

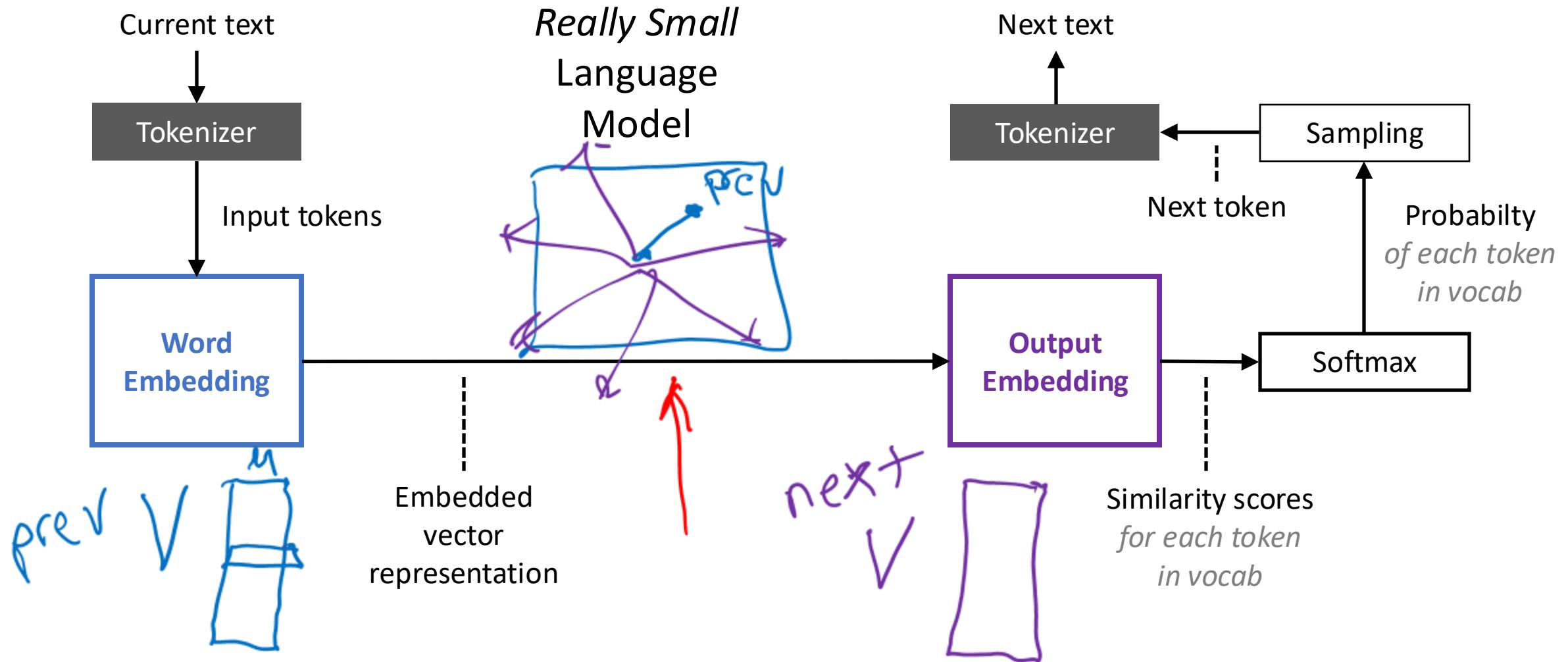
10-315
Introduction to ML

LLMs:
Attention & Transformers

Instructor: Pat Virtue

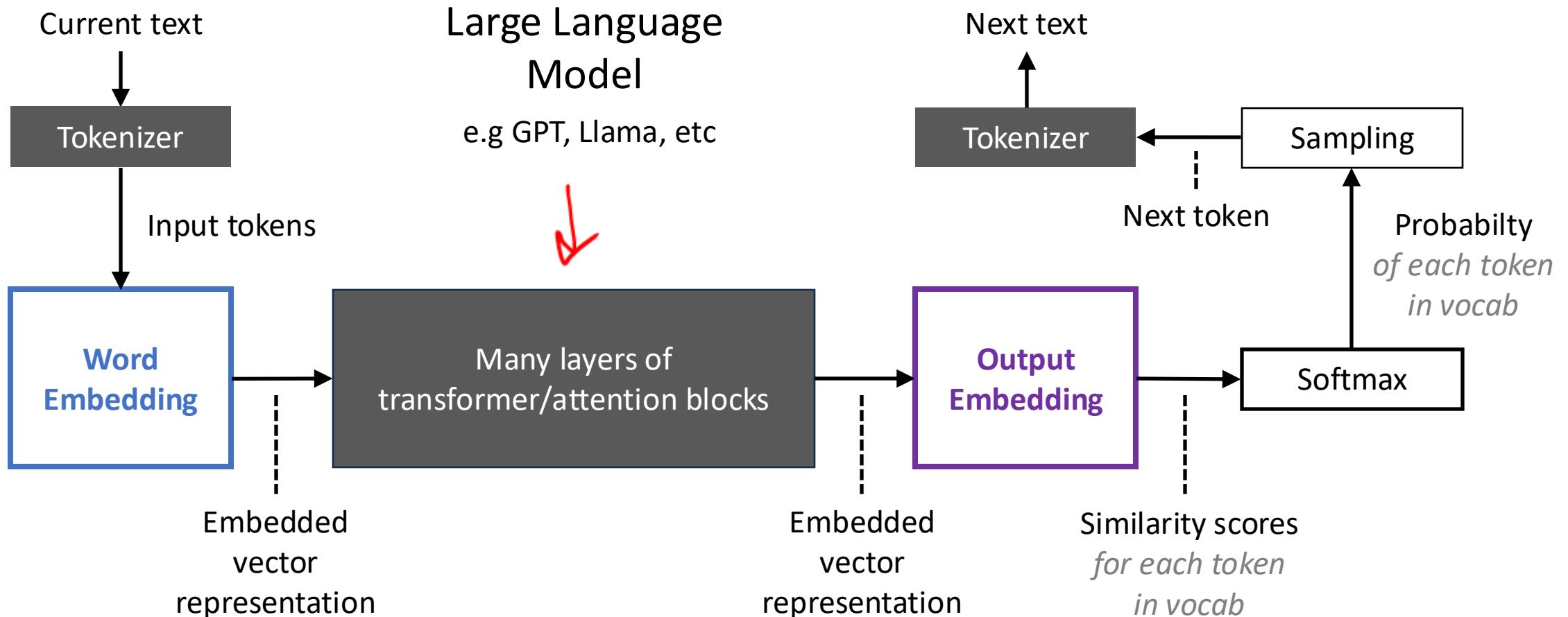
Simple Word Embedding LM

Building a language model with just word embedding layers 😊



Word (Token) Embeddings

The beginning and the end of LLM networks



Building up to Large Language Models

N-gram LMs

Word Embedding LMs

- Vector representation of vocab tokens
- Sampling next token
- Learning better vectors

Transformer LMs

- Increasing context size
- Attention
- Transformer blocks

More Transformers

Transformer LMs

Transformer Language Models

Increasing context size

- Uniform average of context vectors
- Position encoding

Attention

- Weighted average of context vectors
- Query Keys Values
- Expressive power of linear transforms

Transformer blocks

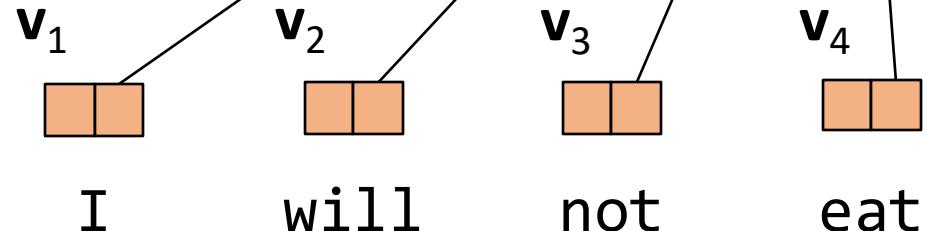
Attention

Learn to pay attention!

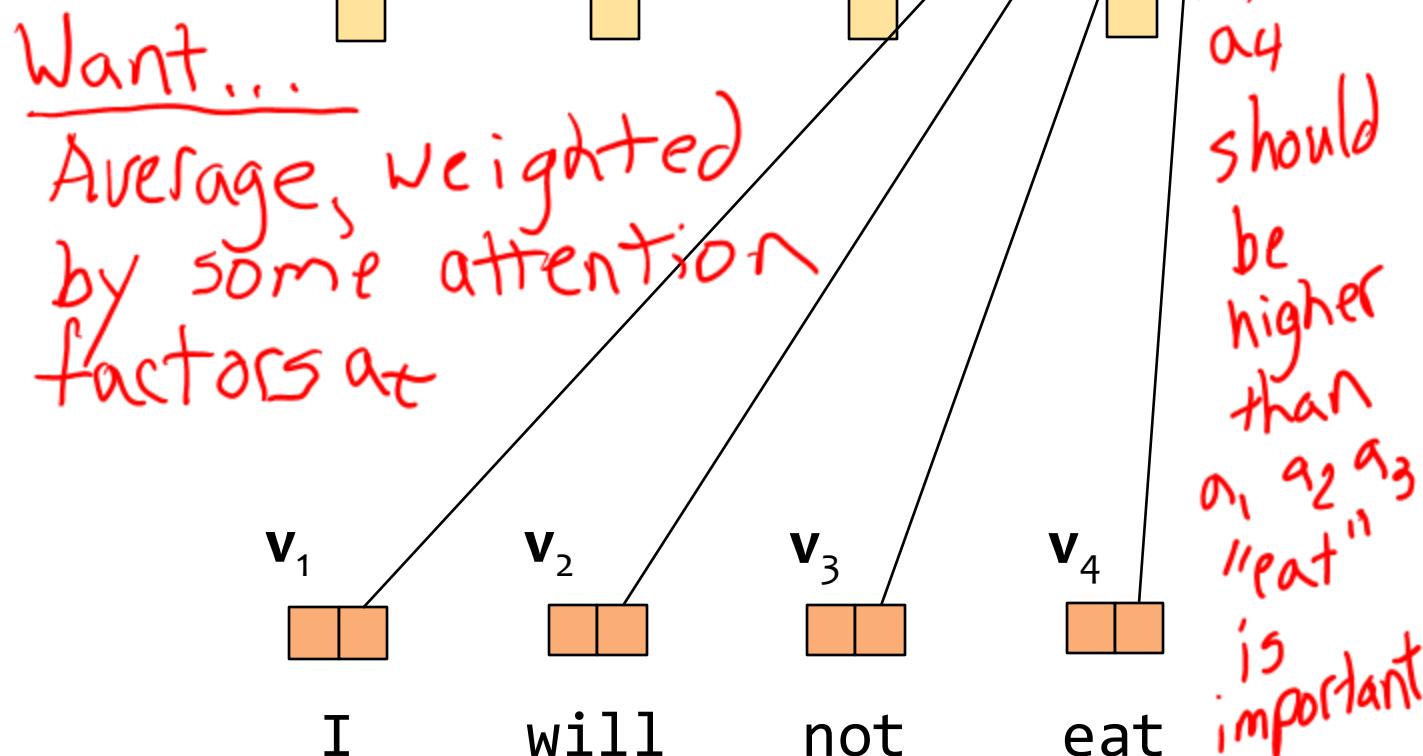
We can do better than uniform combination of input

$$\mathbf{v}' = \sum_{t=1}^T \frac{1}{T} \mathbf{v}_t$$

Meh...
Uniform
average of
context
vectors



$$\mathbf{v}' = \sum_{t=1}^T a_t \mathbf{v}_t$$



Learn to pay attention!

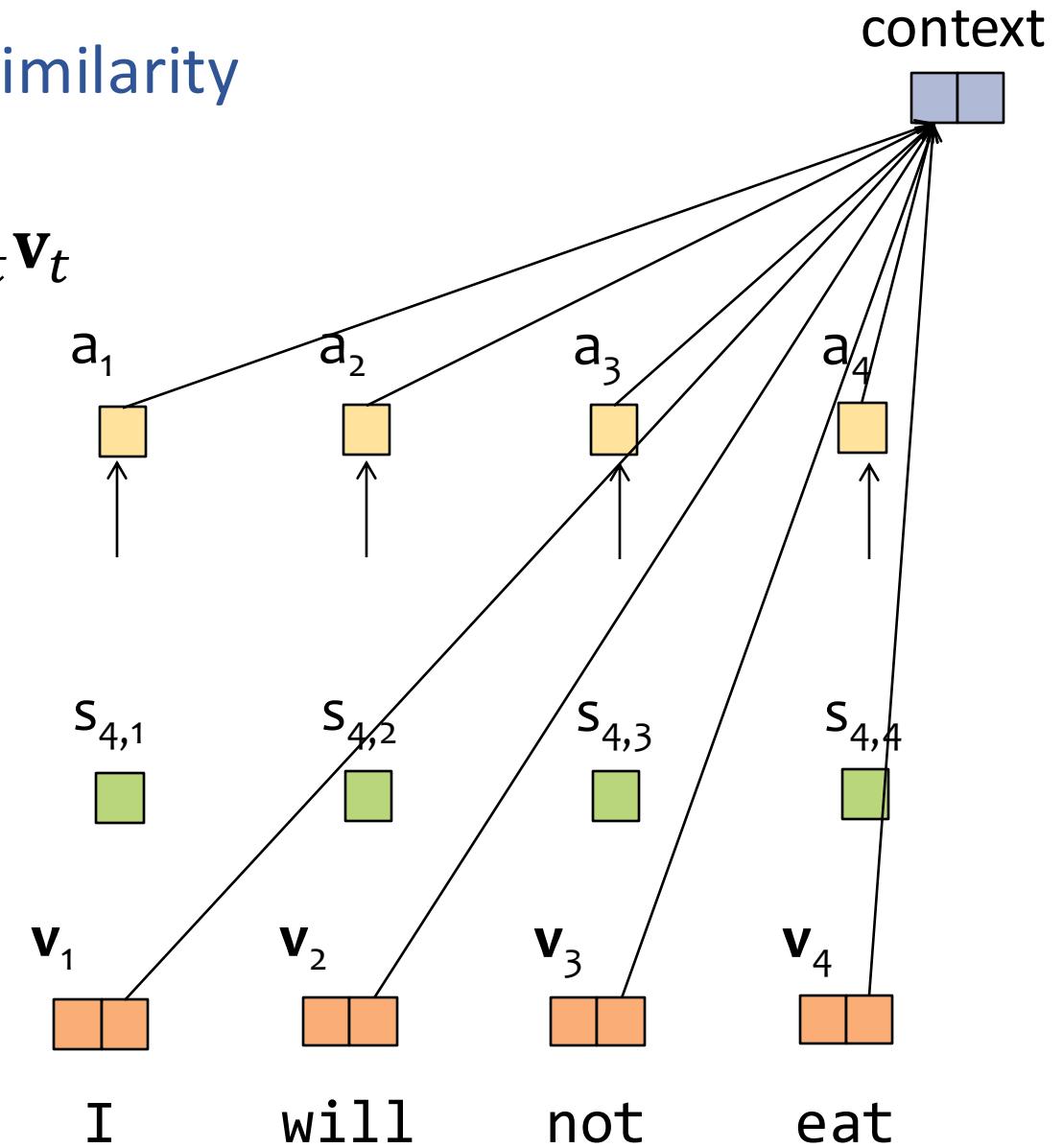
If only we had a way to measure vector similarity

Cosine similarity matrix!

$$S = VV^T$$

	1	2	3	4
1	Je			
2	na			
3	mange			
4	pas			

$$\mathbf{v}' = \sum_{t=1}^T a_t \mathbf{v}_t$$



Learn to pay attention!

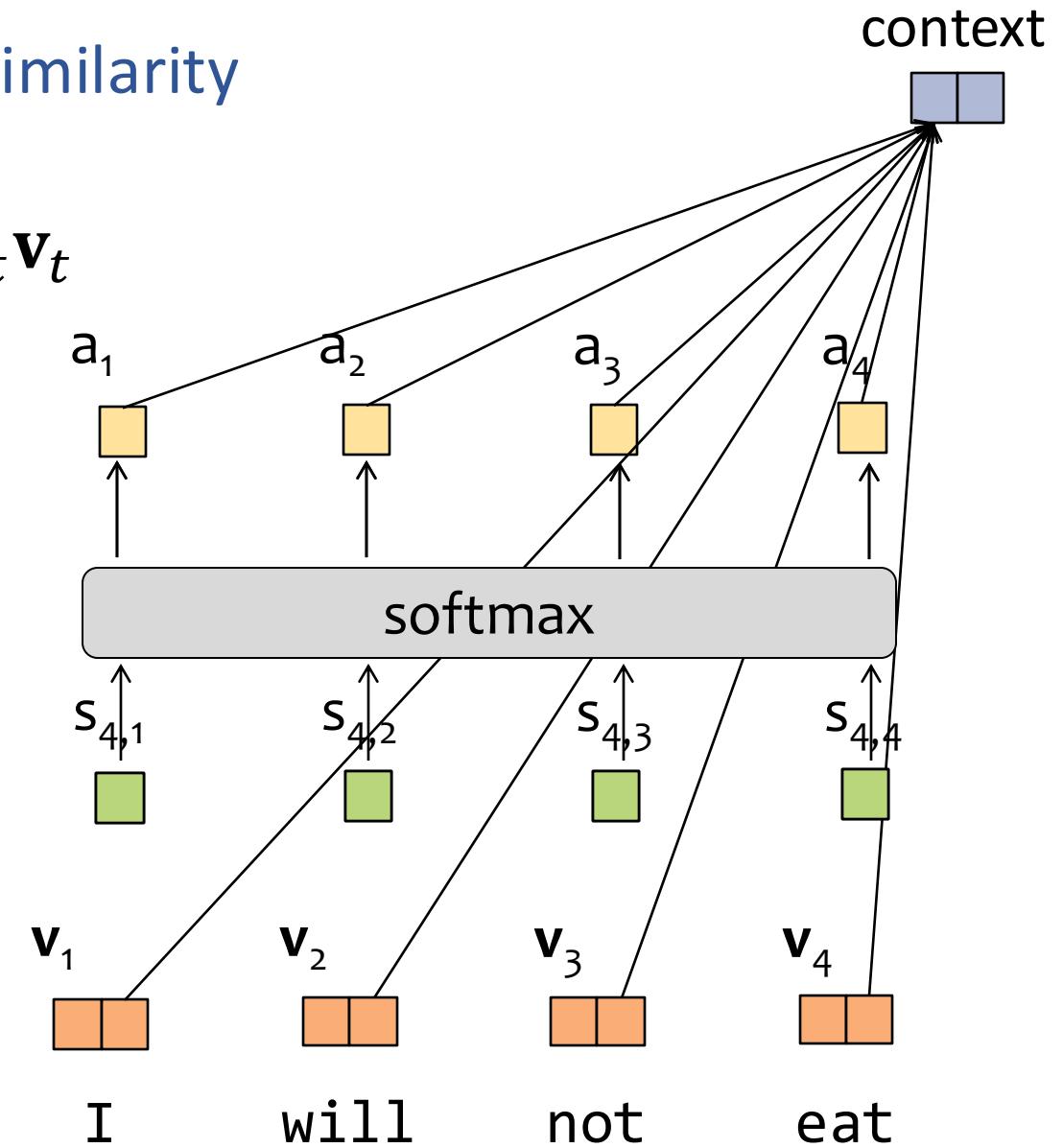
If only we had a way to measure vector similarity

Cosine similarity matrix!

$$S = VV^T$$

	1	2	3	4
1	green	light green	white	green
2	light green	green	white	light green
3	white	white	green	white
4	green	light green	white	green

