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Computer Vision

Image in =2 information out



Computer Vision Tasks



Computer Vision Tasks: How far along are we?




Computer Vision Tasks: How far along are we?

Terminator 2, 1991 https://www.youtube.com/watch?v=9MeaaCwBW28



https://www.youtube.com/watch?v=9MeaaCwBW28

Computer Vision Tasks: How far along are we?
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Mask R-CNN



Computer Vision Tasks: How far along are we?

“My CPU is a neural net processor, a learning computer”

Terminator 2, 1991




Computer Vision Tasks: Autonomous Driving

Tesla, Inc: https://vimeo.com/192179726



https://vimeo.com/192179726

Computer Vision Tasks: Autonomous Driving
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https://photos.app.goo.gl/YMEEkcYguCmaKbJa7
https://photos.app.goo.gl/YMEEkcYguCmaKbJa7

Computer Vision: Autonomous Driving



https://photos.app.goo.gl/YMEEkcYguCmaKbJa7
https://photos.app.goo.gl/YMEEkcYguCmaKbJa7

Image-related Tasks: Input/Output

— Image Image classification Category
Image Image detection Bounding box
Image Image segmentation Image: category per pixel

Image Image processing™ Image




Image-related Tasks: Domain Transfer
CycleGAN

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros

-

—

Jun-Yan Zhu*, Taesung Park™*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks", ICCV 2017.



Image-related Tasks : Domain Transfer

Pix2pix
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros
INPUT OUTPUT
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https://affinelayer.com/pixsrv/ and https://phillipi.github.io/pix2pix/



https://affinelayer.com/pixsrv/
https://phillipi.github.io/pix2pix/
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Text to Image
GigaGAN

N

Changing style with prompting. At coarse layers, we use the
prompt "A mansion" to fix the layout. Then at fine layers, we

use "A [modern, Victorian] mansion in [sunny day,

dramatic sunset]". (Youtube link)

Changing texture with prompting. At coarse layers, we use

the prompt "A teddy bear on tabletop" to fix the layout.
with the

denim, fur] on

Then at fine layers, we use "A teddy bear

texture of [fleece, crochet,

tabletop". (Youtube link)

https://mingukkang.github.io/GigaGAN/
Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, Taesung Park. "Scaling

up GANs for Text-to-Image Synthesis", CVPR 2023.


https://mingukkang.github.io/GigaGAN/

Image-related Tasks: Input/Output

Image Image classification Category
Image Image detection Bounding box
Image Image segmentation Image: category per pixel
Image Image processing* Image
—~ g gE€P g g
Image L.
In-painting Image

(portion missing)

Random values Image generation Image

Text Image generation Image
Image Image captioning Text




lmage Features



Image Features

Raw Data




Image Features

Raw Data




Image Features

Raw Data




Image Features

Raw Data




Image Features

Raw Data




Image Features

Raw Data




Image Features

Converting more complex data into a table of numerical values
Task: Face recognition from image
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Image credit: https://arxiv.org/abs/1901.10436



Image Features

But what are the numerical features for e.g. animal classification??

Image: ImageNet



Image Features

Feature engineering
Edge detection convolutions (direction and strength of edges in image patch)

HOG filer: Histogram of gradients (edges)

input mage visualization of HOG features
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Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html



Image Features

Feature engineering
Edge detection convolutions (direction and strength of edges in image patch)

HOG filer: Histogram of gradients (edges)
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Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html



Image Features

Feature learning

Convolutional neural nets

Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html



Image Features

Feature learning

Self-supervised, e.g. autoencoders

Image 2 [ 9 Image
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Deep Learning for Computer Vision

\/Computer vision tasks
\{Image features

EConvolution Channels & CNNs

4. Computer vision history: Deep learning boom

5. CNN architectures & Practical deep learning



CNNs



Deep Learning for Images

What if we just used logistic regression?
i.e., just directly classify the raw pixels




Poll 1

Logistic regression for 28x28=784 pixel hand-written digit images into
10 classes:

How many parameters (including bias terms)?
10

10+784

10*784

. 10*784 + 10

10*784 + 784

| don't know

mmoonOw>



Poll 2

Given a training set of 1000 MNIST digits 0-9, what training accuracy do you
think we can get using just logistic regression?

Value between 0.0 and 1.0.

Input
(28x28)




)

assification: Deep Learning

What if we just used fully connected networks?




)

assification: Deep Learning

What if we just used fully connected networks?

UJ‘)\‘\

< m Lost spatial content after first layer
= Not spatially invariant
" Too many weights to learn




Convolutional Layers

Convolutional layers (vs Fully-connected layers) Z

= Nodes in the input layer are only connected to some nodes
in the next layer but not all nodes.

Shared weight parameters across sliding window locations
% - Many fewer weights than a fully connected layer!

V

Just like fully-connected layers

" Linear operations

= Parameters are weights (the values in conv. kernel) and biases

= Convolution weights are learned using gradient descent/
backpropagation (not hand-crafted)

37



Convolutional Neural Networks

Neural networks are frequently applied to inputs with some inherent spatial
structure, e.g., images

Insight: for spatially-structured inputs, many useful features are shift or
location-invariant

Source: Felzenszwalb, et al. PAMI 2009

38


https://ieeexplore.ieee.org/abstract/document/5255236

Convolutional Neural Networks

Neural networks are frequently applied to inputs with some inherent spatial
structure, e.g., images

Insight: for spatially-structured inputs, many useful features are shift or
location-invariant

R Strategy:
a) Learn a filter for micro-feature detection in a small window and apply

it over the entire image

b) Downsample (shink) resulting feature image(s)
(‘ c) Repeat at future layers to learn increasingly macro features

