10-315
Introduction to ML

LLMs:

Word Embeddings &
Attention

Instructor: Pat Virtue

Building up to Large Language Models

N-gram LMs
Word Embedding LMs

" \Vector representation of vocab tokens

= Sampling next token

" Learning better vectors
Transformer LMs

" |ncreasing context size
= Attention

" Tranformer blocks

More Transformers

Word Embedding LMs

Word Embedding Language Models

Vector representation of vocab tokens

the

= Set of vectors for both previous and next token

cat

Sampling next token
= Cosine similarity
= Softmax

= Sample from categorical distribution

Learning better vectors
" Cross-entropy loss

= SGD: looping through pairs of tokens in our corpus

Word (Token) Embeddings

The beginning and the end of LLM networks

Current text Large Language Next text
Model
e.g GPT, Llama, etc <+—— Sampling
| A
Input tokens Next token Probabilty
of each token

in vocab
Word Many layers of Output
—)
Embedding ! transformer/attention blocks ! Embedding ! Softmax
| | |
1 1 1
1 1 1
1 1 1
Embedded Embedded Similarity scores
vector vector for each token

representation representation in vocab

Simple Word Embedc

ing LM

Building a language model wit

h just word embedding layers ©

Current text Really Small Next text

Language
Model <+—— Sampling

Embedded
vector
representation

I A
Input tokens Next token Probabilty
of each token
in vocab
Word Output
—> —
Embedding Embedding Softmax

1
Similarity scores
for each token
in vocab

Simple Word Embedding LM

Setup

Corpus: (Simple) Tokenized Corpus: Vocabulary:

The dog ran. —>JRETNENE—> ['the', 'dog’, 'ran', '.', 'the’, [‘1,

The dog a 'dog , 'ate', '.', 'the', 'dog', L',

The dog ran the Z0O. 'ran', 'the', 'zoo', '.', 'the' 'ate',

The cat ate the dog! 'cat', 'ate', 'the', 'dog', ‘!', 'cat',

The cat ran the =zoo. 'the', 'cat', 'ran', 'the', 'dog'
'ZOO' , | 1] 'ra-n‘

'"the',

Simple Word Embedding LM

Vector representation for each token in vocabulary (initially random)
Two sets of vectors in RM (we'll use M = 2 for better visualization)
I/ to represent previous tokens

U: to represent next tokens

V: U:
I 0.884, 0.196 I -0.044, 1.568
0.358, -2.343 .o 1.051, 0.406
ate: -1.085, 0.560 ate: -0.169, -3.190
cat: 0.939, -0.978 cat: 1.120, 1.333
dog: 0.503, 0.406 dog: -0.243, -0.130
ran: 0.323, -0.493 ran: -0.109, 1.556
the: -0.792, -0.842 the: 0.129, -2.067
zoo: -1.280, 0.246 zoo: -0.885, -1.105

Simple Word Embedding LM

Vector representation for each token in vocabulary (initially random)

I/: Previous

V:

! 0.884, 0.196
0.358, =-2.343

ate: -1.085, 0.560

cat: 0.939, -0.978

dog: 0.503, 0.406

ran: 0.323, -0.493

the: -0.792, -0.842

zoo: -1.280, 0.246

Random initialization

U: Next

U:

I -0.044, 1.568
1.051, 0.406

ate: -0.169, -3.190

cat: 1.120, 1.333

dog: -0.243, -0.130

ran: -0.109, 1.556

the: 0.129, -2.067

zoo: -0.885, -1.105

Simple Word Embedding LM

After training our LM, we'll learn more organized vectors (details later)
Random initialization Epoch 10000

ran

the ran
dog

cat

ate

the

Simple Word Embedding LM

We can use either of these models to generate text, staring with "the dog"

Random vectors Trained vectors

ate

Generated tokens from random and trained models

the dog cat ate ran zoo zoo the dog ate . the dog ! the
zoo dog dog cat cat ate ran . zoo . the dog ran the zoo .
ate . ate ate ! the ate the dog ate the dog !