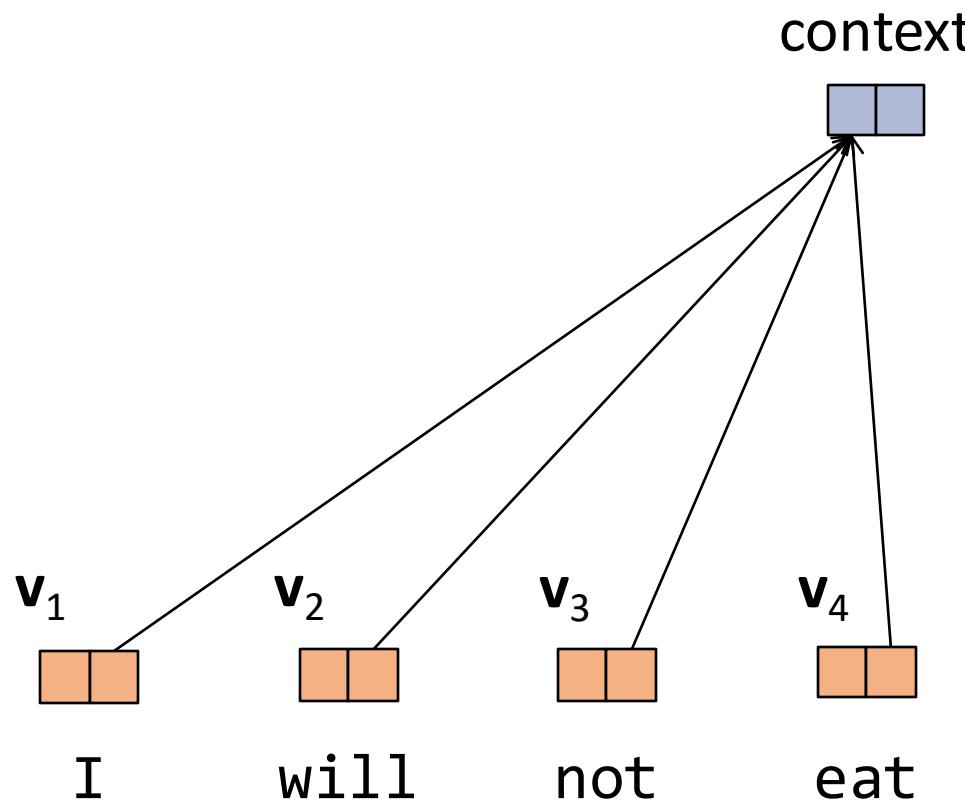
$$\mathbf{v}' = \sum_{t=1}^T a_t \mathbf{v}_t$$



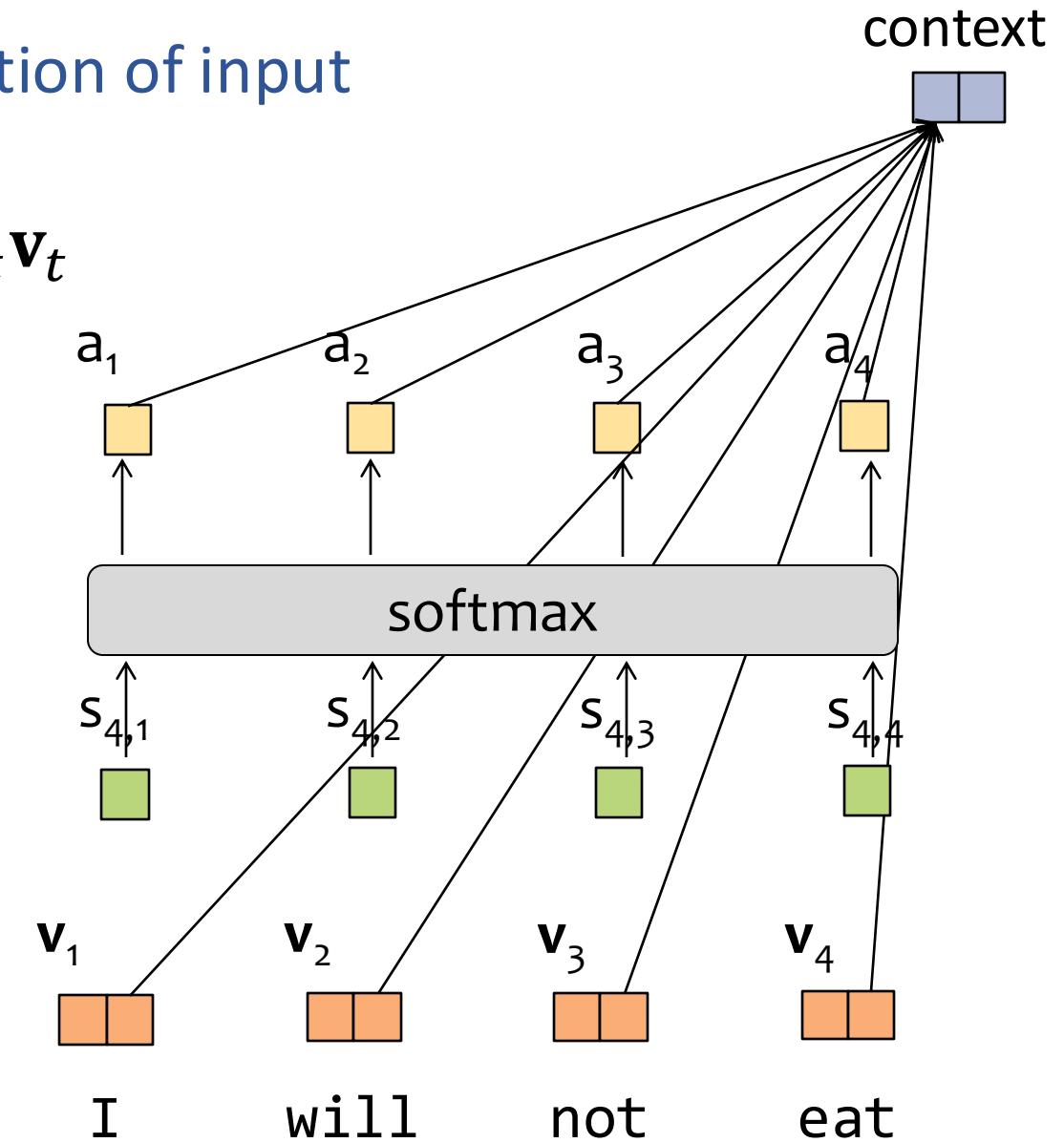
Learn to pay attention!

We can do better than uniform combination of input

$$\mathbf{v} = \sum_{t=1}^T \frac{1}{T} \mathbf{v}_t$$



$$\mathbf{v} = \sum_{t=1}^T a_t \mathbf{v}_t$$



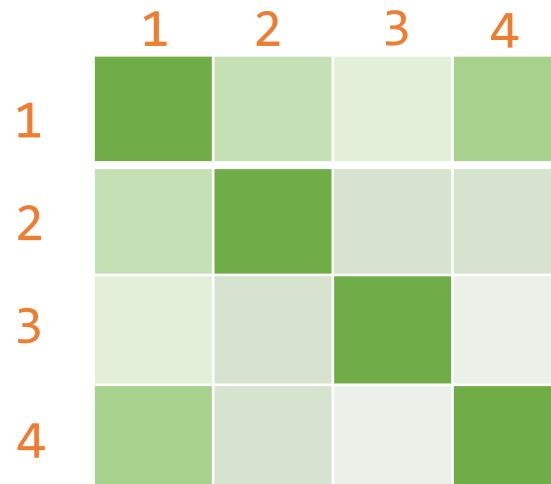
Learn to pay attention!

But...there is an issue with just doing VV^T 😞

We're really just comparing input to input
→ Symmetric with strong diagonal 😞

$$S = VV^T$$

I will not eat



$$\mathbf{x}_1$$

I

$$\mathbf{x}_2$$

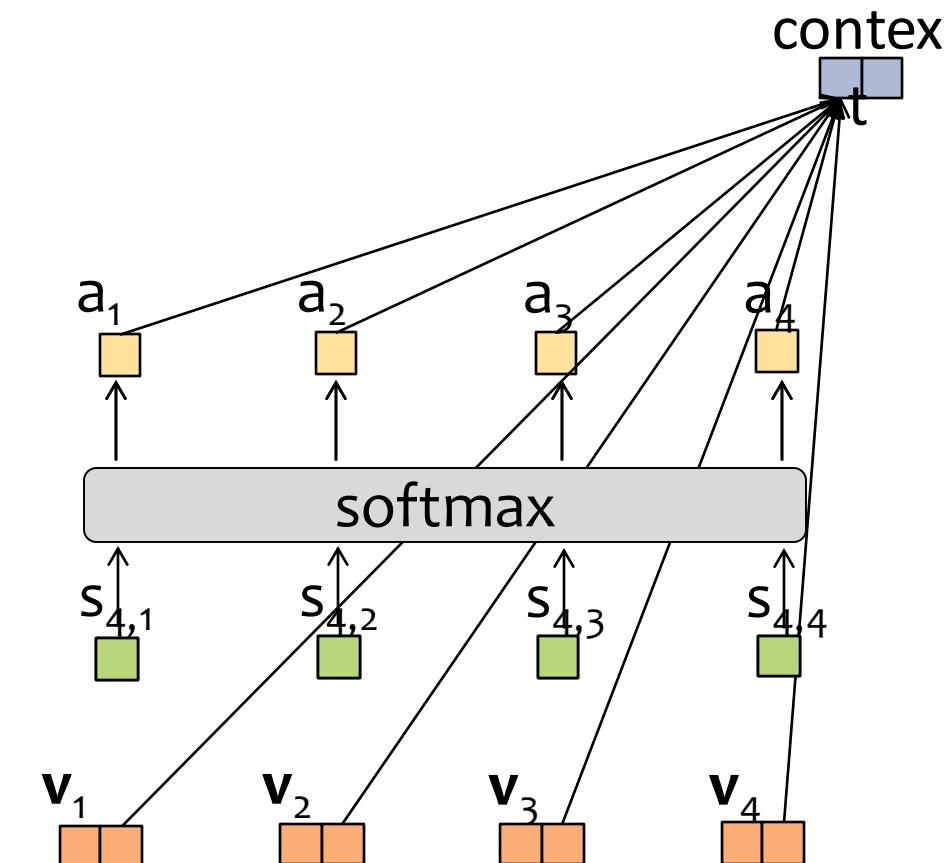
will

$$\mathbf{x}_3$$

not

$$\mathbf{x}_4$$

eat



$$V = XW_V$$

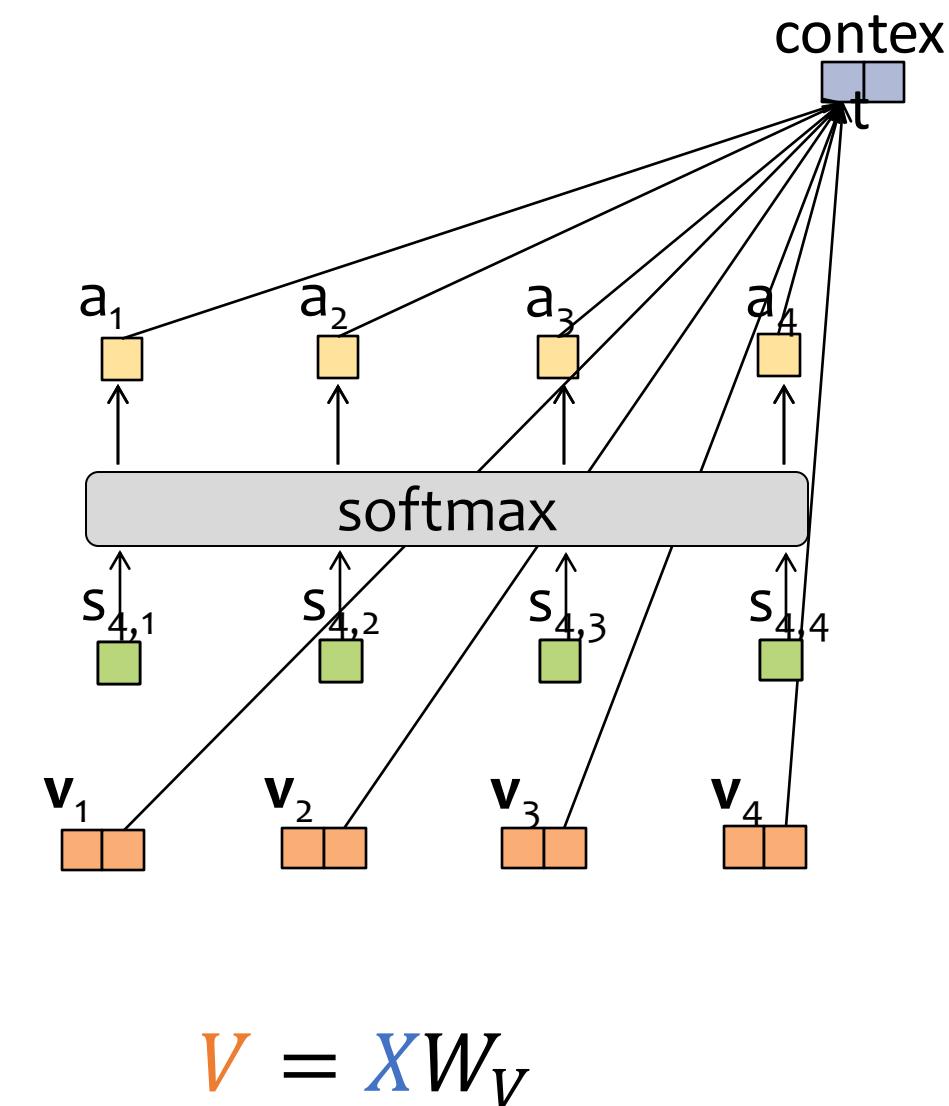
Learn to pay attention!

Instead learn a query vectors \mathbf{q}_t to represent the output

$$S = QV^T$$

$$Q = XW_Q$$

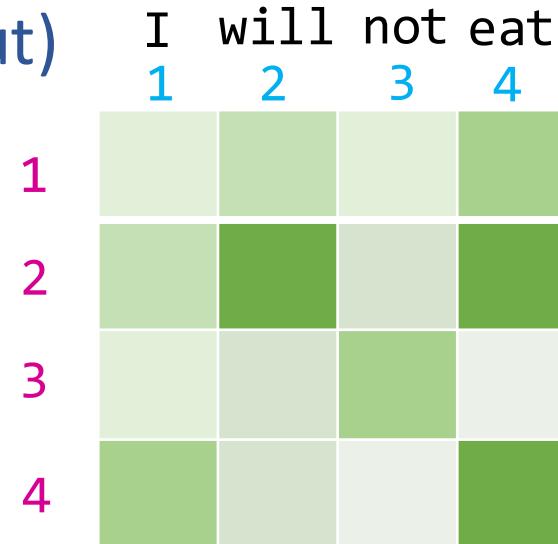
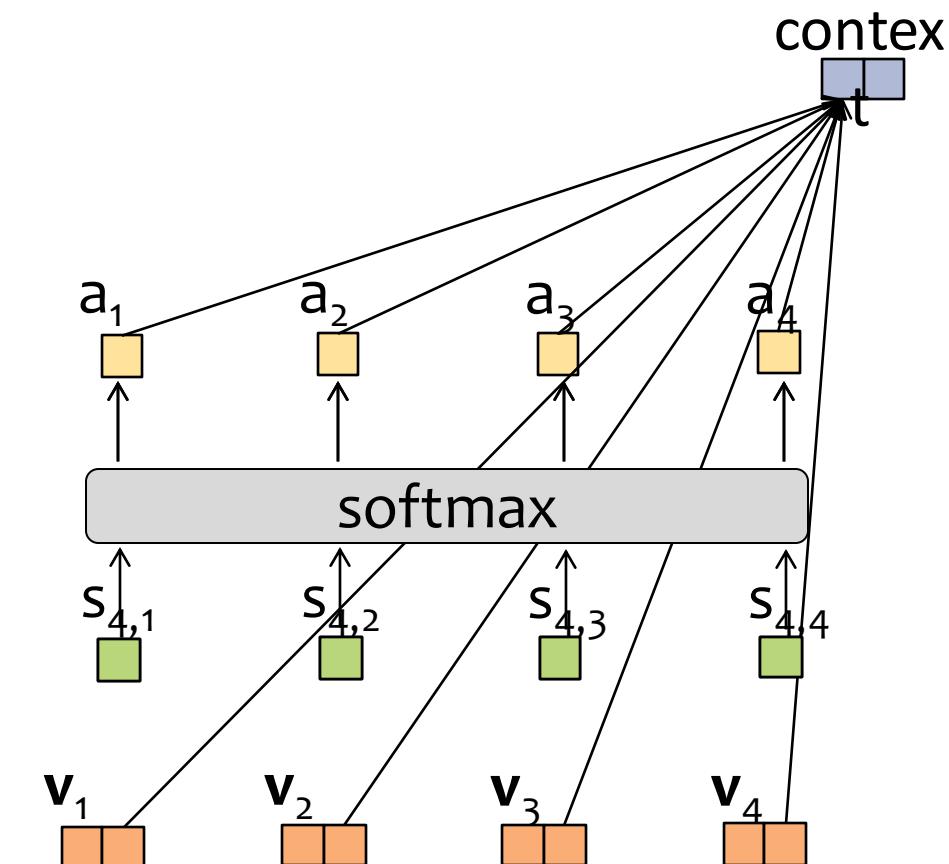
\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4
I will not eat



Learn to pay attention!

Instead learn a query vectors \mathbf{q}_t to represent the output
(And also \mathbf{k}_t for the input)

$$S = QK^T / \sqrt{d_k}$$



$$Q = XW_Q$$

$$K = XW_K$$

$$V = XW_V$$

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
$\begin{bmatrix} \text{I} \\ \text{will} \end{bmatrix}$	$\begin{bmatrix} \text{will} \\ \text{not} \end{bmatrix}$	$\begin{bmatrix} \text{not} \\ \text{eat} \end{bmatrix}$	$\begin{bmatrix} \text{eat} \end{bmatrix}$

Learn to pay attention!

Instead learn a query vectors \mathbf{q}_t to represent the output
(And also \mathbf{k}_t for the input)

Attention:

