectors

▪ Query Keys Values

▪ Expressive power of linear transforms

Transformer blocks

Attention

Learn to pay attention!
We can do better than uniform combination of input

v1 v2 v3 v4

a1 a2 a3 a4

v1 v2 v3 v4

Context: v'

I will not eat

Context: v'

𝐯′ =෍

𝑡=1

𝑇
1

𝑇
𝐯𝑡

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡

Learn to pay attention!
If only we had a way to measure vector similarity

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

context

Cosine similarity matrix!
𝑆 = 𝑉𝑉𝑇

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡
a1 a2 a3 a4

I will not eat
1 2 3 4

1

2

3

4

Je

na

mange

pas

Learn to pay attention!
If only we had a way to measure vector similarity

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

context

Cosine similarity matrix!
𝑆 = 𝑉𝑉𝑇

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡
a1 a2 a3 a4

I will not eat
1 2 3 4

1

2

3

4

softmax

Learn to pay attention!
We can do better than uniform combination of input

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

v1 v2 v3 v4

context

I will not eat

context

𝐯 =෍

𝑡=1

𝑇
1

𝑇
𝐯𝑡

I will not eat

𝐯 =෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡
a1 a2 a3 a4

softmax

Learn to pay attention!
But...there is an issue with just doing 𝑉𝑉𝑇 

We're really just comparing input to input
→ Symmetric with strong diagonal 
 𝑆 = 𝑉𝑉𝑇

I will not

eat
1 2 3

4
1

2

3

4

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

contex
t

a1 a2 a3 a4

softmax

I will not eat

x1 x2 x3 x4

eat
4

𝑉 = 𝑋𝑊𝑉

Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to
represent the output

𝑄 = 𝑋𝑊𝑄

I will not eat

I will not

eat
1 2 3

4
1

2

3

4

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

contex
t

a1 a2 a3 a4

softmax

x1 x2 x3 x4

𝑆 = 𝑄𝑉𝑇

𝑉 = 𝑋𝑊𝑉

eat
4

Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to
represent the output

(And also 𝐤𝑡 for the input)

𝑄 = 𝑋𝑊𝑄

I will not eat

I will not

eat
1 2 3

4
1

2

3

4

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

contex
t

a1 a2 a3 a4

softmax

x1 x2 x3 x4

𝑆 = 𝑄𝐾𝑇/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

eat
4

𝐾 = 𝑋𝑊𝐾

Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to
represent the output

(And also 𝐤𝑡 for the input)

Attention:

Query, Key, Value

𝑄 = 𝑋𝑊𝑄 𝑆 = 𝑄𝐾𝑇/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

𝐾 = 𝑋𝑊𝐾

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

16

x1 x2 x3 x4

Wk

Wq

Wv values

keys

queries

scores

attention weights
a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

attention

𝑊𝑂Vector representation

𝐪𝑡 = 𝑊𝑄
⊤𝐱𝑡

𝐯𝑡 = 𝑊𝑉
⊤𝐱𝑡

𝐤𝑡 = 𝑊𝐾
⊤𝐱𝑡

𝐚𝑡 = softmax 𝐬𝑡

𝐳𝑡 = 𝑉⊤𝐚𝑡

Attention

𝐚4 = softmax 𝐬𝑡 𝑠4,𝑗 = 𝐤𝑗
⊤𝐪4/ 𝑑𝑘

𝐪4
⊤

𝐾⊤

a4,1

𝐳4

𝐨4

𝐨𝑡 = 𝑊𝑂
⊤ 𝐳𝑡

𝑊𝑉

𝐬𝑡 = 𝐾𝐪𝑡/ 𝑑𝑘

𝑊𝐾

𝑊𝑄
𝐱4

𝐯4

𝐱1

𝐯1

𝑊𝑂

Matrix representation

𝑄 = 𝑋𝑊𝑄

𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

𝐾 = 𝑋𝑊𝐾

𝐴 = softmax 𝑆 row−wise

𝑍 = 𝐴𝑉

Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑂 = 𝑍𝑊𝑂

𝑋′ = 𝑋⊕ 𝑂

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Matrix representation

𝑄 = 𝑋𝑊𝑄

𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

𝐾 = 𝑋𝑊𝐾

𝐴 = softmax 𝑆 row−wise

𝑍 = 𝐴𝑉

Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑂 = 𝑍𝑊𝑂

𝑋′ = 𝑋⊕ 𝑂

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Matrix representation

𝑄 = 𝑋𝑊𝑄

𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

𝐾 = 𝑋𝑊𝐾

𝐴 = softmax 𝑆 row−wise

𝑍 = 𝐴𝑉

Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑂 = 𝑍𝑊𝑂

𝑋′ = 𝑋⊕ 𝑂

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Matrix representation

𝑄 = 𝑋𝑊𝑄

𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

𝐾 = 𝑋𝑊𝐾

𝐴 = softmax 𝑆 row−wise

𝑍 = 𝐴𝑉

Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑂 = 𝑍𝑊𝑂

𝑋′ = 𝑋⊕ 𝑂

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Matrix representation

𝑄 = 𝑋𝑊𝑄

𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

𝐾 = 𝑋𝑊𝐾

𝐴 = softmax 𝑆 row−wise

𝑍 = 𝐴𝑉

Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑂 = 𝑍𝑊𝑂

𝑋′ = 𝑋⊕ 𝑂

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

When learning to generate
the next token from context
1: 𝑡, we don't want to look
ahead and use any
information from 𝑡 + 1 or
greater