Outline: Word Embedding LM

the

cat

Sampling next token

= Cosine similarity

= Softmax

= Sample from categorical distribution

Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to
generate a the next token after the previous token 'the’.

/. previous tokens
U: next tokens | |

the

Which token should be our

—e Cat

next token?

Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to
generate a the next token after the previous token 'the’.

/. previous tokens
U: next tokens

the
Which token should be our

next token?

1. Lookup the index i for the
vocab token 'the'

2. Access thei-throwofl/, v

3. Compare v to all vectors
in U

(Unnormalized) Cosine Similarity Metric 13,5]

We've been using Euclidean distance >
= d(uv)=|u—v
(w,v) = [lu—vll; | o
U
—_—]]
. . . . | |
Cosine similarity 3 5
" Two vectors are similar if their dot product is
positive and big
= f(u,v) = u \ u’v
cosf =——=
= (Why cosme?) lull2 vl
= Two vectors are similar if the angle between Cos 0

them is small (small angle = large cos 0)

« fv)=u'v = |l [[i]l, cosd ¢

(Unnormalized) Cosine Similarity Metric

Cosine similarity Desmos demo

https://www.desmos.com/calculator/82m4zkilkc

f(u,v) =ulv

Input:

"eatll

/ §

ll.t

hem

Similarity=0 (s

#"green"-Similarity

https://www.desmos.com/calculator/82m4zkjlkc

Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to
generate a the next token after the previous token 'the’.

/. previous tokens
U: next tokens

the
1. Compute similarity scores

s =Uv

Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to
generate a the next token after the previous token 'the’.
/. previous tokens
U: next tokens

the
1. Compute similarity scores

s=Uv

2. Convert to probabilities
y = gsoftmax(s)

3. Sample from Categorical
distribution defined by y

4. LOOP: next token = prev

Simple Word Embedc

ing LM

Building a language model wit

h just word embedding layers ©

Current text Really Small Next text

Language
Model <+—— Sampling

Embedded
vector
representation

I A
Input tokens Next token Probabilty
of each token
in vocab
Word Output
—> —
Embedding Embedding Softmax

1
Similarity scores
for each token
in vocab

PyTorch for Word Embedding LM

Two matrices of features vectors:
W;: for context
W, for next token

Using PyTorch

WordEmbedLM(
(encode): Linear(in_features=vocab size, out features=2)
(decode): Linear(in_features=2, out features=vocab size)

F.softmax(model.forward(x_onehot))

PyTorch for Word Embedding LM

Two matrices of features vectors:
W;: for context
W, for next token
Using PyTorch torch.nn.Embedding(num _embeddings, embedding dim)
WordEmbedLM(
(encode): Linear(in_features=vocab _size, out features=2)
(decode): Linear(in_features=2, out features=vocab size)

X_1index

F.softmax(model.forward(x_—onetot))

Learning Better Vectors

['the',
Classic ML recipe: 'dog',
'I'EL'[I',

1. Training data '‘cat ',
'the',

'dog' ,
latel 1]
'the',
'ate',
'cat',

IZOOI’ 1 1

2. Hypothesis function
Y = Gsoftmax(UV)
3. Formulate objective
Loss:

Objective: %2? 19w, v) JOW, V)

4. SGD to find parameters that optimize the objective

'ran',

'zoo',
'the',
'ran',

(Simple) Tokenized Corpus:

|.|’ 'the',
'the', 'dog',
|.|’ Ithel,
IdogI’ 1!l’

'"the',

Tranformer LMs

Transformer Language Models

Increasing context size
= Uniform average of context vectors

= Position encoding

Attention

* Weighted average of context vectors
= Query Keys Values

= Expressive power of linear transforms

Transformer blocks

Increasing Context Size

What if we want to have more input tokens?
V: for context
U: for next token

cat
the ran

Z00

ate

the

Increasing Context Size

What if we want to have more input tokens?