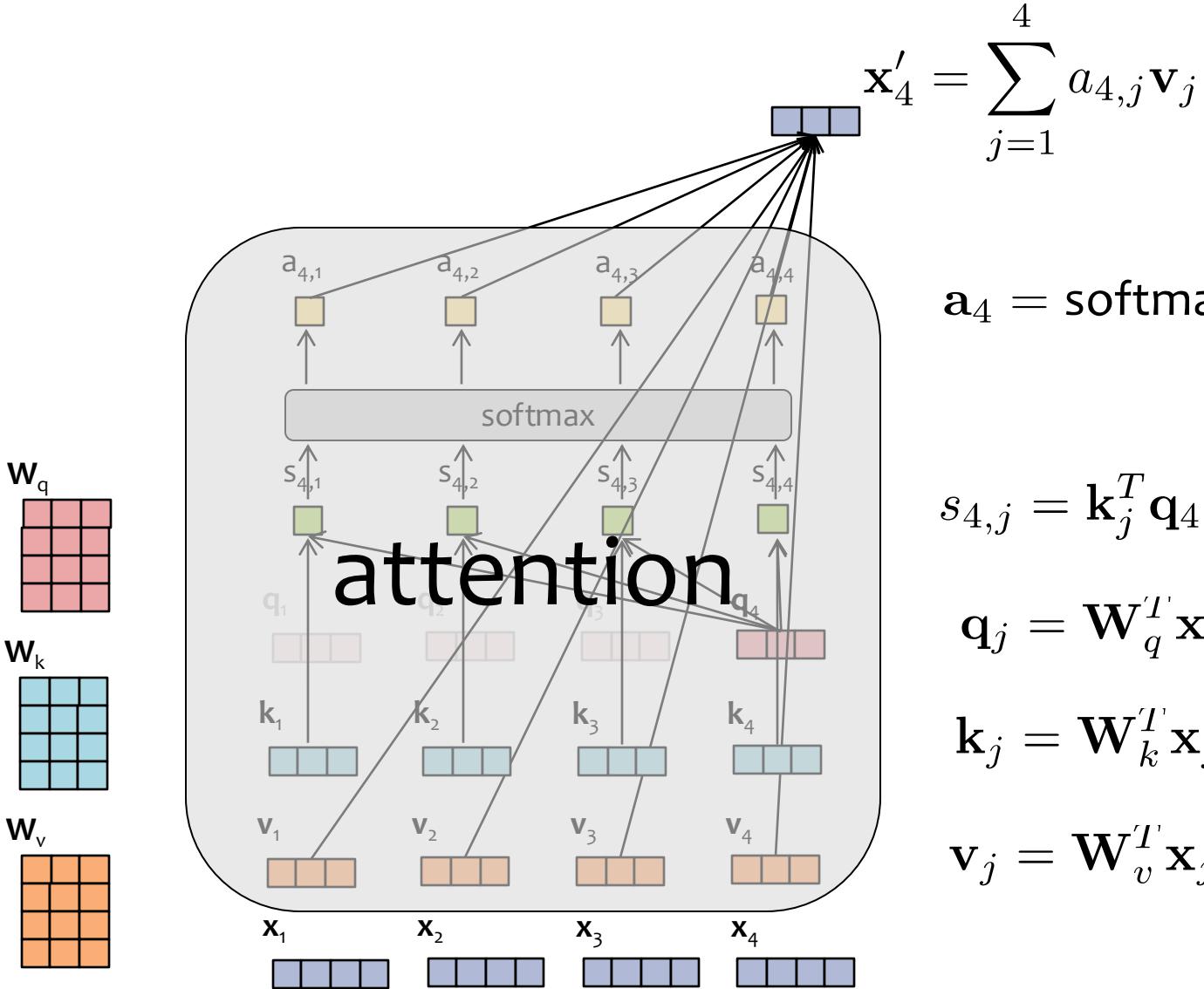
Query, Key, Value

$$Q = \mathbf{X}W_Q \quad S = \mathbf{Q}\mathbf{K}^T / \sqrt{d_k}$$

$$K = \mathbf{X}W_K$$

$$V = \mathbf{X}W_V$$

Scaled Dot-Product Attention



Attention

Vector representation

$$\mathbf{o}_t = W_O^\top \mathbf{z}_t$$

$$\mathbf{z}_t = V^\top \mathbf{a}_t$$

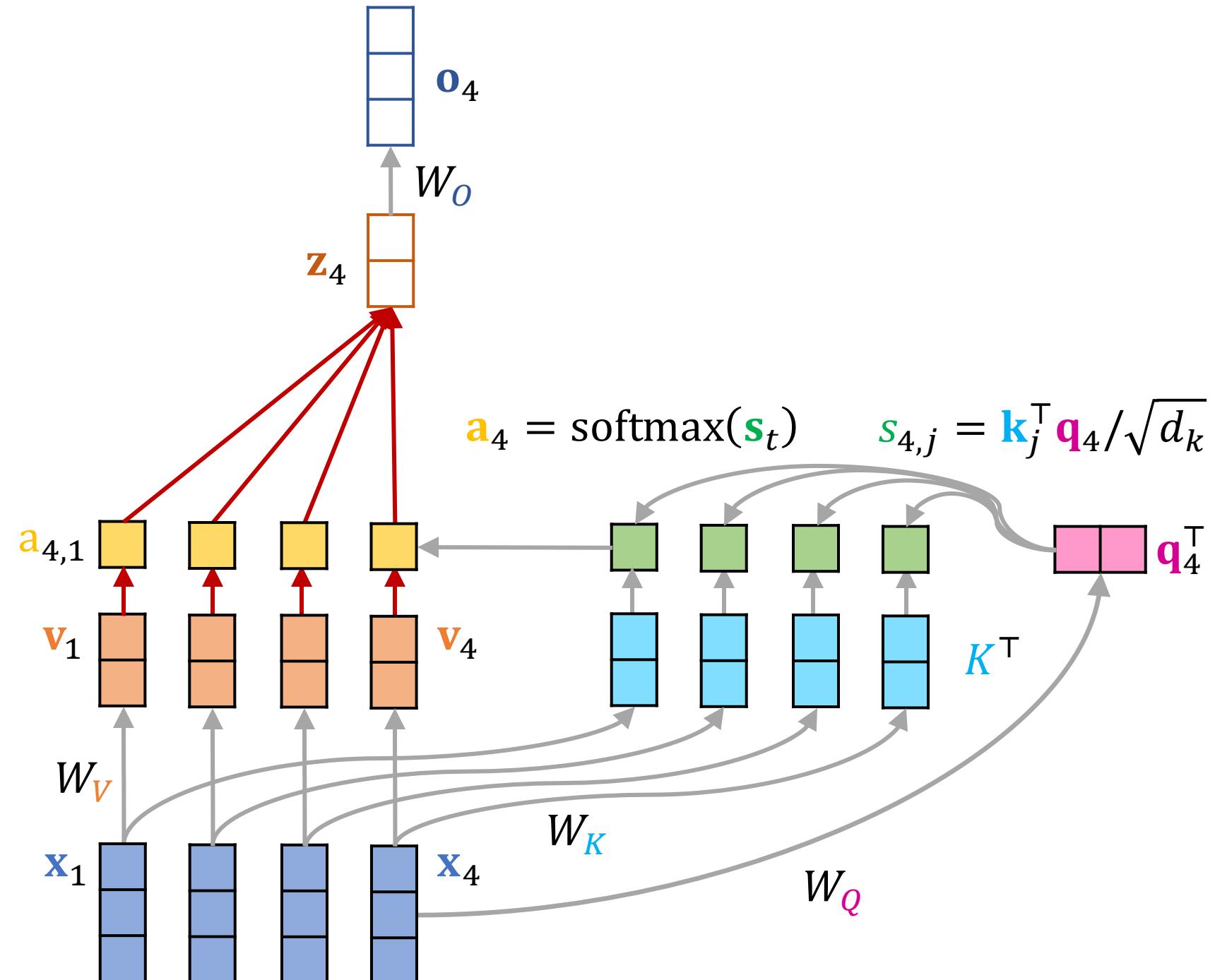
$$\mathbf{a}_t = \text{softmax}(\mathbf{s}_t)$$

$$\mathbf{s}_t = K \mathbf{q}_t / \sqrt{d_k}$$

$$\mathbf{q}_t = W_Q^\top \mathbf{x}_t$$

$$\mathbf{k}_t = W_K^\top \mathbf{x}_t$$

$$\mathbf{v}_t = W_V^\top \mathbf{x}_t$$



Attention

Matrix representation

$$X' = X \oplus O$$

$$O = ZW_O$$

$$Z = AV$$

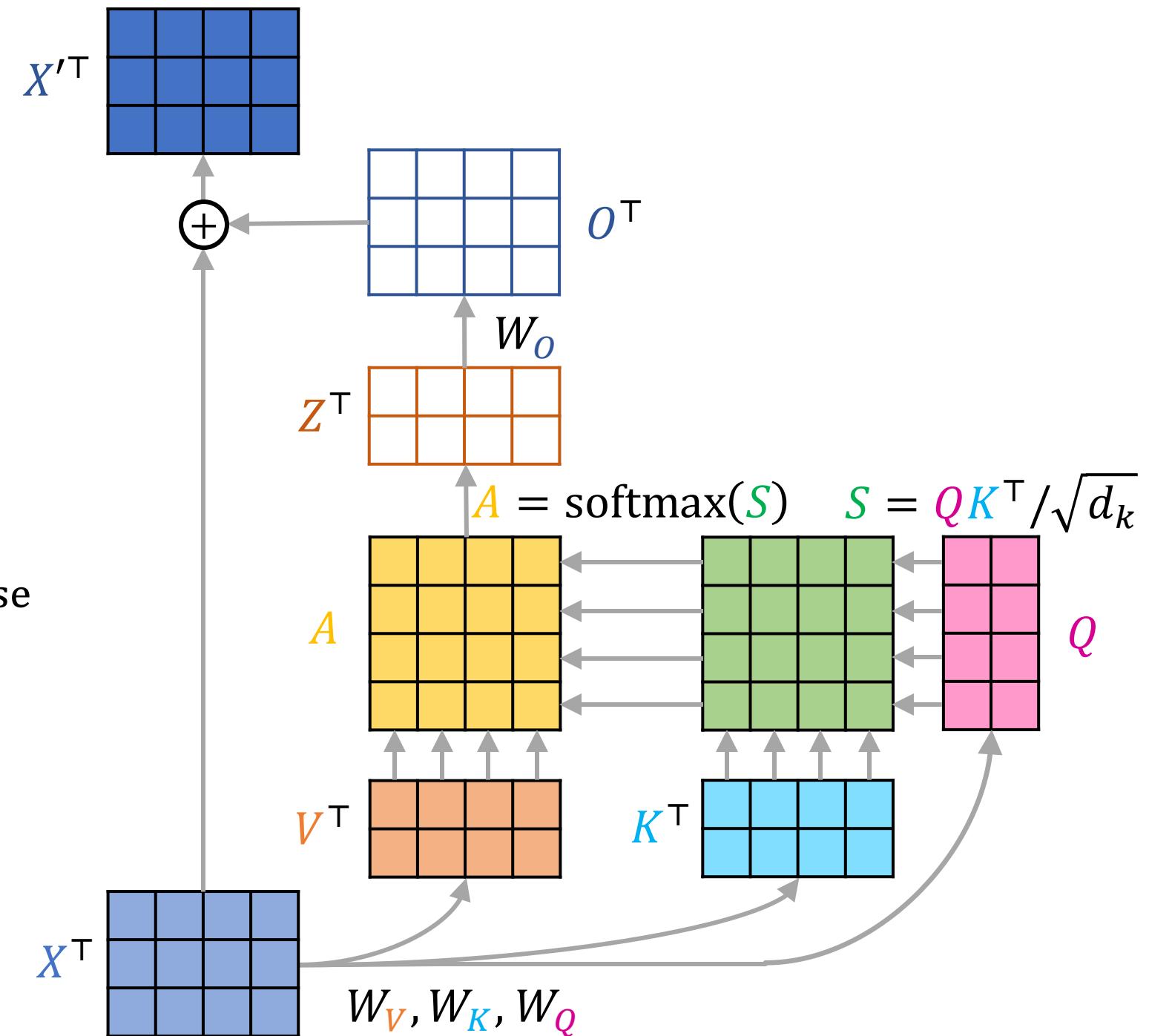
$$A = \text{softmax}(S) \text{ row-wise}$$

$$S = QK^T / \sqrt{d_k}$$

$$Q = XW_Q$$

$$K = XW_K$$

$$V = XW_V$$



Attention

Matrix representation

$$X' = X \oplus O$$

$$O = ZW_O$$

$$Z = AV$$

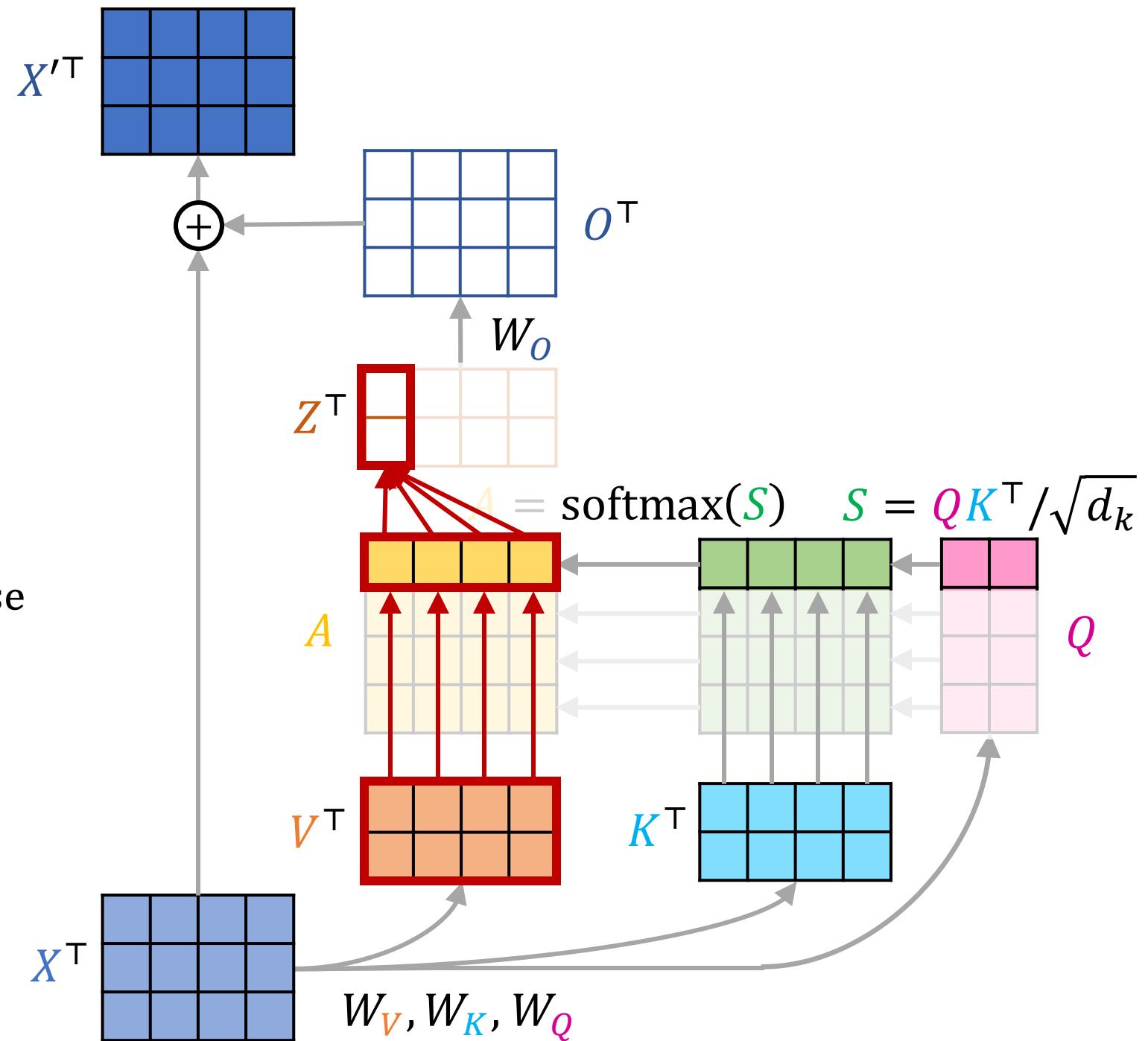
$$A = \text{softmax}(S) \text{ row-wise}$$

$$S = QK^T / \sqrt{d_k}$$

$$Q = XW_Q$$

$$K = XW_K$$

$$V = XW_V$$



Attention

Matrix representation

$$X' = X \oplus O$$

$$O = ZW_O$$

$$Z = AV$$

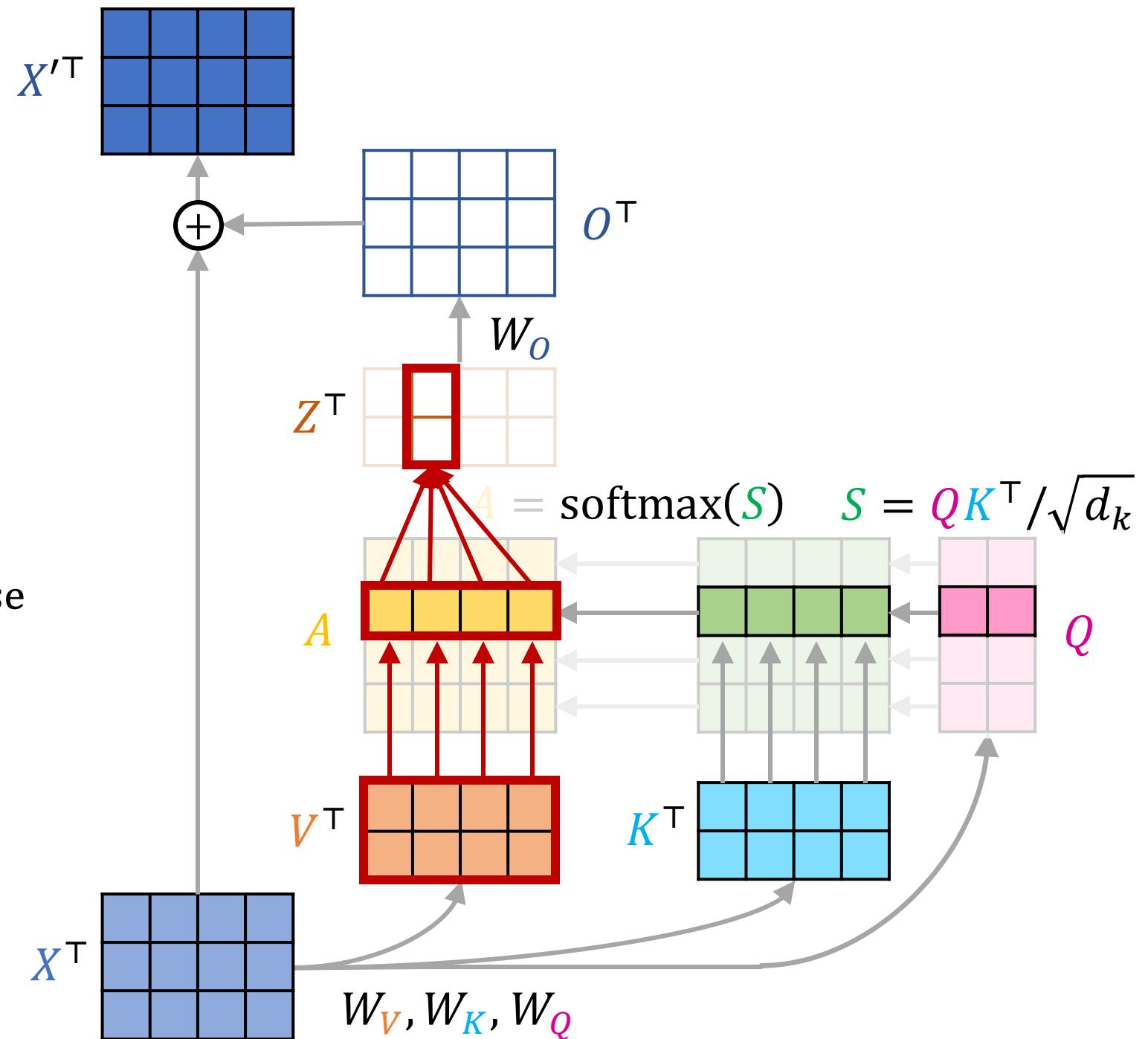
$$A = \text{softmax}(S) \text{ row-wise}$$

$$S = QK^T / \sqrt{d_k}$$

$$Q = XW_Q$$

$$K = XW_K$$

$$V = XW_V$$



Attention

Matrix representation

$$X' = X \oplus O$$

$$O = ZW_O$$

$$Z = AV$$

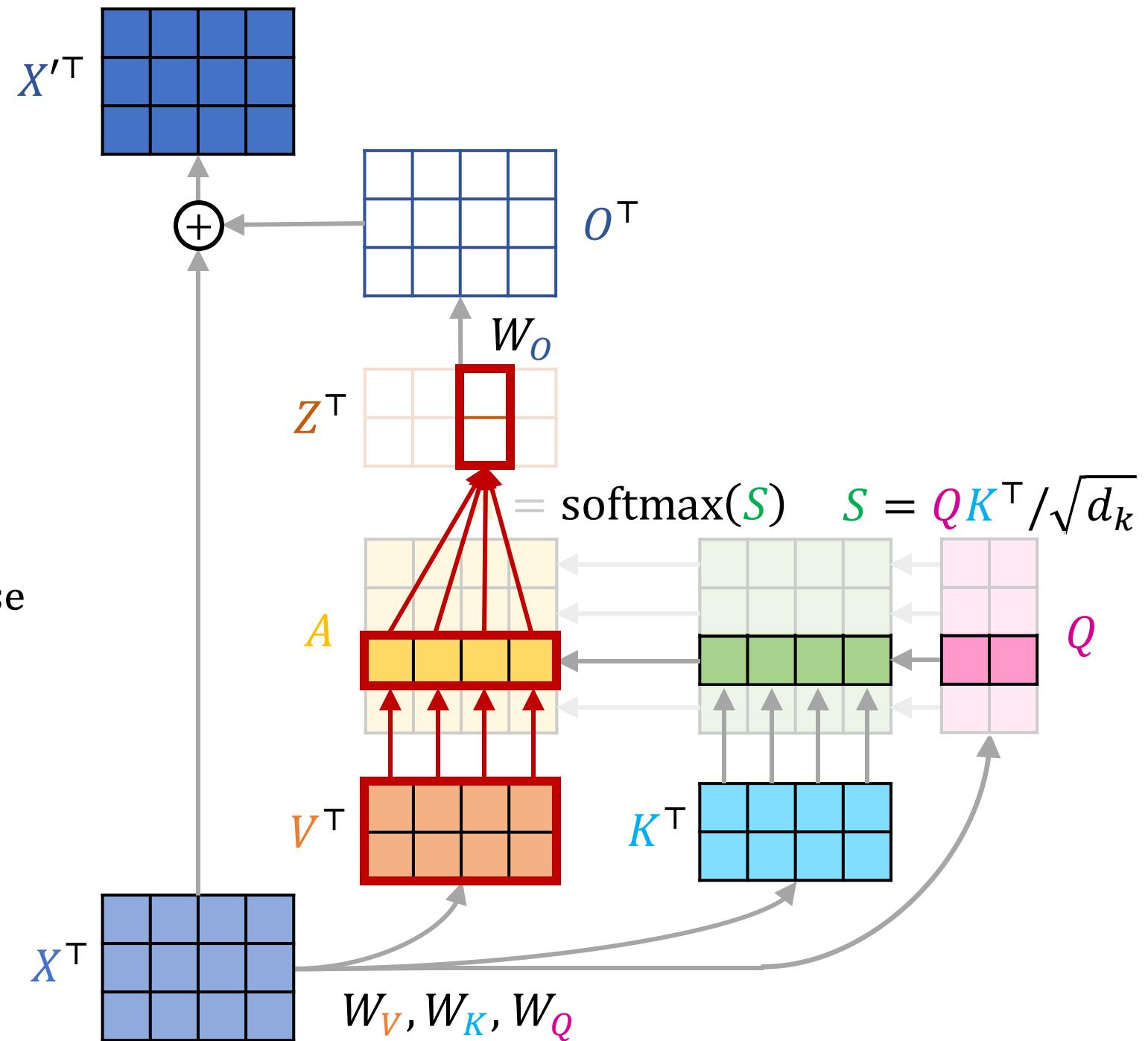
$$A = \text{softmax}(S) \text{ row-wise}$$