▪ We apply a causal mask
to the attention scores 𝑆
(filled with −∞ values),
which zeros out the
appropriate attention
weights in 𝐴

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

When learning to generate
the next token from context
1: 𝑡, we don't want to look
ahead and use any
information from 𝑡 + 1 or
greater

▪ We apply a causal mask
to the attention scores 𝑆
(filled with −∞ values),
which zeros out the
appropriate attention
weights in 𝐴

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

When learning to generate
the next token from context
1: 𝑡, we don't want to look
ahead and use any
information from 𝑡 + 1 or
greater

▪ We apply a causal mask
to the attention scores 𝑆
(filled with −∞ values),
which zeros out the
appropriate attention
weights in 𝐴

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

When learning to generate
the next token from context
1: 𝑡, we don't want to look
ahead and use any
information from 𝑡 + 1 or
greater

▪ We apply a causal mask
to the attention scores 𝑆
(filled with −∞ values),
which zeros out the
appropriate attention
weights in 𝐴

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

When learning to generate
the next token from context
1: 𝑡, we don't want to look
ahead and use any
information from 𝑡 + 1 or
greater

▪ We apply a causal mask
to the attention scores 𝑆
(filled with −∞ values),
which zeros out the
appropriate attention
weights in 𝐴

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂 ∈ ℝ𝑑𝑘×𝑑𝑚𝑜𝑑𝑒𝑙

Inference time

▪ Done training. Watch
this attention block as
the context size
increases as we
generate more and
more tokens

▪ Note how different
components build up as
the context grows

▪ But the size of the
parameters don't
change!

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄 are all ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘

+

𝑊𝑂

Inference time

▪ Done training. Watch
this attention block as
the context size
increases as we
generate more and
more tokens

▪ Note how different
components build up as
the context grows

▪ But the size of the
parameters don't
change!

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Inference time

▪ Done training. Watch
this attention block as
the context size
increases as we
generate more and
more tokens

▪ Note how different
components build up as
the context grows

▪ But the size of the
parameters don't
change!

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Inference time

▪ Done training. Watch
this attention block as
the context size
increases as we
generate more and
more tokens

▪ Note how different
components build up as
the context grows

▪ But the size of the
parameters don't
change!

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Inference time

(Repeated without red arrows
showing attention combination)

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Inference time

(Repeated without red arrows
showing attention combination)

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Inference time

(Repeated without red arrows
showing attention combination)

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

𝑊𝑂

Inference time

(Repeated without red arrows
showing attention combination)

Causal Attention

𝐴 = softmax 𝑆 𝑆 = 𝑄𝐾⊤/ 𝑑𝑘

𝑋⊤

𝑉⊤

𝑄

𝐾⊤

𝐴

𝑍⊤

𝑂⊤

𝑋′⊤

𝑊𝑉 ,𝑊𝐾 , 𝑊𝑄

+

Linear Transforms: Graphical Intuition

https://www.desmos.com/calculator/gl5ljvorcy

In Transformer models, we see quite a few linear transforms

A simple 𝐳 = 𝑊⊤𝐱 can move points quite a bit

Desmos example for 𝒙 and 𝐳 in ℝ2
https://www.desmos.com/calculator/gl5ljvorcy

36

https://www.desmos.com/calculator/gl5ljvorcy

Linear Transforms: Graphical Intuition

https://www.desmos.com/calculator/tbeclbo83h

Two different transforms 𝑊𝑡𝑒𝑐ℎ
⊤ 𝐳 and W𝑓𝑟𝑢𝑖𝑡

⊤ 𝐳 can create two different meaningful
embeddings for the input vectors 𝐳

Desmos example for 𝑊 in ℝ2×2 https://www.desmos.com/calculator/tbeclbo83h

37

https://www.desmos.com/calculator/tbeclbo83h

Transformer Layer

Transformer Layer

39

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer Layer

40

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer

Transformer Layer

41

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer

Transformer Layer

42

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

x1’ x2’ x3’ x4’