Uniform average over T input context tokens

context

the S

\

Position Encoding

What about position within the input context??

cat rfan

Z00

ate

the

Position Encoding

What about position within the input context??
Rotary Position Encoding (RoPE) Desmos Demo
https://www.desmos.com/calculator/88combmfxv

2D version:
Given a fixed base rotation angle 6,

an embedded vector X at integer position,
ipos Will be rotated by angle 6 = i,,.0;:

cosf —sin 9]

X’ — ROtate(X; 9) = [Sing cos @

https://www.desmos.com/calculator/88combmfxv

Attention

Learn to pay attention!

Context: V'
We can do better than uniform combination of input ontext- v
T T
: 1 ,
VvV = 2 ?Vt vV = z atvt
t=1 t=1 a. 1 a,
Context: V' /
Meh. . Want ... ' oy)
Unitoren Aelage Ve 139*6’9 5 hov
@‘P 3 S . b-‘l
el age by some e THO ™ b ¢
\
Context” Foctocs o *}Z\ N
VecTors)
o A2 I
V1 V1 V3 V4 ﬁfa{i’.
19)4
- \
I will not eat I will not eat ,mfbf’]ﬁ

GPT Skeleton

GPT

(Layers of

Attention
Blocks)

I

Embedded context tokens

Better
embedding v’

GPT Skeleton oo

0_05(Context: v’

(Layers of
Attention
Blocks)

I

Embedded context tokens

&

x C
1\\ 00 I I\
9(66\,; 1 eat S
T rHeN ;j;m] (
_ - ____
them | ——
| "=

Fnl 6T
Jinear /@/_E_D

y= YIsoftmax (UV,)

next_idx = argmax?y
J

Embedded words/tokens

MIinGPT Femto

105
2-D embedded .
space -
1 attention layer - ——
1 attention head ~0.51
(think channel) Combined ~1.0
Context: V' B
Input: [‘n_o':tL‘ 'in’, 'a', ‘ho;)se', 2 thot!, ‘v*i./ith', ‘a'l
~ I/
y = gsoftmax(UV)
GPT next_idx = argmaxy

)N |

MIinGPT Femto

2-D embedded space
1 attention layer

1 attention head

(think channel)
Combined

Context: v’

DV

Embedded words/tokens

1.5
1.0 -
0.5 A |
0.0 :
—0.5 1 . <
~1.0 1\ N
—1.51
Input:['n_ol:tl: ho:)se‘, t lt?]
To5 smal I to
} éasn 5009
otfention
Weights
3 (p\ & ? \){96

MinGPT Pico

2-D embedded space

3 attention layer

3 attention heads Combined
(think channels) Context: v

!

Vy

| . —
Input: ['not’, 'in', 'a', 'houss’, .
Vv / V3

Embedded words/tokens

Head 1

Embedded words/tokens

Head 2
1.5 1
In%yéifnot,Wnﬁ'aﬁ‘housey'ﬁfnotﬁ'wnhh'a1
0.5 A
0.0

Embedded words/tokens
Head 3

1:57

1.0

0.5

0.0

—0.5 1

—1.0 -

—1.5 -

t: ['nok’;-"in'; "a’; "houseée’; ".*; *

Otl, 1

MinGPT Pico: Output embedded space - 3 heads

Embedded WordS/tOkenS Embedded WordS/tC)kenS Embedded Words/tokens
Head 1 Head 2 Head 3
157 1.5 1.5
I : 1 l, 1 : A l,)
10+ n;iu(g ['not’,"%in!, 'a’, 'house i
ty Y
0.5 1 0.5 1 0.5
, '"housd
0.0 0.0 0.0
-0.5 -0.5 -0.5
—-1.01 —1.0 A —1.0 1
Input: ['noft', 'in', 'a', 'house’, '., 'npt’
—-1.5 P —-1.51 -1.51

Three \\mds allows Male
coorm 1o Jealn A FLoncr
FeaXuie (Ve sentTaons

MinGPT Pico: Attention Weights — 3 layers, 3 heads

X &7 7
(\e+ Attention (\é‘" (\é"
Head 1 < Head 2 & Head 3 “
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
, , -

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

L ? [SN L % e L 2> VIR S S o S -/ L 2
) N 2)) X) A\ 2) O X) h 2) o X
N (\oo S N v\\O" NN ‘\Oo € &

Learn to pay attention!

context
We can do better than uniform combination of input
T T
vV = 2 lv vV = Z A,V
Tt tVt
t=1 t=1 a,

context

|

I will nhot eat T will not eat

Learn to pay attention!