$$S = QK^T / \sqrt{d_k}$$

$$Q = XW_Q$$

$$K = XW_K$$

$$V = XW_V$$



Attention

Matrix representation

$$X' = X \oplus O$$

$$O = ZW_O$$

$$Z = AV$$

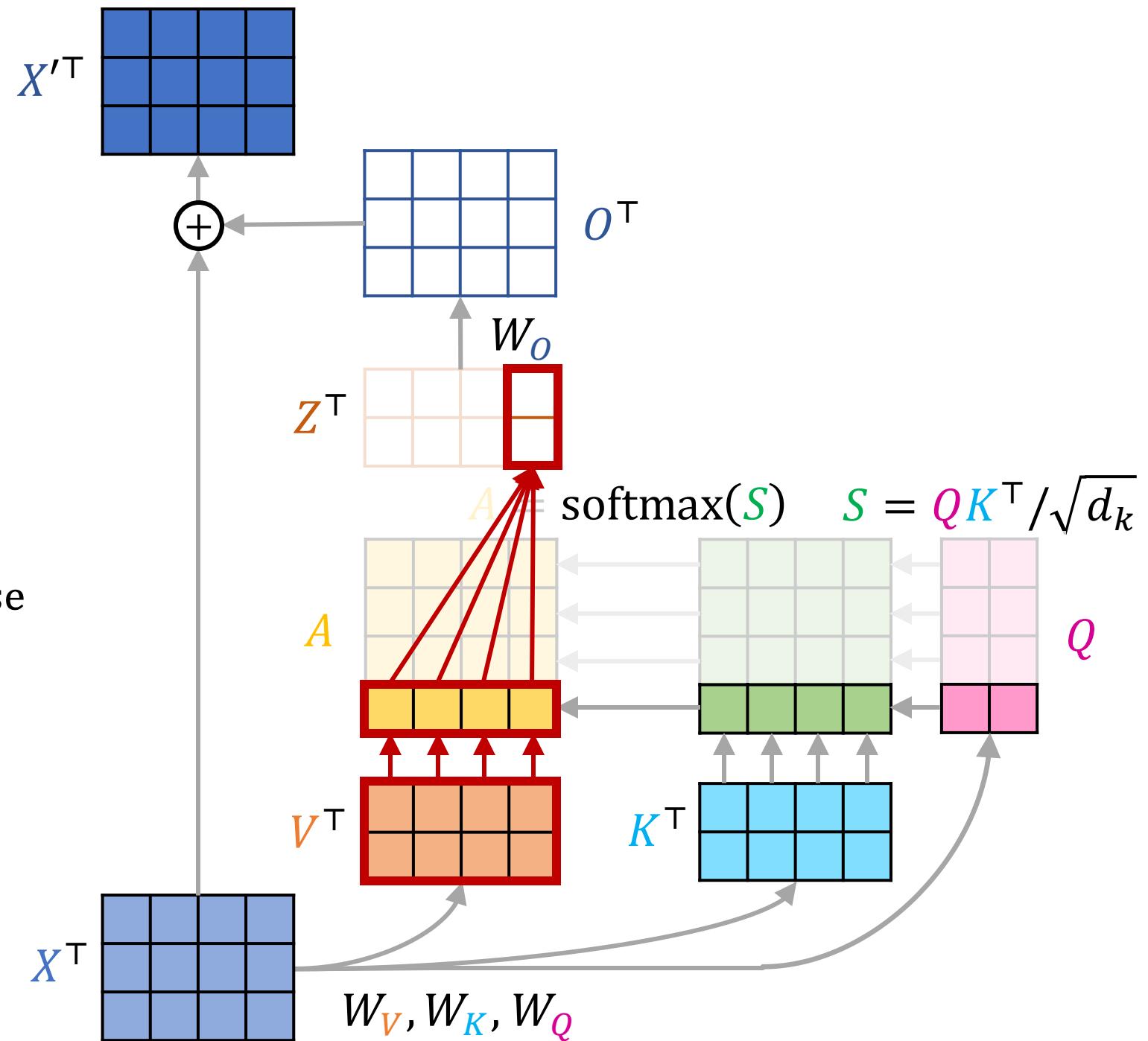
$$A = \text{softmax}(S) \text{ row-wise}$$

$$S = QK^T / \sqrt{d_k}$$

$$Q = XW_Q$$

$$K = XW_K$$

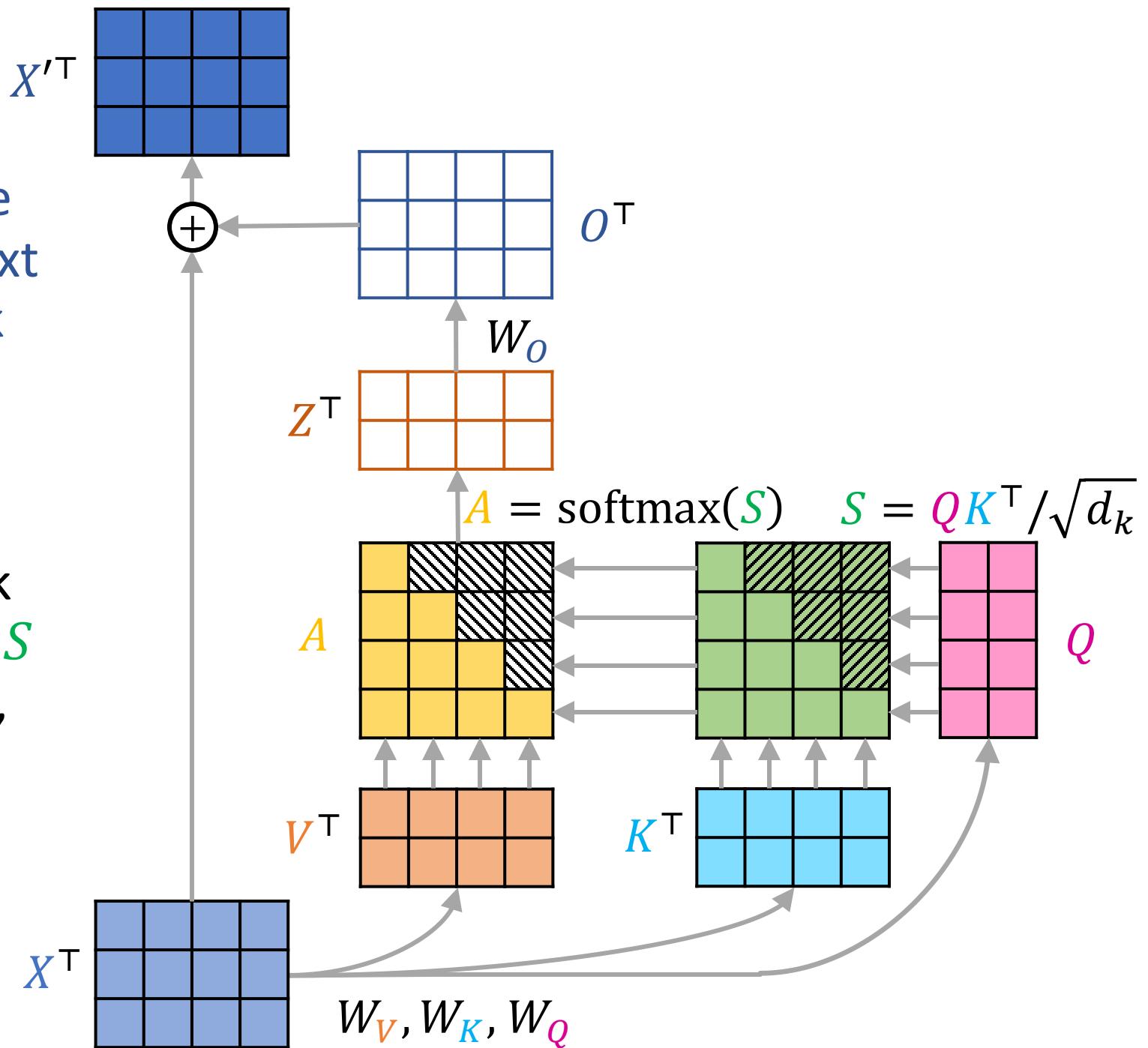
$$V = XW_V$$



Causal Attention

When learning to generate the next token from context $1:t$, we don't want to look ahead and use any information from $t+1$ or greater

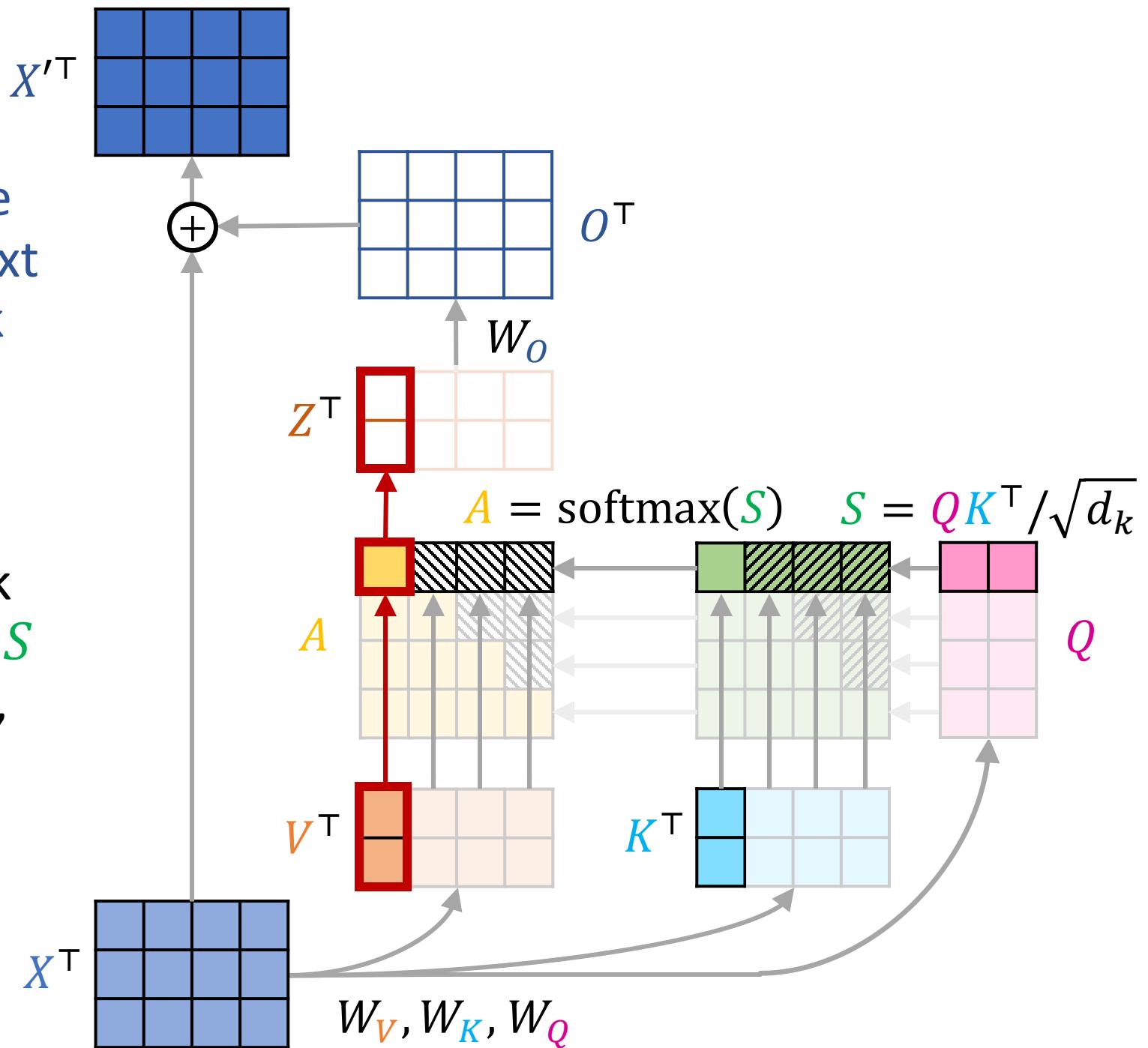
- We apply a causal mask to the attention scores S (filled with $-\infty$ values), which zeros out the appropriate attention weights in A



Causal Attention

When learning to generate the next token from context $1:t$, we don't want to look ahead and use any information from $t+1$ or greater

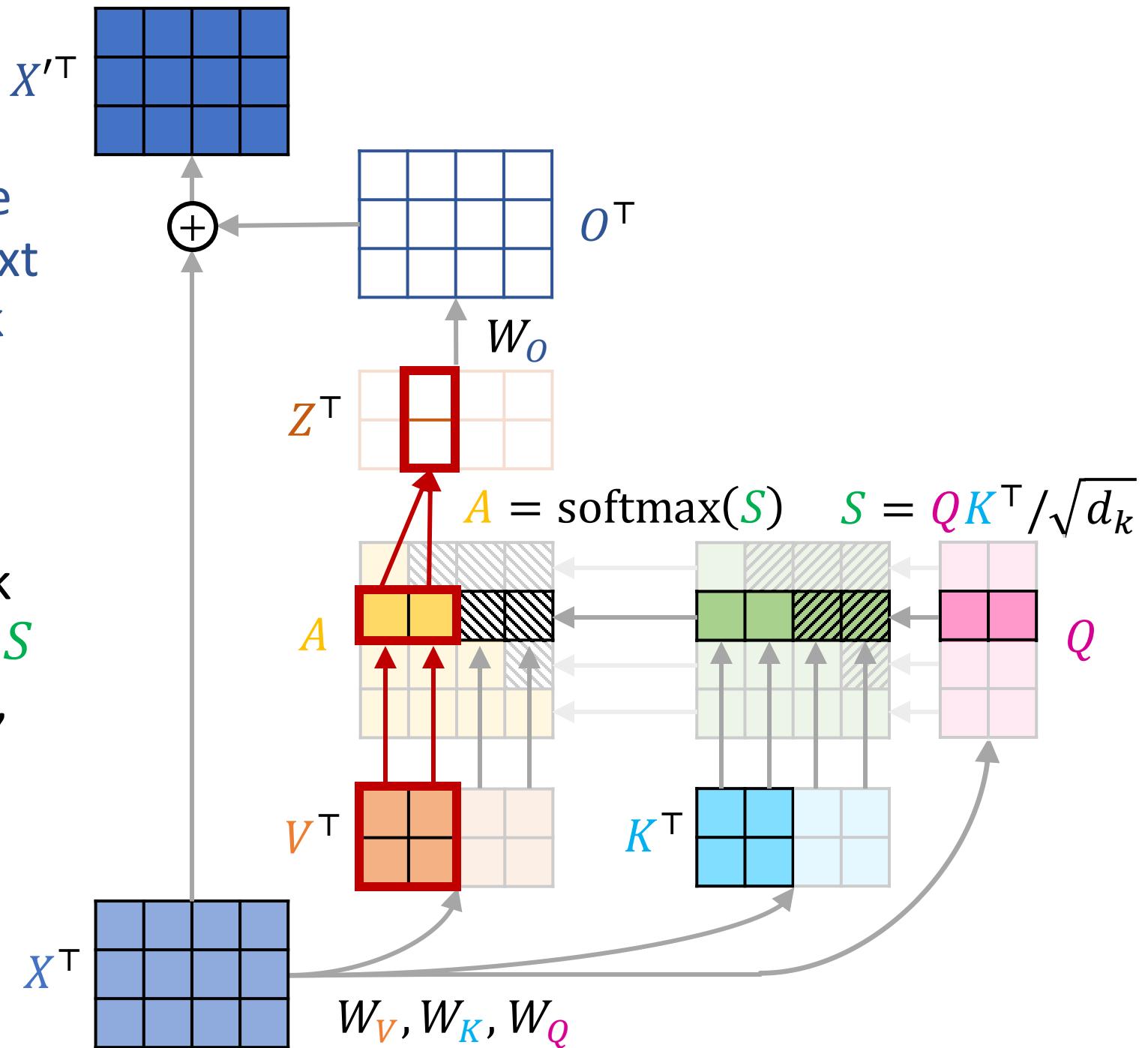
- We apply a causal mask to the attention scores S (filled with $-\infty$ values), which zeros out the appropriate attention weights in A



Causal Attention

When learning to generate the next token from context $1:t$, we don't want to look ahead and use any information from $t+1$ or greater

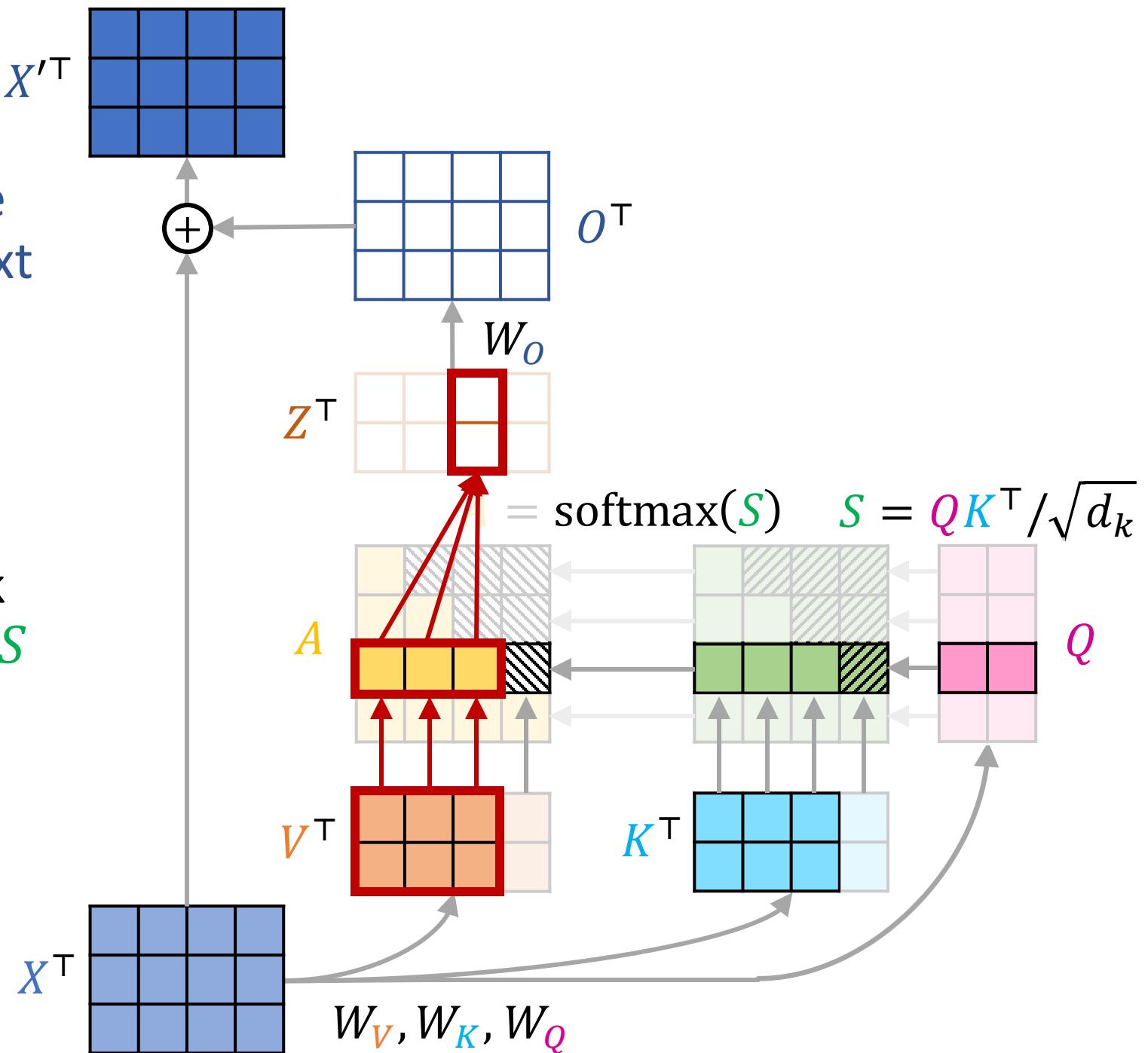
- We apply a causal mask to the attention scores S (filled with $-\infty$ values), which zeros out the appropriate attention weights in A



Causal Attention

When learning to generate the next token from context $1:t$, we don't want to look ahead and use any information from $t+1$ or greater

