10-315
Introduction to ML

LLMs:
Attention & Transformers

Instructor: Pat Virtue
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Word (Token) Embeddings

The beginning and the end of LLM networks
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Building up to Large Language Models

N-gram LMs
Word Embedding LMs

" \Vector representation of vocab tokens

= Sampling next token

" Learning better vectors
Transformer LMs

" |ncreasing context size
= Attention

" Tranformer blocks

More Transformers



Transformer LMs



Transformer Language Models

Increasing context size
= Uniform average of context vectors

= Position encoding

Attention

* Weighted average of context vectors
= Query Keys Values

= Expressive power of linear transforms

Transformer blocks



Attention



Learn to pay attention!
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Learn to pay attention!

T context
If only we had a way to measure vector similarity
T
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Learn to pay attention!

T context
If only we had a way to measure vector similarity
T
V, — z atVt
Cosine similarity matrix! t=1
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Learn to pay attention!

We can do better than uniform combination of input
T
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Learn to pay attention!

But...there is an issue with just doing VI/T ®

We're really just comparing input to input
- Symmetric with strong diagonal ®
S=vvT
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Learn to pay attention!

Instead learn a query vectors q; to
represent the output
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Learn to pay attention!

Instead learn a query vectors q; to
represent the output
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Learn to pay attention!

Instead learn a query vectors q; to
represent the output

(And also Kk for the input)

Attention:

Query, Key, Value

Q = XWy S =QK"/\dy
K — XWK

V= XW,



Scaled Dot-Product Attention
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Attention 04
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Attention
Matrix representation ©
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Attention
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Causal Attention X'T-

When learning to generate ®
the next token from context
1:t, we don't want to look

Wo

ahead and use any .
information fromt + 1 or z
greater = softmax(S) S =QKT"/\/d
= We apply a causal mask AR %77

to the attention scores S N\ 7 Q

 the a \ %

(filled with —oo values),

which zeros out the

appropriate attention T KT

weights in

W, Wy, W,




Causal Attention X'T-

When learning to generate ® O
the next token from context
1:t, we don't want to look w,
ahead and use any

information fromt + 1 or
greater = softmax(5) S =QKT//d,
= We apply a causal mask GH %

to the attention scores S Q
(filled with —oo values),
which zeros out the

appropriate attention T H T
weights in




Causal Attention X'T-

When learning to generate ® 0T
the next token from context
1:t, we don't want to look w,
ahead and use any

information fromt + 1 or
greater = softmax(S) S = QKT /J/d,

= We apply a causal mask NN
: NN W
to the attention scores S N\ %%

(filled with —co values),
which zeros out the

appropriate attention T T
weights in

Q




Causal Attention X'T-
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Causal Attention X'T-

When learning to generate ® 0T
the next token from context
1:t, we don't want to look w,
ahead and use any

information fromt + 1 or
greater softmax(S) S = QKT /J/d,

= We apply a causal mask
to the attention scores S Q
(filled with —oo values),
which zeros out the
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weights in




Causal Attention ¥
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Causal Attention

Inference time
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Causal Attention X'TI
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Causal Attention X'T.
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Causal Attention X'T.

Inference time © oT

(Repeated without red arrows
showing attention combination) w,

= softmax(S) S = QKT/\/d_k
%

%%

Q




Causal Attention X'T-
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Linear Transforms: Graphical Intuition
In Transformer models, we see quite a few linear transforms
A simple Z = W "X can move points quite a bit

Desmos example for x and z in R?
https://www.desmos.com/calculator/gl5ljvorcy
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https://www.desmos.com/calculator/gl5ljvorcy

Linear Transforms: Graphical Intuition

Two different transforms W,z and WfT,,uitz can create two different meaningful

embeddings for the input vectors z

Desmos example for W in R?*? https://www.desmos.com/calculator/tbeclbo83h
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https://www.desmos.com/calculator/tbeclbo83h

Transtormer Layer



Transformer Layer
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Each layer of a Transformer LM
consists of several sublayers:

1.

2.
3.
4.

attention

feed-forward neural network
layer normalization

residual connections



Transformer Layer
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Transformer Layer
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Each layer of a Transformer LM
/ \ consists of several sublayers:
1. attention

2. feed-forward neural network
3. layer normalization
4

. residual connections

Transformer
Layer




Transformer Layer

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

X, X, x5’ x,’
rrrJj oy ey tertl
[ Transformer layer
X X X; X4

L1 L1 [T 111




Transformer Language Model

[ The ] [ bat ][made] [noise]

[
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Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!