T context
If only we had a way to measure vector similarity
T
V, — z atVt
Cosine similarity matrix! t=1 a, T,
S=vvrT
I will not eat T T

1 2 3 4

e 1 [
SR
SRR

v1
ange 4 .

Learn to pay attention!

T context
If only we had a way to measure vector similarity
T
V, — z atVt
Cosine similarity matrix! t=1

S=vvt

I will not eat
1 2 3 4

1 [0
: .

: B

: _

Learn to pay attention!

We can do better than uniform combination of input
T

1
?Vt V = ZatVt

t=1 t=1
context

context

I will nhot eat T will

Learn to pay attention!

But...there is an issue with just doing VI/T ®

We're really just comparing input to input
- Symmetric with strong diagonal ®
S=vvT

I will not eat
1 2 3 4

w DN

will not

CO ntex

/

Learn to pay attention!

Instead learn a query vectors q; to
represent the output

I will not eat

1 3 4
» [

S = QVT 2
3
4
X, X, X,

CO ntex

/

softmax

Learn to pay attention!

Instead learn a query vectors q; to
represent the output

(And also k for the input) T will noteat

1

Ss=Qk"/Jd, 2 I B
4 B

will not

CO ntex

/

sofhnax

Learn to pay attention!

Instead learn a query vectors q; to
represent the output

(And also Kk for the input)

Attention:

Query, Key, Value

Q = XWy S =QK"/\dy
K — XWK

V= XW,

	Slide 1: 10-315 Introduction to ML LLMs: Word Embeddings & Attention
	Slide 2: Building up to Large Language Models
	Slide 3: Word Embedding LMs
	Slide 4: Word Embedding Language Models
	Slide 5: Word (Token) Embeddings
	Slide 6: Simple Word Embedding LM
	Slide 7: Simple Word Embedding LM
	Slide 8: Simple Word Embedding LM
	Slide 9: Simple Word Embedding LM
	Slide 10: Simple Word Embedding LM
	Slide 11: Simple Word Embedding LM
	Slide 12: Outline: Word Embedding LM
	Slide 13: Sampling from Word Embeddings
	Slide 15: Sampling from Word Embeddings
	Slide 16: (Unnormalized) Cosine Similarity Metric
	Slide 17: (Unnormalized) Cosine Similarity Metric
	Slide 18: Sampling from Word Embeddings
	Slide 19: Sampling from Word Embeddings
	Slide 20: Simple Word Embedding LM
	Slide 21: PyTorch for Word Embedding LM
	Slide 22: PyTorch for Word Embedding LM
	Slide 23: Learning Better Vectors
	Slide 24: Tranformer LMs
	Slide 25: Transformer Language Models
	Slide 26: Increasing Context Size
	Slide 27: Increasing Context Size
	Slide 28: Position Encoding
	Slide 29: Position Encoding
	Slide 30: Attention
	Slide 31: Learn to pay attention!
	Slide 32: GPT Skeleton
	Slide 33: GPT Skeleton
	Slide 34: MinGPT Femto
	Slide 35: MinGPT Femto
	Slide 36: MinGPT Pico
	Slide 37: MinGPT Pico: Output embedded space - 3 heads
	Slide 38: MinGPT Pico: Attention Weights – 3 layers, 3 heads
	Slide 39: Learn to pay attention!
	Slide 40: Learn to pay attention!
	Slide 41: Learn to pay attention!
	Slide 42: Learn to pay attention!
	Slide 43: Learn to pay attention!
	Slide 44: Learn to pay attention!
	Slide 45: Learn to pay attention!
	Slide 46: Learn to pay attention!