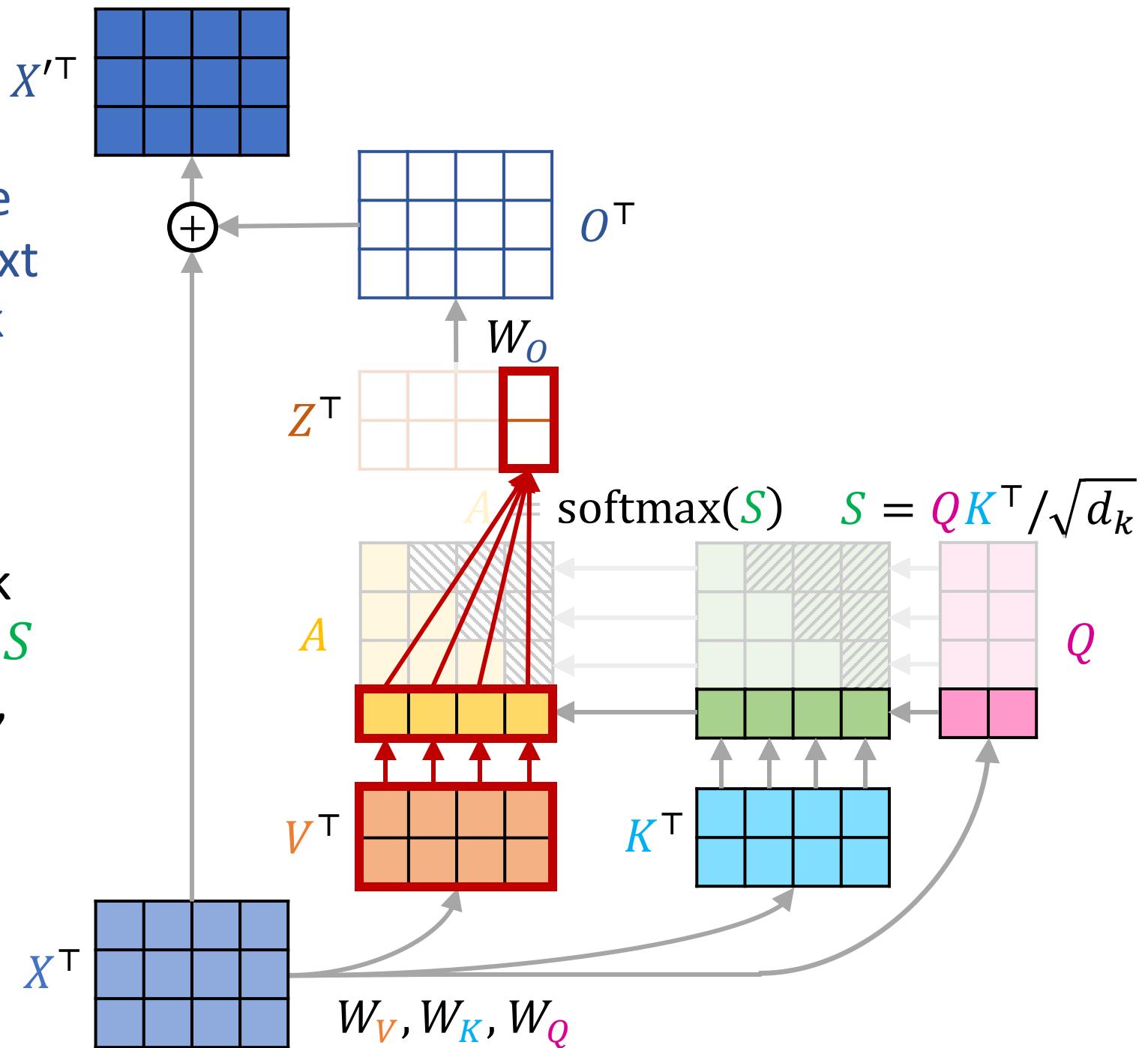
- We apply a causal mask to the attention scores S (filled with $-\infty$ values), which zeros out the appropriate attention weights in A



Causal Attention

When learning to generate the next token from context $1:t$, we don't want to look ahead and use any information from $t+1$ or greater

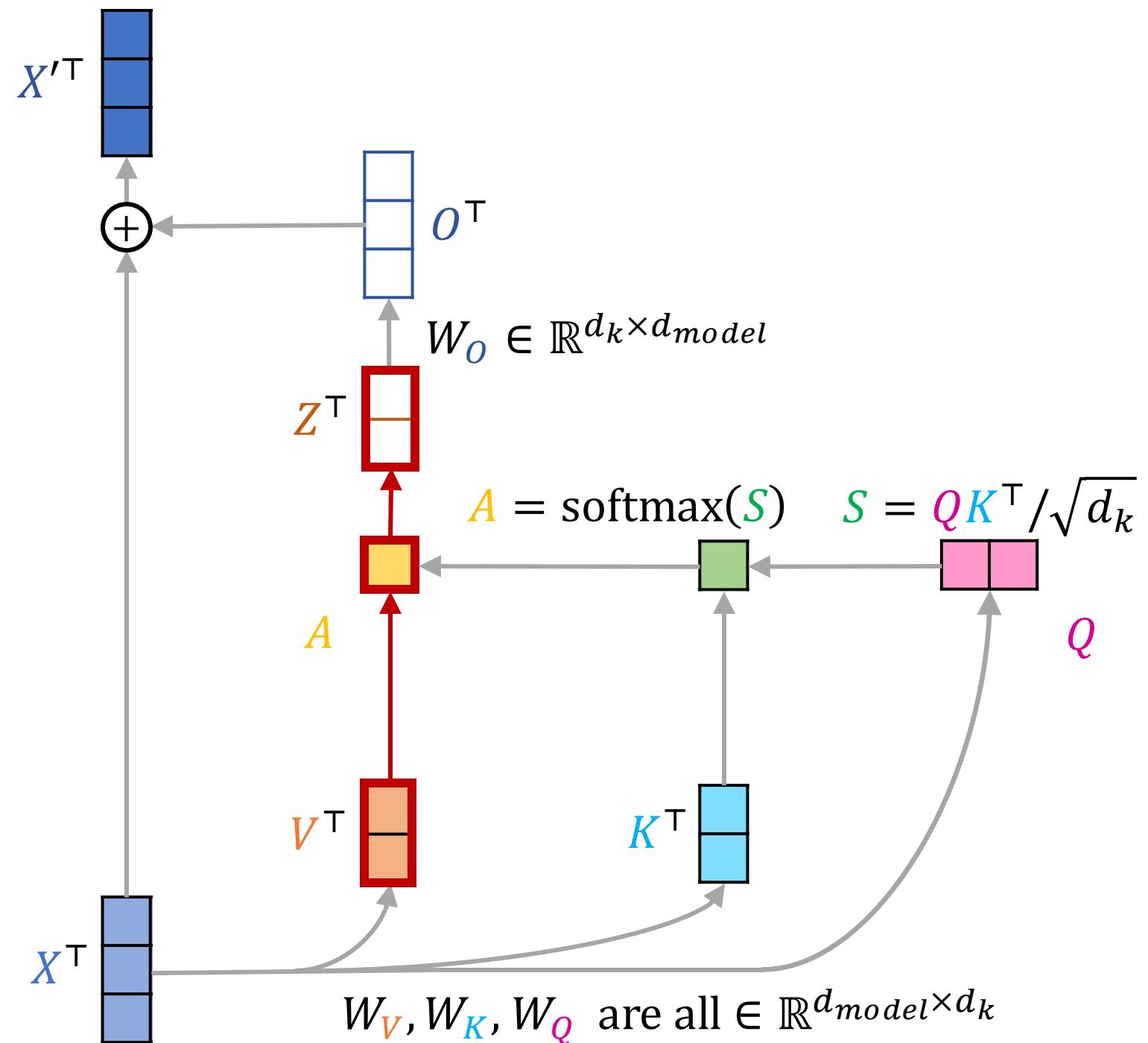
- We apply a causal mask to the attention scores S (filled with $-\infty$ values), which zeros out the appropriate attention weights in A



Causal Attention

Inference time

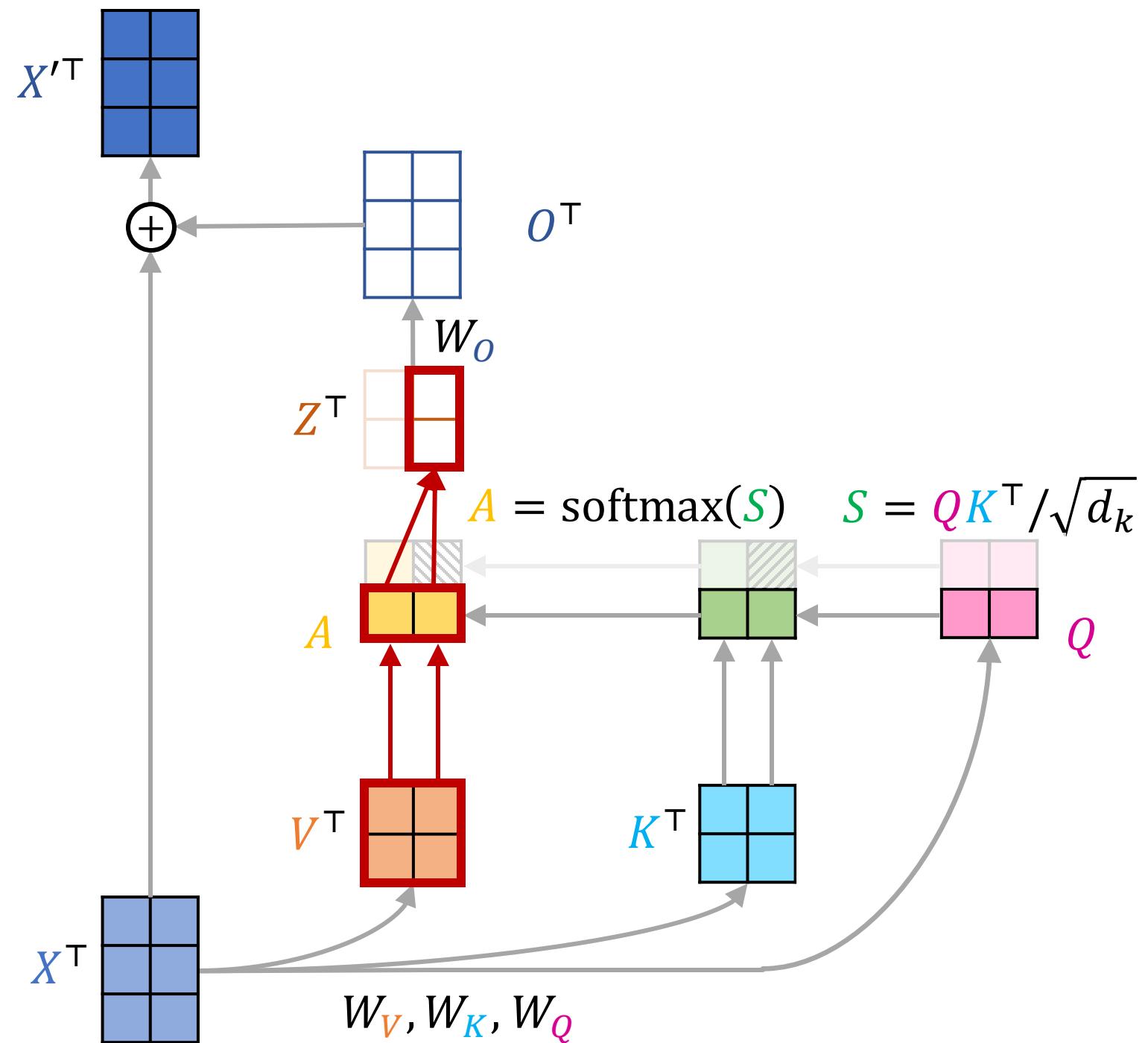
- Done training. Watch this attention block as the context size increases as we generate more and more tokens
- Note how different components build up as the context grows
- But the size of the parameters don't change!



Causal Attention

Inference time

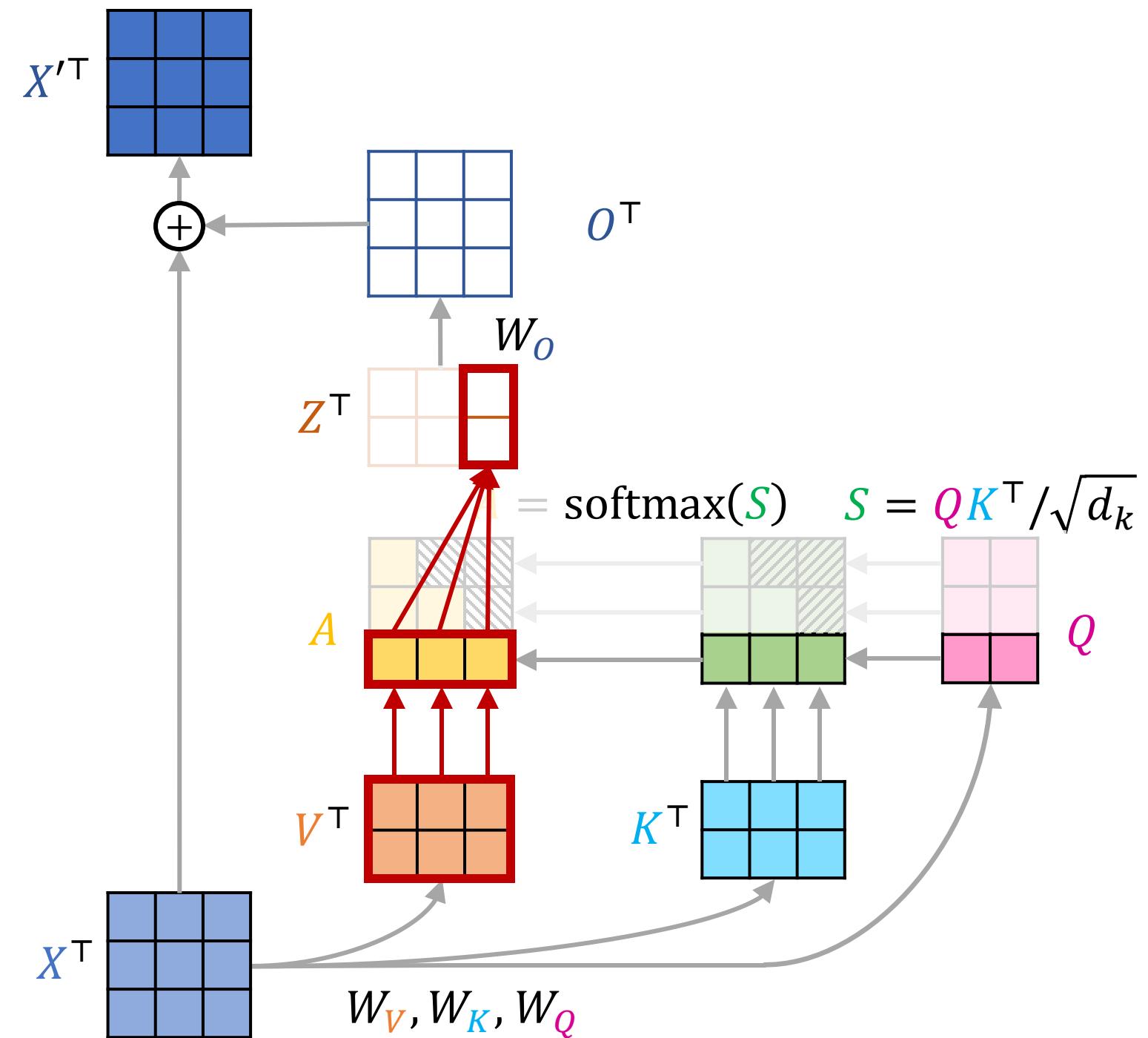
- Done training. Watch this attention block as the context size increases as we generate more and more tokens
- Note how different components build up as the context grows
- But the size of the parameters don't change!



Causal Attention

Inference time

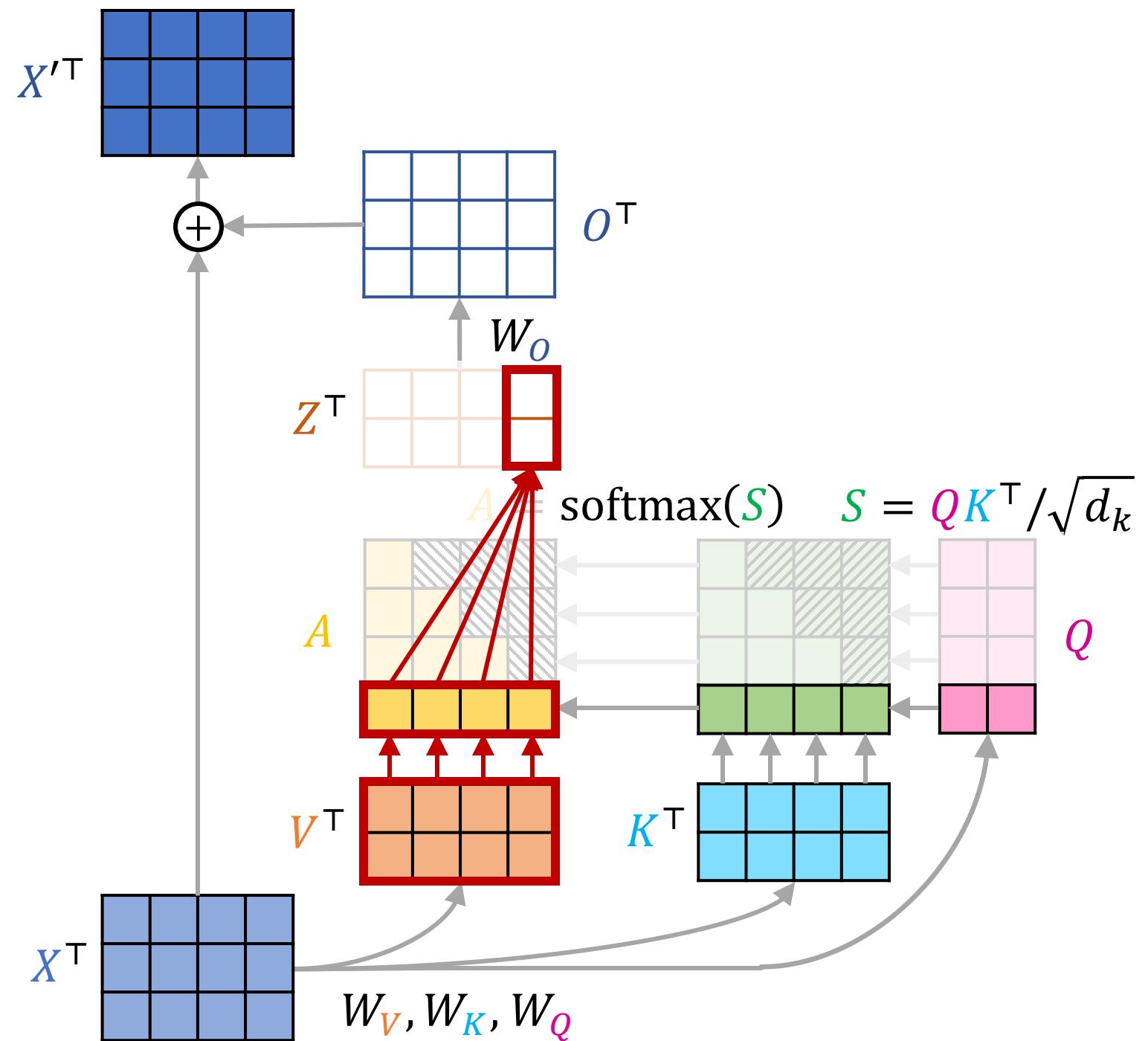
- Done training. Watch this attention block as the context size increases as we generate more and more tokens
- Note how different components build up as the context grows
- But the size of the parameters don't change!