More Transformers



More Transformers

Multihead Attention
Different types of attention
= Causal self attention

= Self attention

" Cross attention

Vision Transformers

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

7




MIinGPT Femto

2-D embedded space
1 attention layer

1 attention head

(think channel)
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MinGPT Pico

2-D embedded space

3 attention layer

3 attention heads Combined
(think channels) Context: v

!
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Vv / V3

Embedded words/tokens

Head 1

Embedded words/tokens

Head 2
1.5 1
In%yéifnot,Wnﬁ'aﬁ‘housey'ﬁfnotﬁ'wnhh'a1
0.5 A
0.0

Embedded words/tokens
Head 3

1:57

1.0

0.5

0.0

—0.5 1

—1.0 -

—1.5 -

t: ['nok’;-"in'; "a’; "houseée’; ".*; *

Otl, 1




MinGPT Pico: Output embedded space - 3 heads

Embedded WordS/tOkenS Embedded WordS/tC)kenS Embedded Words/tokens
Head 1 Head 2 Head 3
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MinGPT Pico: Attention Weights — 3 layers, 3 heads
®,

Head 1
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Vision Transformers



Transformer Encoder

- n ‘
MLP kX (:)4———
Head

/ [ wp |

Transformer Encoder [ Norm ]

Patch + Position
Embedding

* Extra learnable _ .
[class] embedding Linear Projection of Flattened Patches

Multi-Head
Attention

Vision

|

[ Embedded
Patches

Transformer
(ViT) * Instead of words as input, the inputs are P X P pixel

patches

* Each patch is embedded linearly into a vector of size 1024
* Uses 1D positional embeddings

* Pre-trained on a large, supervised dataset (e.g., ImageNet
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929 51



https://arxiv.org/pdf/2010.11929

IN-CONTEXT LEARNING



Few-shot Learning

* Definition: in few-shot learning we assume that training data contains
a handful (maybe two, three, or four) examples of each label

................................................
-
o ‘.

prior knowledge

few-shot i, lembedding] .
training set { g éprediction
Dirain [E]
test sample emb}ddlng
Ttest

Figure from https://dl.acm.org/doi/10.1145/3386252



Few-shot Learning with LLMs

Suppose you have...
« adataset D = {(x;, y)}-,"N and N is rather small (i.e. few-shot setting) | This section!

» avery large (billions of parameters) pre-trained language model Q

There are two ways to “learn”

Option A: Supervised fine-tuning Option B: In-context learning
* Definition: fine-tune the LLM on the training data * Definition:
using... 1. feed training examples to the LLM as a
— astandard supervised objective prompt
— backpropagation to compute gradients 2. allow the LLM to infer patterns in the training
— your favorite optimizer (e.g. Adam) examples during inference (i.e. decoding)
* Pro:fits into the standard ML recipe 3. take the output of the LLM following the
* Pro:still works if Nis large prompt as its prediction
e Con: backpropagation requires ~3x the memory * Con:the prompt may be very long and
and computation time as the forward Transformer LMs require O(N?) time/space where
computation N = length of context
e Con: you might not have access to the model e Pro: no backpropagation required and only one
weights at all (e.g. because the modelis pass through the training data
proprietary) * Pro: does not require model weights, only API

access



Few-shot
INn-context
Learning

* Few-shot learning can
be done viain-
context learning

* Typically, a task
description is
presented first

* Then asequence of
input/output pairs
from a training
dataset are
presentedin
sequence

Figure from https://arxiv.org/pdf/2310.09881.pdf

| Review: Good movie!

I Review: It is terrible.

I Review: The movie is great!

[
l Review: | like this movie.

Output

O

Sentiment: Positive |
Sentiment: Negative :

I
Sentiment: Positive |

Sentiment:

Frozen Large

( m Language Model

Positive

55



Few-shot
INn-context
Learning

* Few-shot learning can
be done viain-
context learning

* Typically, a task
description is
presented first

* Then asequence of
input/output pairs
from a training
dataset are
presentedin
sequence

Figure from http://arxiv.org/abs/2005.14165

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
chegse == prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter == loutre de mer example

cheese == promp
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

lranslate English to French: task descri ption
sea otter => loutre de mer examples
peppermint => menthe poivreée

plush girafe == girafe peluche

cheese =» prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter =» loutre de mer example #1
peppermint == menthe poivrée example #2
plush giraffe == girafe peluche example #N
cheese => prompt
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