Transformer layer

Transformer Language Model

43

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…
The bat madeSTART

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Transformer layer

Transformer layer

Transformer layer

More Transformers

More Transformers

Multihead Attention

Different types of attention

▪ Causal self attention

▪ Self attention

▪ Cross attention

Vision Transformers

MinGPT Femto

Combined
Context: 𝐯′

GPT

2-D embedded space

1 attention layer

1 attention head
(think channel)

v1 v2 v3 v4

MinGPT Pico

Combined
Context: 𝐯′

GPT

2-D embedded space

3 attention layer

3 attention heads
(think channels)

v1 v2 v3 v4

MinGPT Pico: Output embedded space - 3 heads

MinGPT Pico: Attention Weights – 3 layers, 3 heads

Vision Transformers

Vision
Transformer
(ViT)

51

 Instead of words as input, the inputs are 𝑃 × 𝑃 pixel
patches

 Each patch is embedded linearly into a vector of size 1024

 Uses 1D positional embeddings

 Pre-trained on a large, supervised dataset (e.g., ImageNet
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929

https://arxiv.org/pdf/2010.11929

IN-CONTEXT LEARNING

52

Few-shot Learning

• Definition: in few-shot learning we assume that training data contains
a handful (maybe two, three, or four) examples of each label

53
Figure from https://dl.acm.org/doi/10.1145/3386252

Few-shot Learning with LLMs

• Definition: fine-tune the LLM on the training data
using…
– a standard supervised objective
– backpropagation to compute gradients
– your favorite optimizer (e.g. Adam)

• Pro: fits into the standard ML recipe
• Pro: still works if N is large
• Con: backpropagation requires ~3x the memory

and computation time as the forward
computation

• Con: you might not have access to the model
weights at all (e.g. because the model is
proprietary)

Option B: In-context learning

• Definition:
1. feed training examples to the LLM as a

prompt
2. allow the LLM to infer patterns in the training

examples during inference (i.e. decoding)
3. take the output of the LLM following the

prompt as its prediction
• Con: the prompt may be very long and

Transformer LMs require O(N2) time/space where
N = length of context

• Pro: no backpropagation required and only one
pass through the training data

• Pro: does not require model weights, only API
access 54

Option A: Supervised fine-tuning

Suppose you have…
• a dataset D = {(xi, yi)}i=1

N and N is rather small (i.e. few-shot setting)
• a very large (billions of parameters) pre-trained language model
There are two ways to “learn”

This section!

Few-shot
In-context
Learning

• Few-shot learning can
be done via in-
context learning

• Typically, a task
description is
presented first

• Then a sequence of
input/output pairs
from a training
dataset are
presented in
sequence

55
Figure from https://arxiv.org/pdf/2310.09881.pdf

Few-shot
In-context
Learning

• Few-shot learning can
be done via in-
context learning

• Typically, a task
description is
presented first

• Then a sequence of
input/output pairs
from a training
dataset are
presented in
sequence

56
Figure from http://arxiv.org/abs/2005.14165

	Slide 1: 10-315 Introduction to ML LLMs: Attention & Transformers
	Slide 2: Simple Word Embedding LM
	Slide 3: Word (Token) Embeddings
	Slide 4: Building up to Large Language Models
	Slide 5: Transformer LMs
	Slide 6: Transformer Language Models
	Slide 7: Attention
	Slide 8: Learn to pay attention!
	Slide 9: Learn to pay attention!
	Slide 10: Learn to pay attention!
	Slide 11: Learn to pay attention!
	Slide 12: Learn to pay attention!
	Slide 13: Learn to pay attention!
	Slide 14: Learn to pay attention!
	Slide 15: Learn to pay attention!
	Slide 16: Scaled Dot-Product Attention
	Slide 17: Attention
	Slide 18: Attention
	Slide 19: Attention
	Slide 20: Attention
	Slide 21: Attention
	Slide 22: Attention
	Slide 23: Causal Attention
	Slide 24: Causal Attention
	Slide 25: Causal Attention
	Slide 26: Causal Attention
	Slide 27: Causal Attention
	Slide 28: Causal Attention
	Slide 29: Causal Attention
	Slide 30: Causal Attention
	Slide 31: Causal Attention
	Slide 32: Causal Attention
	Slide 33: Causal Attention
	Slide 34: Causal Attention
	Slide 35: Causal Attention
	Slide 36: Linear Transforms: Graphical Intuition
	Slide 37: Linear Transforms: Graphical Intuition
	Slide 38: Transformer Layer
	Slide 39: Transformer Layer
	Slide 40: Transformer Layer
	Slide 41: Transformer Layer
	Slide 42: Transformer Layer
	Slide 43: Transformer Language Model
	Slide 44: More Transformers
	Slide 45: More Transformers
	Slide 46: MinGPT Femto
	Slide 47: MinGPT Pico
	Slide 48: MinGPT Pico: Output embedded space - 3 heads
	Slide 49: MinGPT Pico: Attention Weights – 3 layers, 3 heads
	Slide 50: Vision Transformers
	Slide 51: Vision Transformer (ViT)
	Slide 52: In-Context Learning
	Slide 53: Few-shot Learning
	Slide 54: Few-shot Learning with LLMs
	Slide 55: Few-shot In-context Learning
	Slide 56: Few-shot In-context Learning