Causal Attention

Inference time

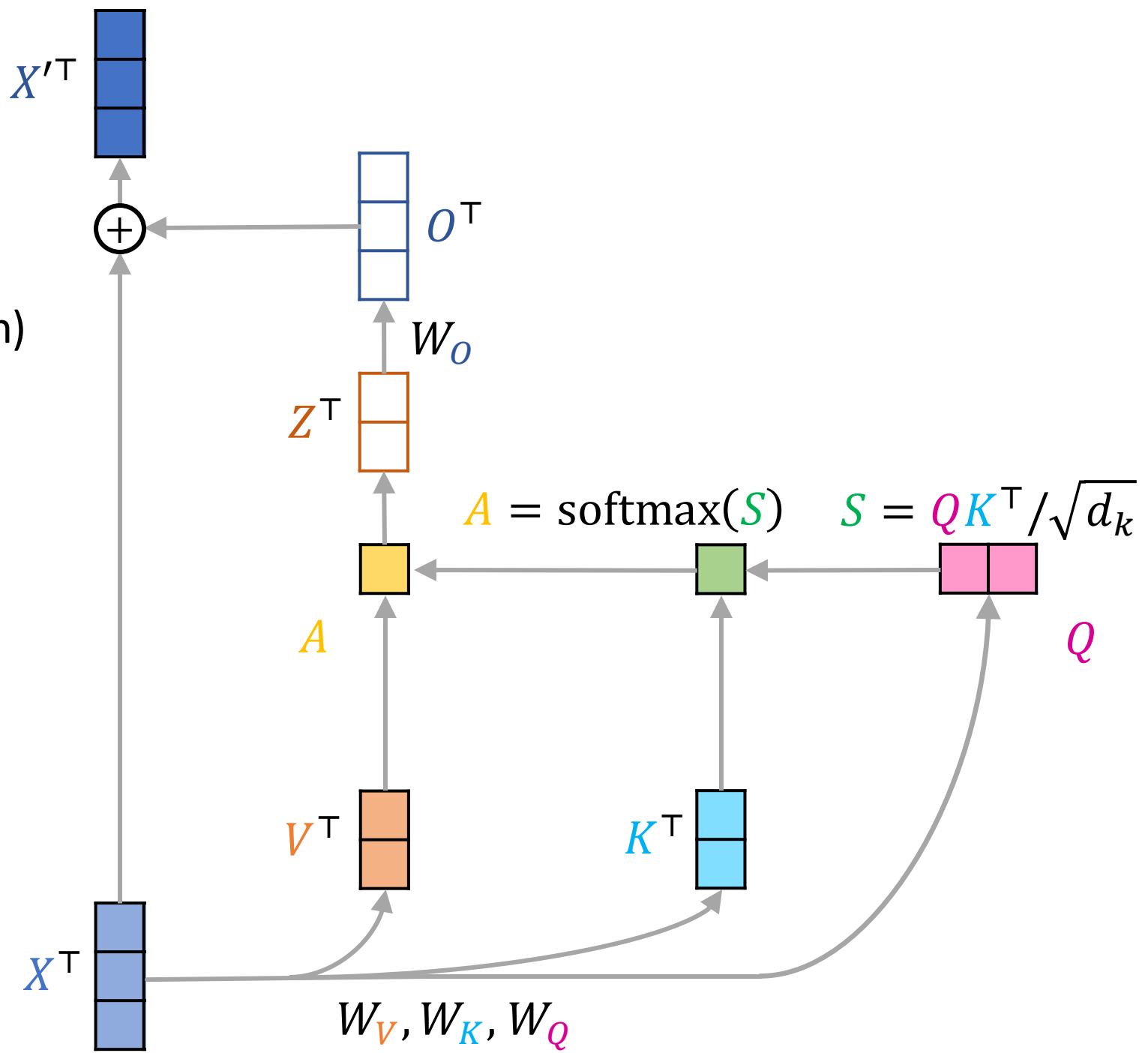
- Done training. Watch this attention block as the context size increases as we generate more and more tokens
- Note how different components build up as the context grows
- But the size of the parameters don't change!



Causal Attention

Inference time

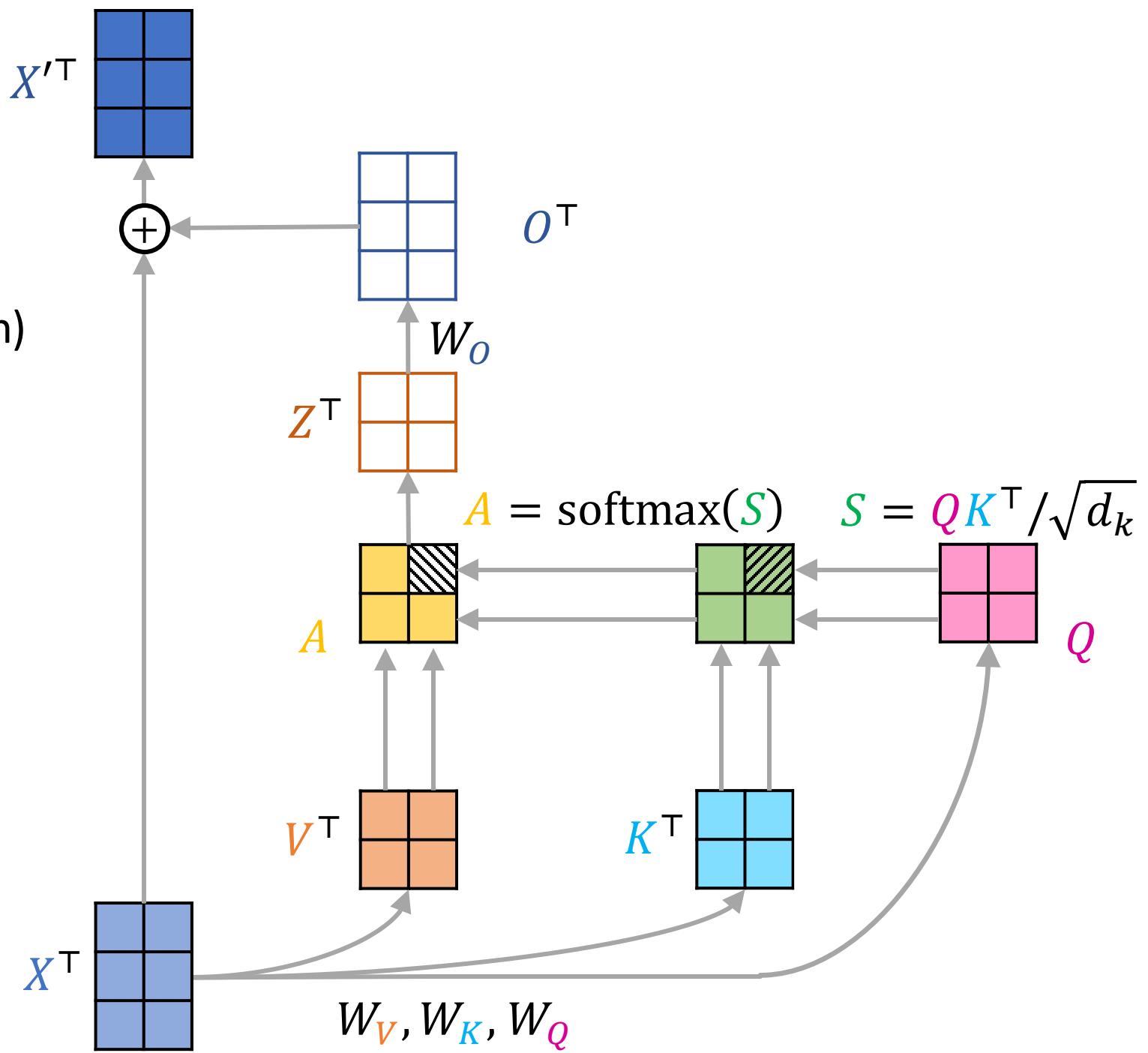
(Repeated without **red arrows** showing attention combination)



Causal Attention

Inference time

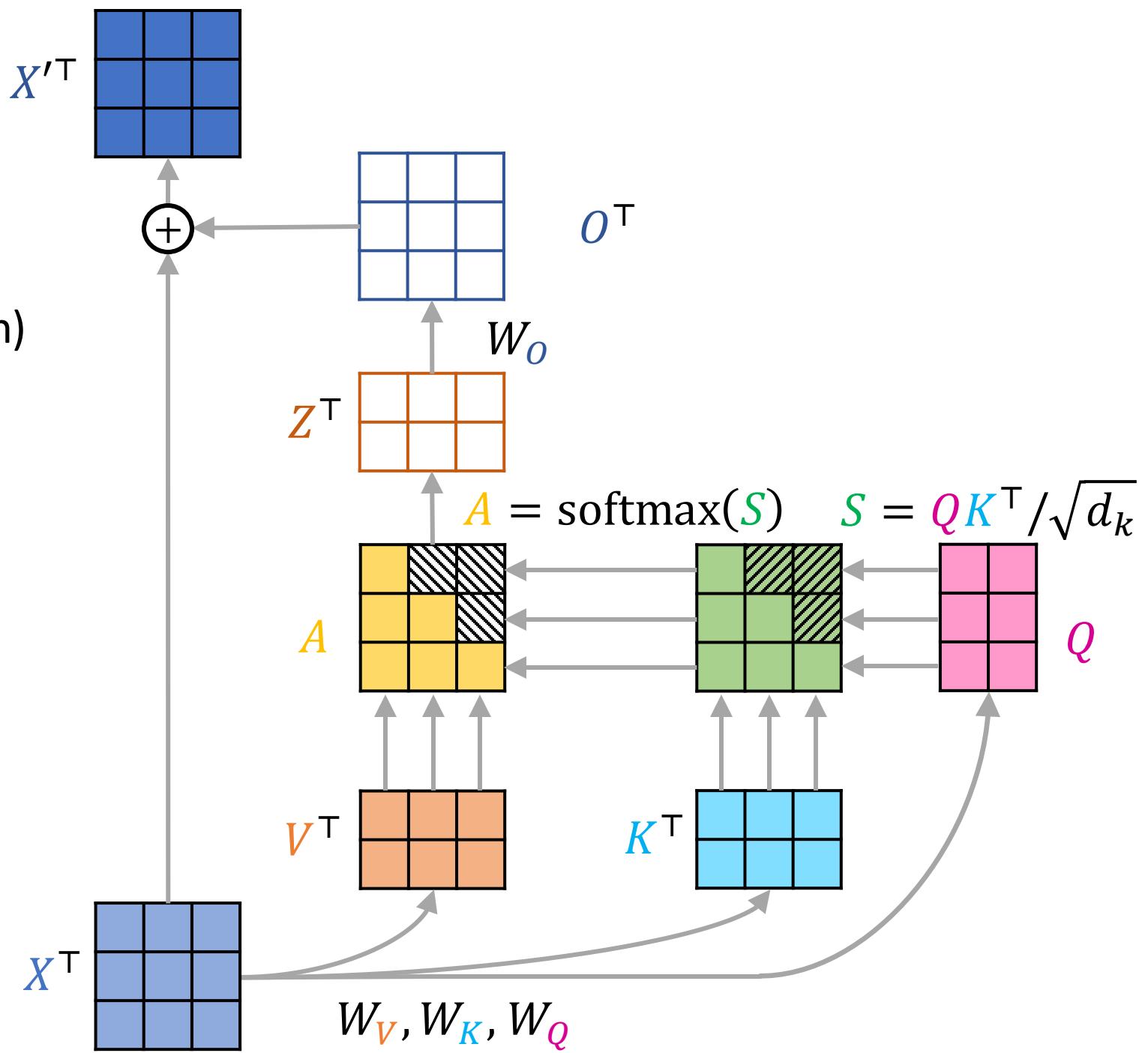
(Repeated without **red arrows** showing attention combination)



Causal Attention

Inference time

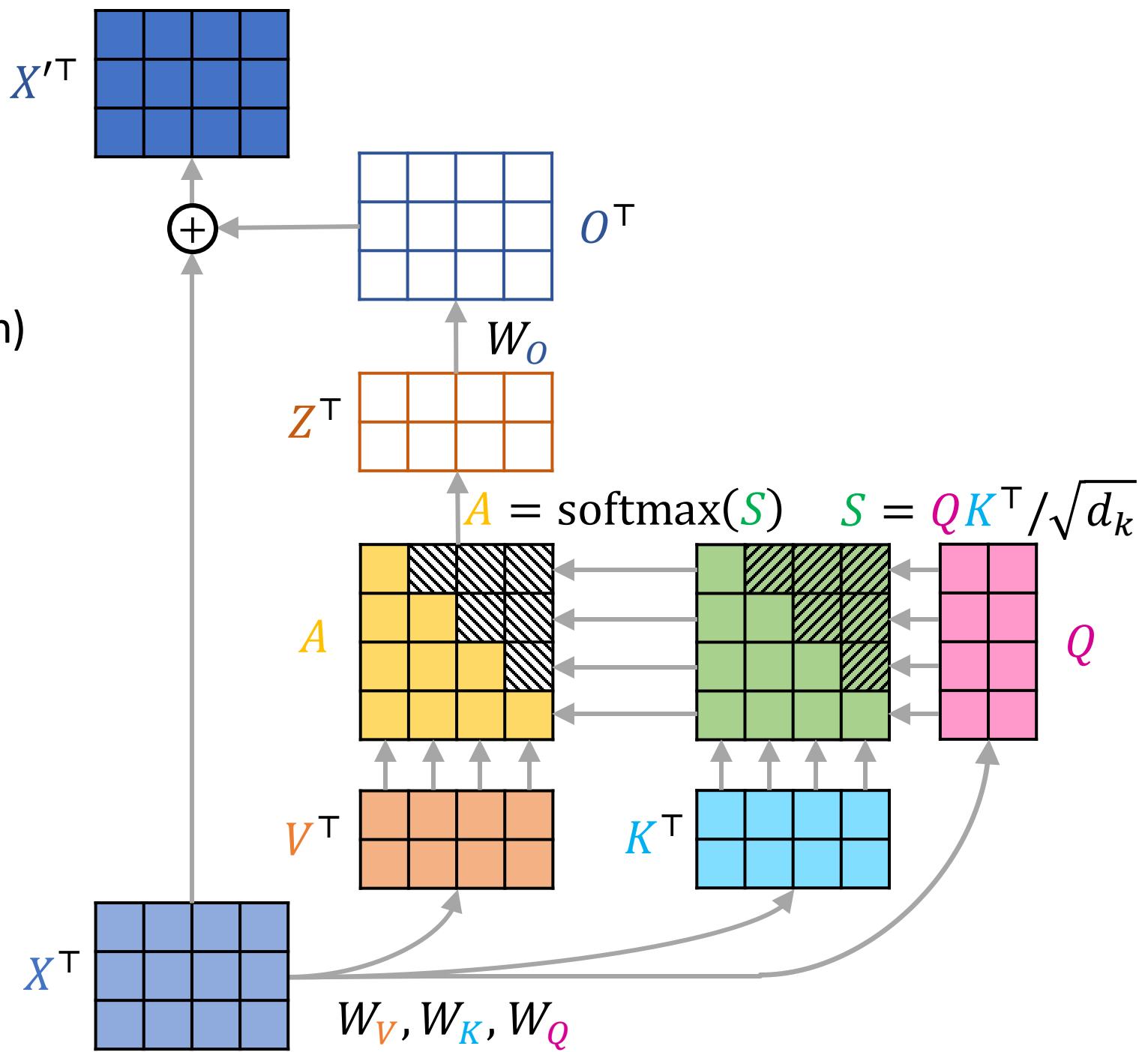
(Repeated without red arrows
showing attention combination)



Causal Attention

Inference time

(Repeated without **red arrows** showing attention combination)



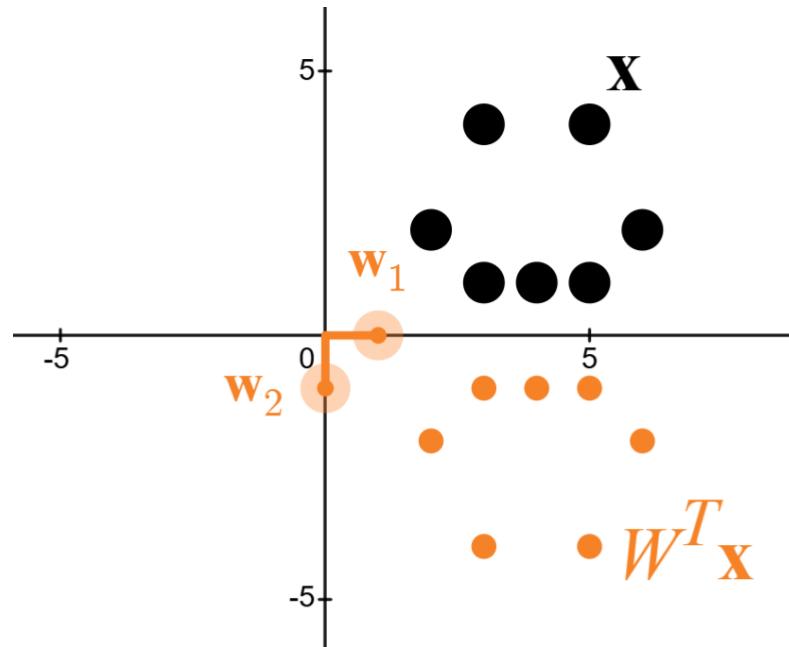
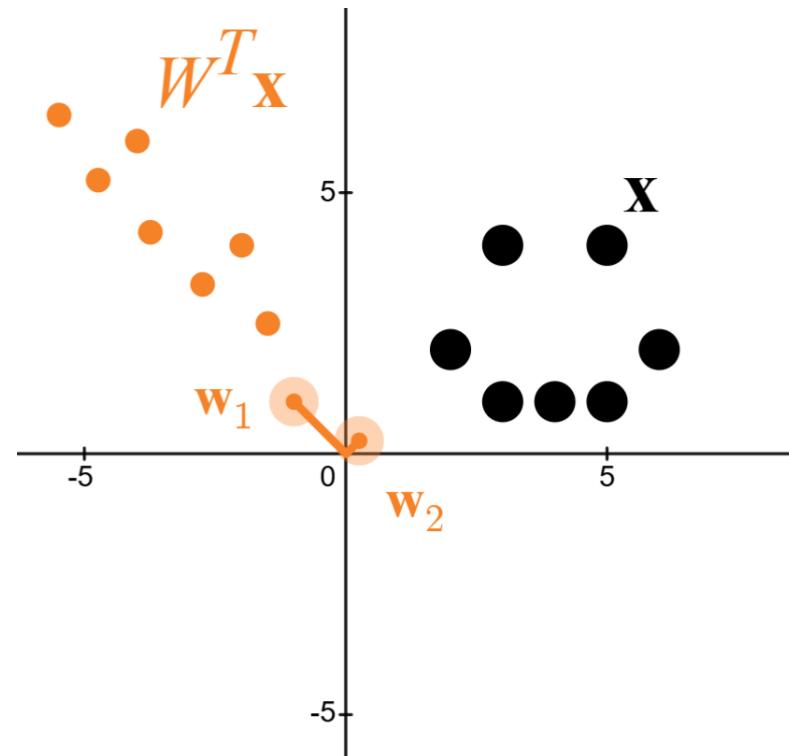
Linear Transforms: Graphical Intuition

In Transformer models, we see quite a few linear transforms

A simple $\mathbf{z} = \mathbf{W}^T \mathbf{x}$ can move points quite a bit

Desmos example for \mathbf{x} and \mathbf{z} in \mathbb{R}^2

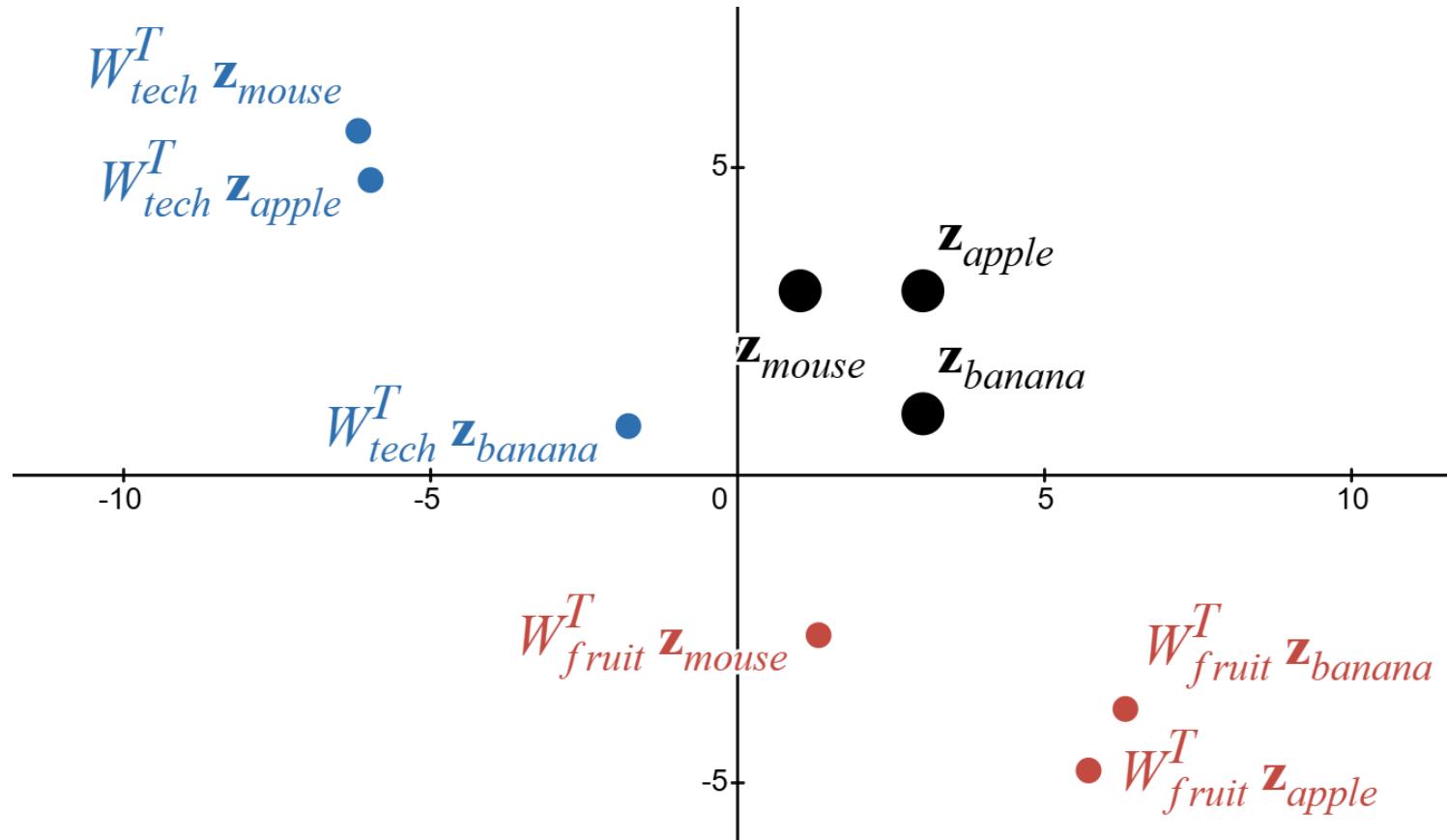
<https://www.desmos.com/calculator/gl5ljvorcy>



Linear Transforms: Graphical Intuition

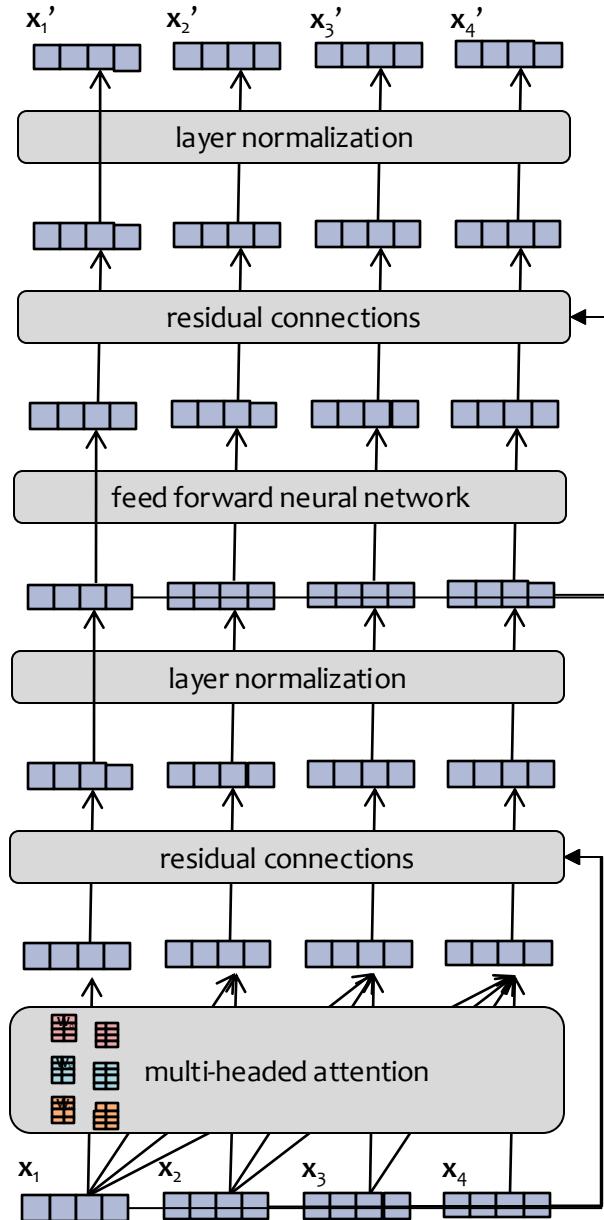
Two different transforms $W_{tech}^T \mathbf{z}$ and $W_{fruit}^T \mathbf{z}$ can create two different meaningful embeddings for the input vectors \mathbf{z}

Desmos example for W in $\mathbb{R}^{2 \times 2}$ <https://www.desmos.com/calculator/tbeclbo83h>



Transformer Layer

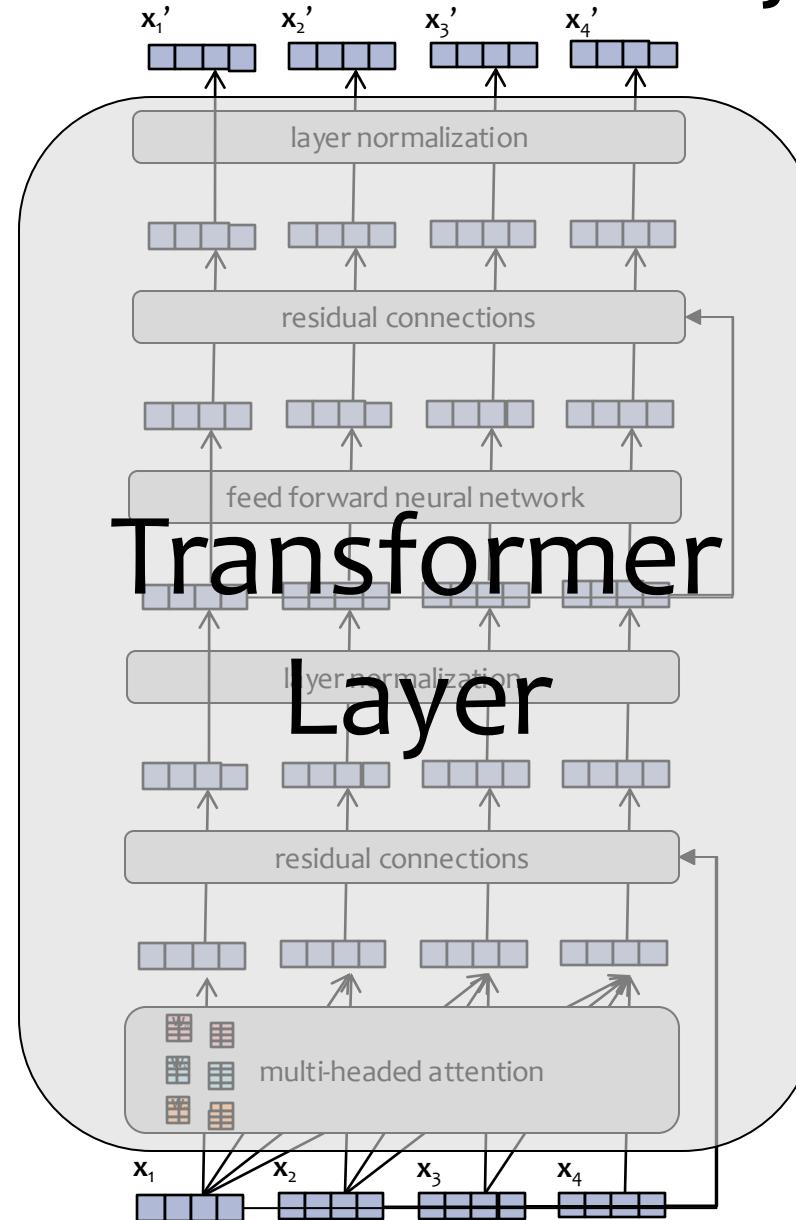
Transformer Layer



Each **layer** of a Transformer LM consists of several **sublayers**:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Transformer Layer



Each **layer** of a Transformer LM consists of several **sublayers**:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Transformer Layer

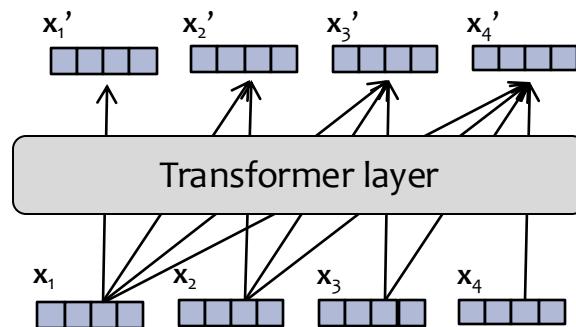
Each layer of a Transformer LM consists of several **sublayers**:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

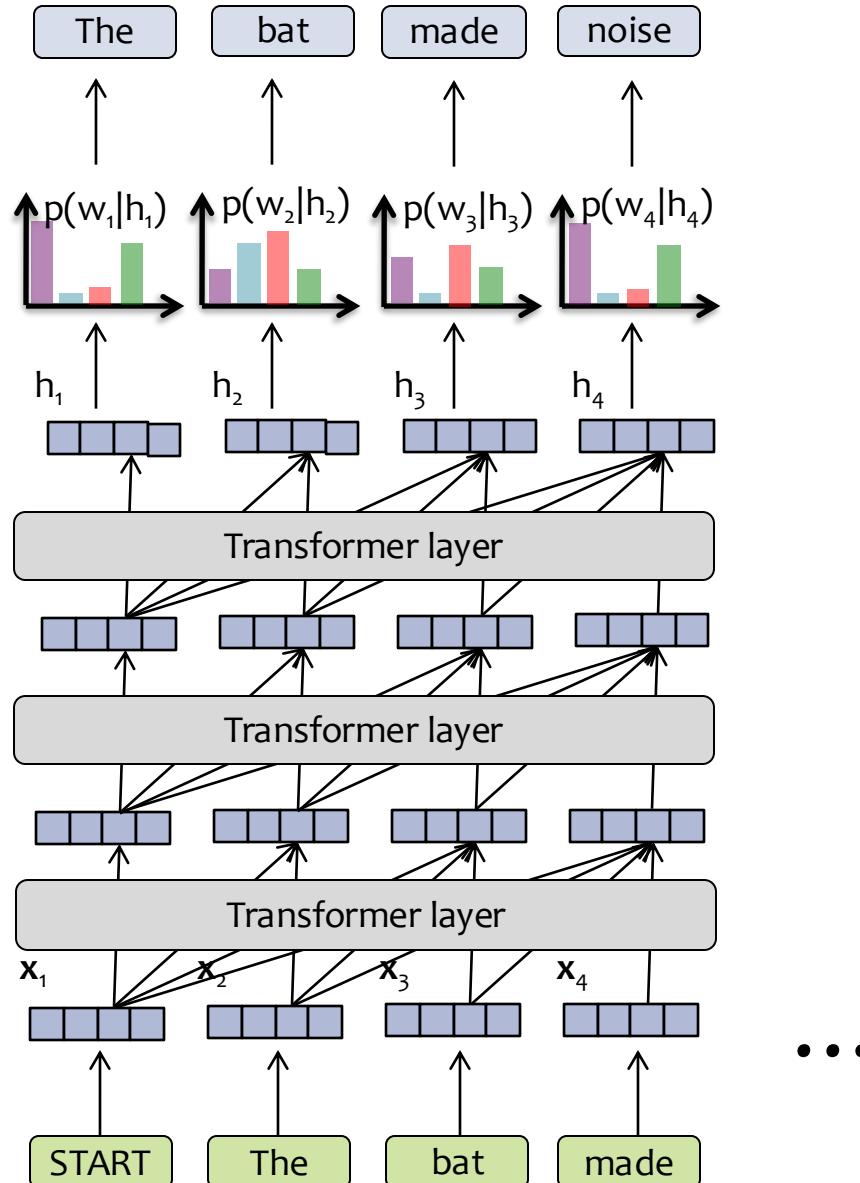
Transformer Layer

Each layer of a Transformer LM consists of several **sublayers**:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections



Transformer Language Model



Each layer of a Transformer LM consists of several **sublayers**:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at the hidden vectors of the **current and previous timesteps in the previous layer**.

The language model part is just like an RNN-LM!

More Transformers

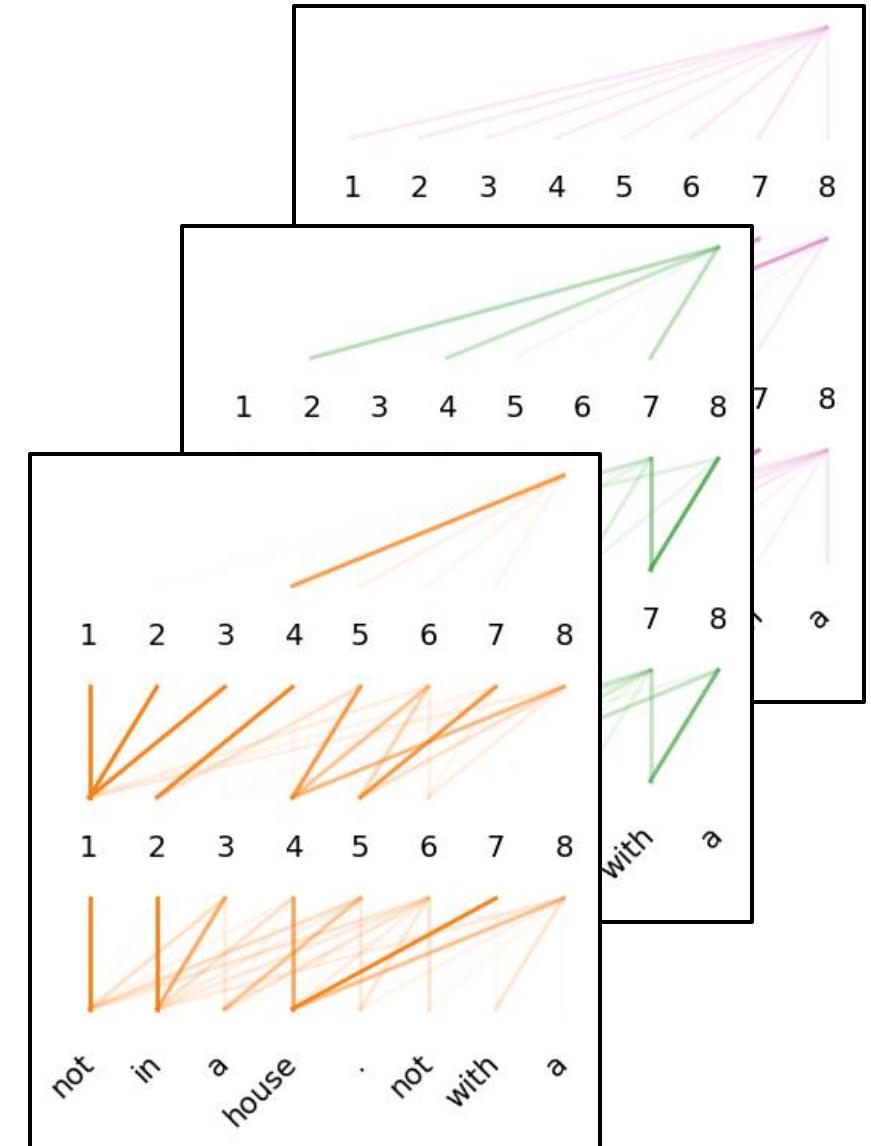
More Transformers

Multihead Attention

Different types of attention

- Causal self attention
- Self attention
- Cross attention

Vision Transformers

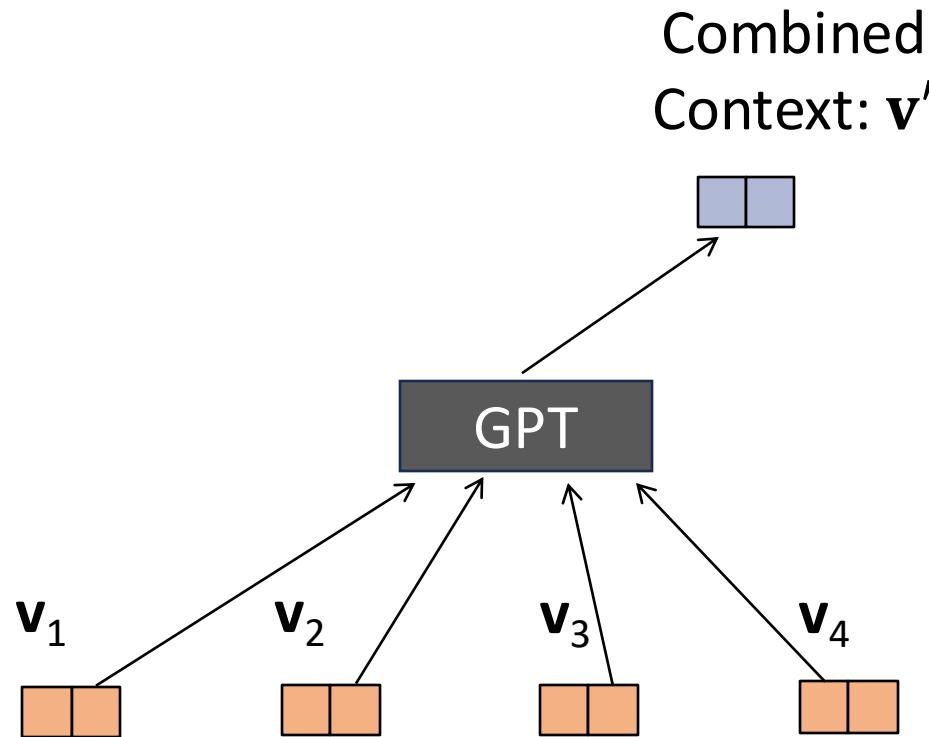


MinGPT Femto

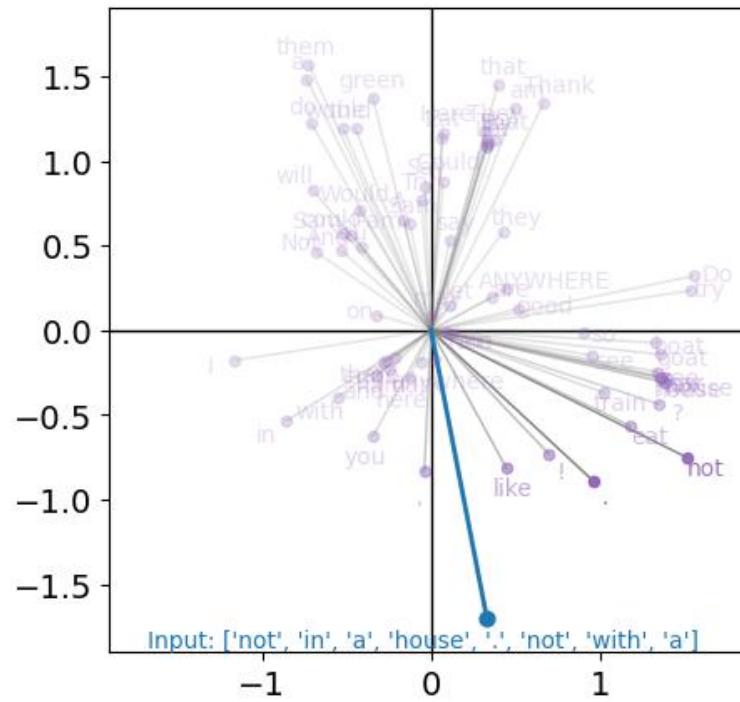
2-D embedded space

1 attention layer

1 attention head
(think channel)



Embedded words/tokens



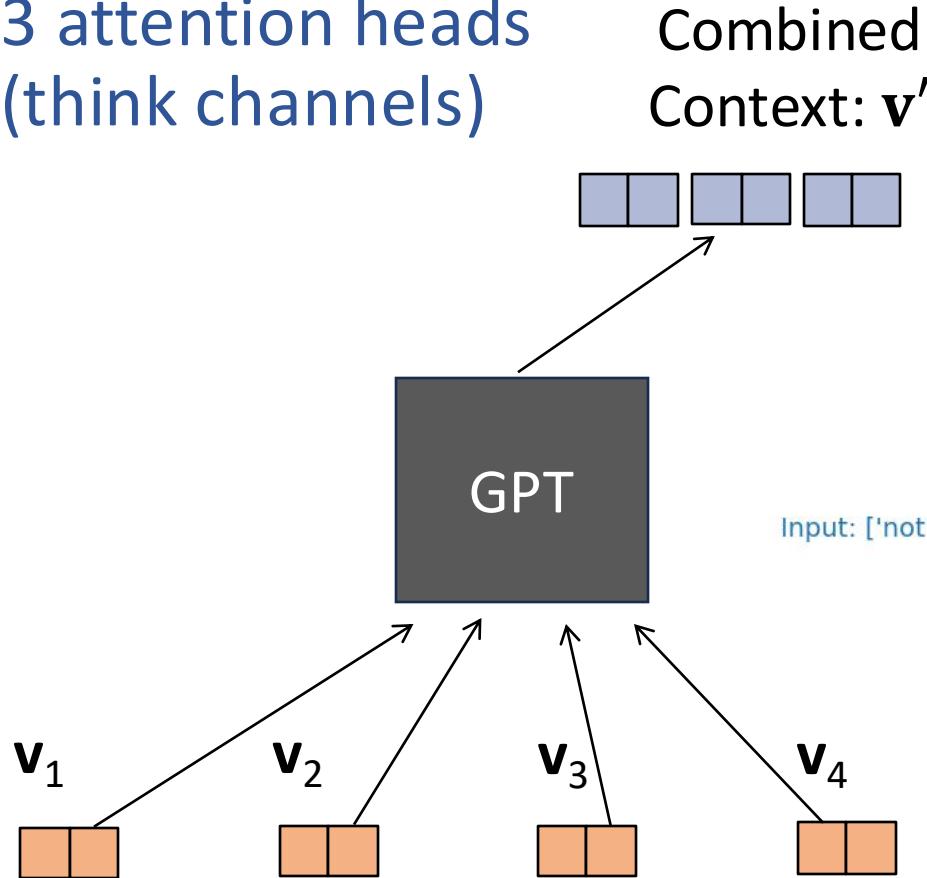
Too small to
learn good
attention
weights

MinGPT Pico

2-D embedded space

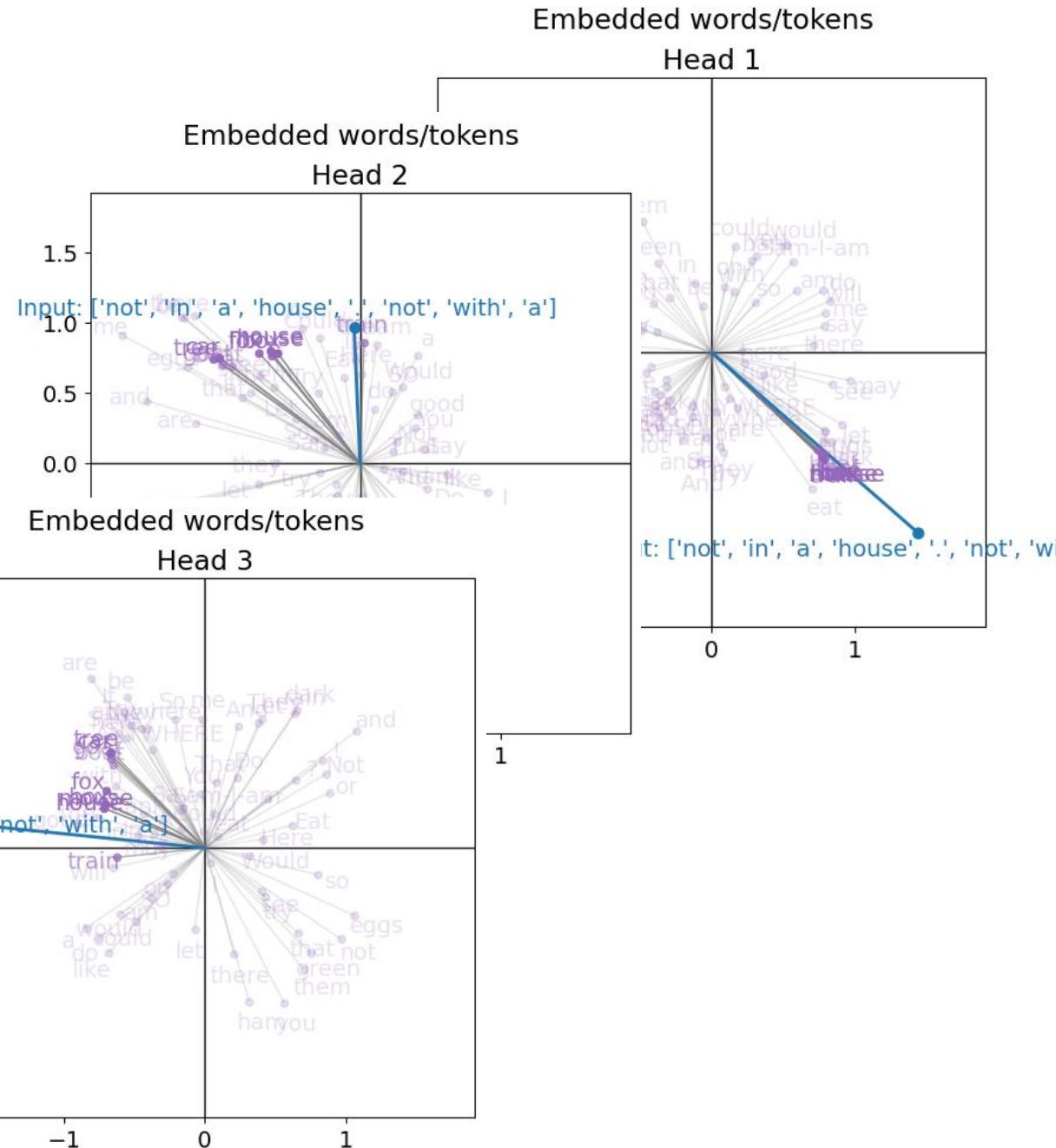
3 attention layer

3 attention heads
(think channels)

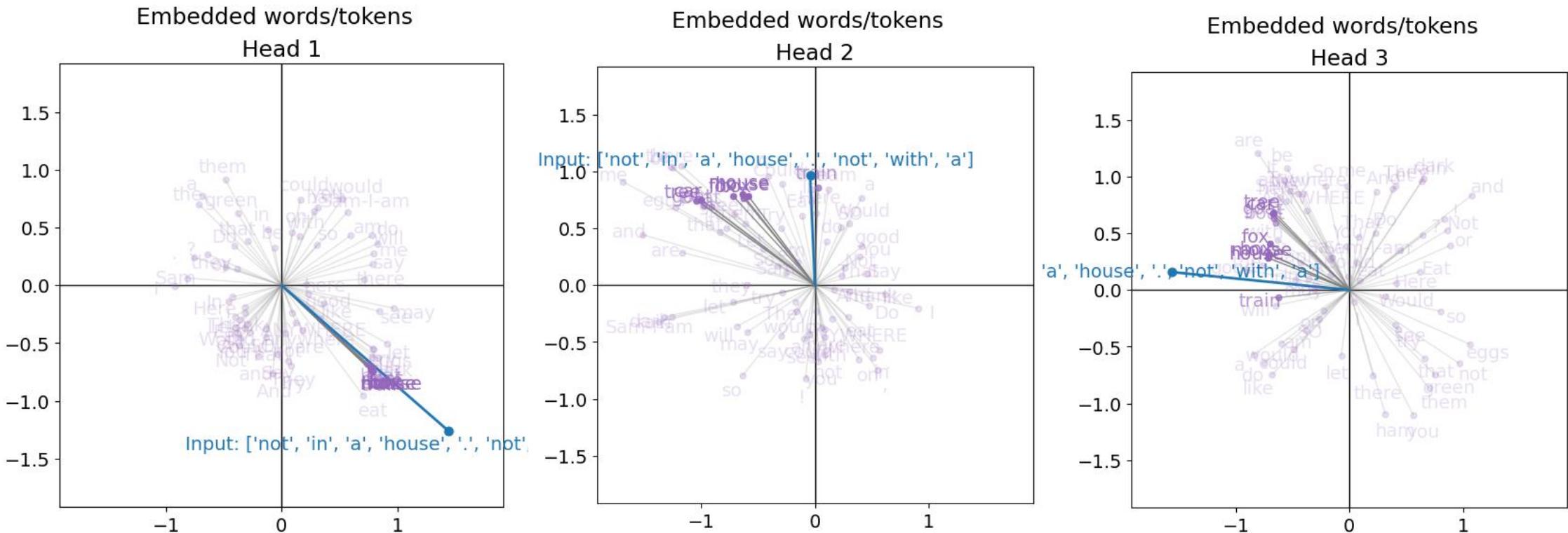


Input: ['not', 'in', 'a', 'house', '.', 'not', 'with', 'a']

Combined
Context: v'



MinGPT Pico: Output embedded space - 3 heads



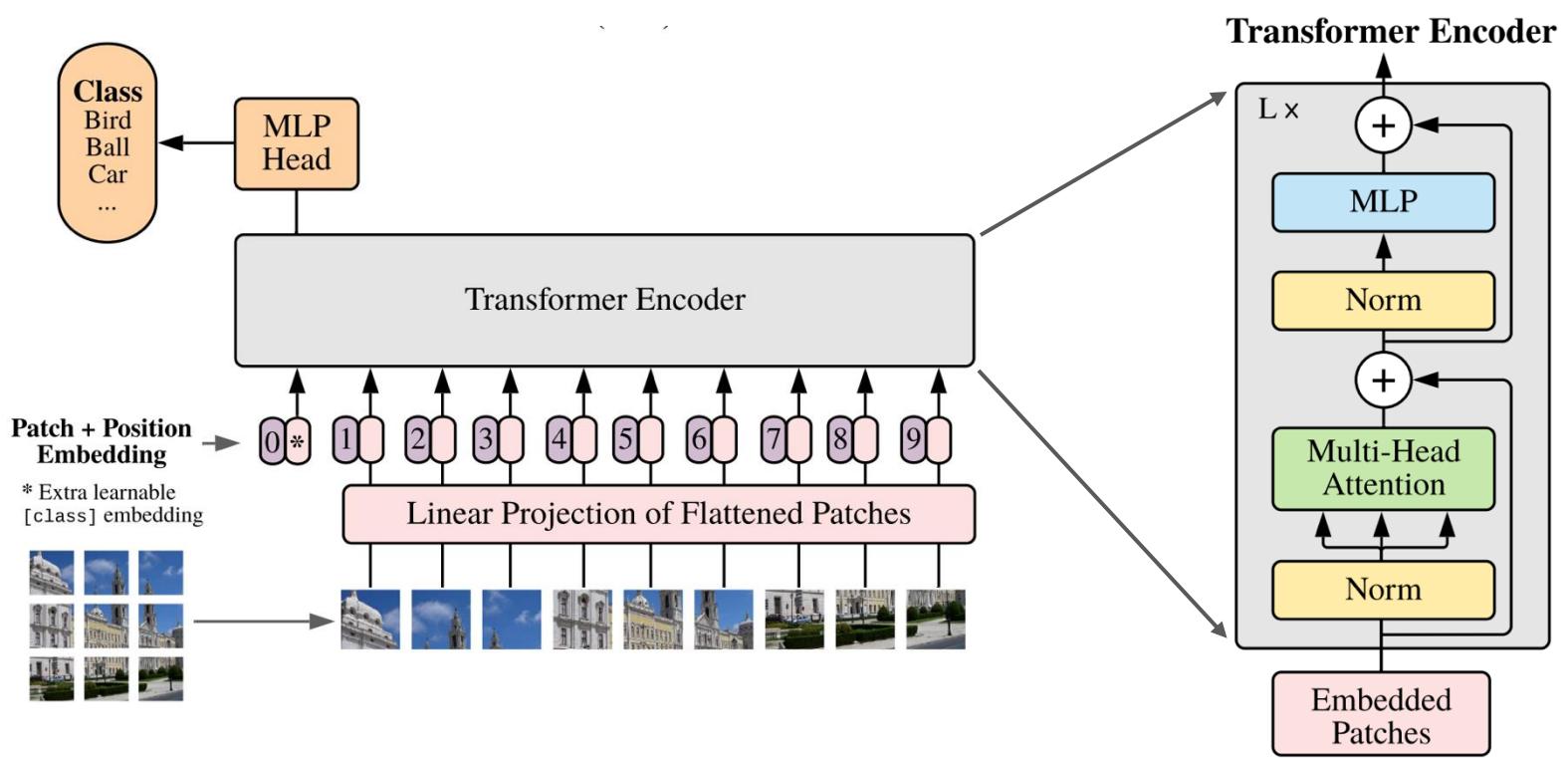
Three heads allows more room to learn different feature representations

MinGPT Pico: Attention Weights – 3 layers, 3 heads



Vision Transformers

Vision Transformer (ViT)

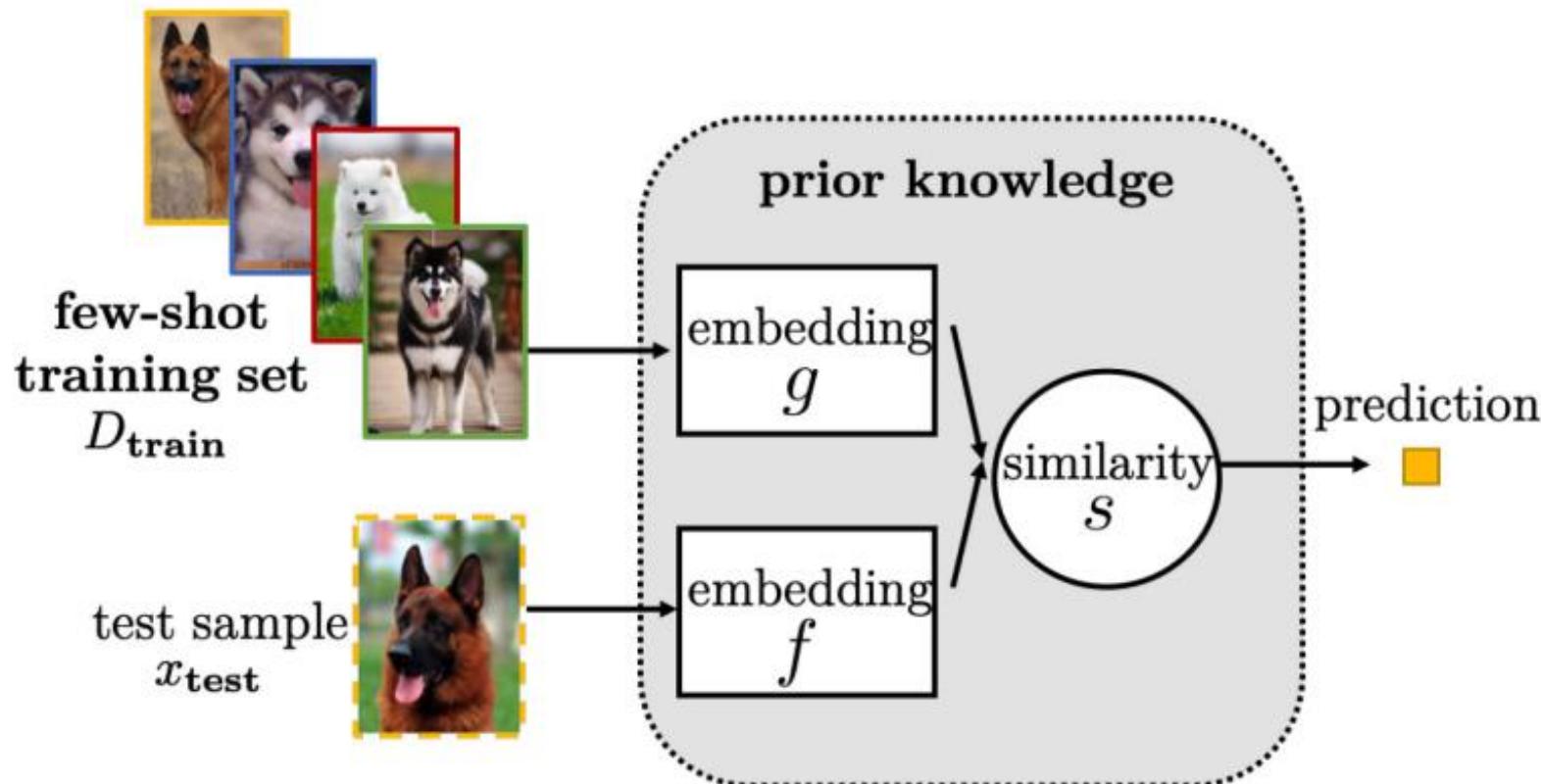


- Instead of words as input, the inputs are $P \times P$ pixel *patches*
- Each patch is embedded linearly into a vector of size 1024
- Uses 1D positional embeddings
- Pre-trained on a large, supervised dataset (e.g., ImageNet 21K, JFT-300M)

IN-CONTEXT LEARNING

Few-shot Learning

- **Definition:** in **few-shot learning** we assume that training data contains a handful (maybe two, three, or four) examples of each label



Few-shot Learning with LLMs

Suppose you have...

- a dataset $D = \{(x_i, y_i)\}_{i=1}^N$ and N is rather small (i.e. few-shot setting)
- a very large (billions of parameters) pre-trained language model

There are two ways to “learn”

Option A: Supervised fine-tuning

- **Definition:** fine-tune the LLM on the training data using...
 - a standard supervised objective
 - backpropagation to compute gradients
 - your favorite optimizer (e.g. Adam)
- **Pro:** fits into the standard ML recipe
- **Pro:** still works if N is large
- **Con:** backpropagation requires $\sim 3x$ the memory and computation time as the forward computation
- **Con:** you might not have access to the model weights at all (e.g. because the model is proprietary)

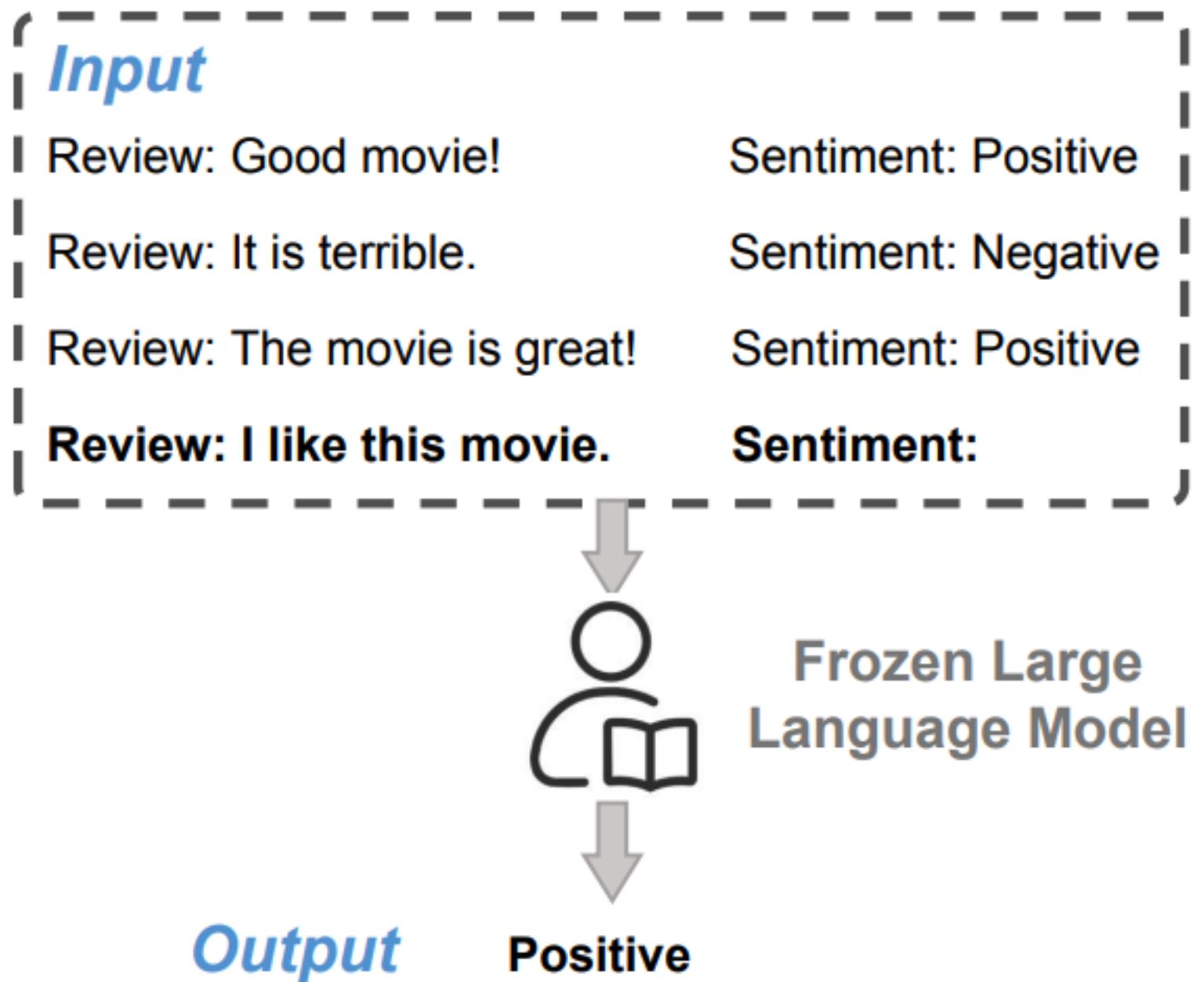
Option B: In-context learning

- **Definition:**
 1. feed training examples to the LLM as a prompt
 2. allow the LLM to infer patterns in the training examples during inference (i.e. decoding)
 3. take the output of the LLM following the prompt as its prediction
- **Con:** the prompt may be very long and Transformer LMs require $O(N^2)$ time/space where N = length of context
- **Pro:** no backpropagation required and only one pass through the training data
- **Pro:** does not require model weights, only API access

This section!

Few-shot In-context Learning

- Few-shot learning can be done via in-context learning
- Typically, a task description is presented first
- Then a sequence of input/output pairs from a training dataset are presented in sequence



Few-shot In-context Learning

- Few-shot learning can be done via in-context learning
- Typically, a task description is presented first
- Then a sequence of input/output pairs from a training dataset are presented in sequence

The three settings we explore for in-context learning

Zero-shot

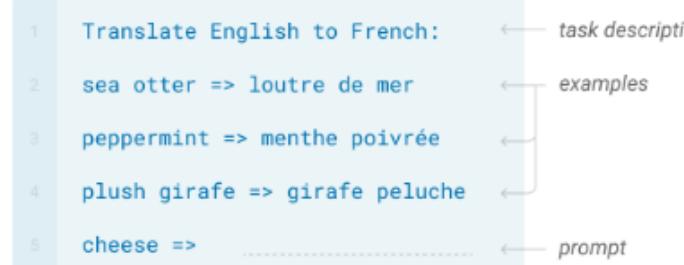
The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