Slide: Henry Chair, CMU MLD

39



Classification: Learning Features

Feature representation

Output
3rd layer
o - »n
Hidden Layer 3 ObJECtS
Hidden Layer 2 "E'.:-:-:’ ’—. znd Iayer
“Object parts”
TR Ta— 1st layer
' EdgeS”

YYX R

Example from Honglak Lee (NIPS 2010)



Convolutional Neural Networks

Convolution




Convolutional Neural Networks

Pooling

Convolution




Convolutional Neural Networks Warning: Not quite right
—_—

Convolution




Convolutional Neural Networks

Pooling

Convolution




Convolutional Neural Networks

Lenet5 — Lecun, et al, 1998

= Convnets for digit recognition

3 f. maps 16@10x10

INFUT C1: feature maps S4: 1. maps 15@5;..[5
Sha2 B — S2: . maps CS: layer
B@14x14 I— Y Feilayer QUTPUT
| | ' n muaﬂ&n conneclions
Convaolutions Subsampling \ ‘ Cormvalutions Subaamplmj Full mnna:mn
_-H__ -

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11
(1998): 2278-2324.



Question:

How big many convolutional weights between S2 and C3?
= S2: 6 channels @14x14
= Conv: 5x5, pad=0, stride=1
" C3:16 channels @ 10x10

3 f. maps 16@10x10

C1: feature maps
PLIT 6@28x28

=2, f. maps
e@14x14

|

Convolutions Subsampling Comvolutions  Subsampling




Question:

How big many convolutional weights between S2 and C3?
= S2: 6 channels @14x14
= Conv: 5x5, pad=0, stride=1
" C3:16 channels @ 10x10

C3:f. maps 16@10x10

a2 1. maps

B@14x14 | r One image in C3 is actually the result of a 3D convolution
I | ] — [ .

| — Kernel 1:6x5x5 C3 1:1x10x10
Cornvolutions S2: 6x14x14




Question:

How big many convolutional weights between S2 and C3?
= S2: 6 channels @14x14 o
Each image in C3 convolved S2
= Conv: 5)(5’ pad:O’ stride=1 convolved with a different 3D kernel
= C3:16 channels @ 10x10 Kernel 2:6x5x5 C3_2:1x10x10

C3:f. maps 16@10x10

a2. 1. maps

RN |T_
- = =

| — Kernel 1:6x5x5 C3 1:1x10x10
Cornvolutions S2: 6x14x14

\i




Question:

How big many convolutional weights between S2 and C3?

= S2: 6 channels @14x14
The 16 images in C3 are the result of doing 16 3D

= Conv: 5x5, pad=O, stride=1 convolutions of S2 with 16 different 6x5x5 kernels.

Assuming no bias term, this is 16x6x5x5 weights!
" C3:16 channels @ 10x10

C3:f. maps 16@10x10 ‘ |
a2. 1. maps

e |T_
%

| . Kernels:
Cormvolutions S2: 6x14x14 16@6X5X5 C3: 16@ 10x10




Deep Learning for Computer Vision

1. Computer vision tasks

2. Image features

\}/Convolution Channels & CNNs

momputer vision history: Deep learning boom
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Computer Vision History

Deep Learning Boom



CNNs for Image Recognition

A
\

205

357

ILSVRC'15
ResNet

ICCV T

Prresre Cordrern s m Compee foge

[ 7-:.:\.1
(O 10 Rzearcn

Revolution of Depth 2.2
152 layers '

22 layers 19 Iayers ’

\67

ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11 ILSVRC'10
GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

Slide from Kaiming He




What happened in 20127
The challenge. ,

Computer Vision IMJAGENE] . M- Neural Networks
Jitendra Malik Fei-Fei Li llya and Alex Geoff Hinton

WA =

Images: https://www.nytimes.com/2016/09/20/science/computer-vision-tesla-driverless-cars.html
https://www.utoronto.ca/news/google-acquires-u-t-neural-networks-company



Vision / Computer Vision History

LeNet 5, 1998 AlexNet, 2012

Input: 1, 32, 32 Input: 3, 224, 224

nn.Conv2d(out_channels=6, kernel_size=5), nn.Conv2d(channels=96, kernel_size=11, stride=4),
nn.Tanh(), nn.BatchNorm(), nn.RelLU(),

nn.AvgPool2d(kernel _size=2, stride=2), nn.MaxPool2d(kernel _size=3, stride=2),

nn.Conv2d(out_channels=16, kernel size=5), nn.Conv2d(channels=256, kernel_size=5),
nn.Tanh(), nn.BatchNorm(256), nn.RelLU(),

nn.AvgPool2d(kernel _size=2, stride=2) nn.MaxPool2d(kernel _size=3, stride=2),

nn.Conv2d(channels=384, kernel_size=3),

nn.Linear(out_features=120), nn.BatchNorm(384), nn.RelLU(),
nn.Tanh(), nn.Conv2d(channels=384, kernel_size=3),

nn.Linear(out_features=84), nn.BatchNorm(384), nn.RelLU(),
nn.Tanh(), nn.Conv2d(channels=256, kernel_size=3),

nn.Linear(out_features=10) nn.BatchNorm(256), nn.RelLU(),

nn.MaxPool2d(kernel size=3, stride=2),

Network changes (other than bigger, deeper) nn.Dropout(0.5),

= tanh = RelU nn.Linear(channels=4096), nn.ReLU(),

= Avg Pool = Max Pool nn.Dropout(0.5),

= + Batch Normalization (keep values in reasonable range) nn.Linear(channels=4096), nn.ReLU(),

= + Dropout (form of regularization) nn.Linear(channels=1000)




Vision / Computer Vision History

State-of-the-art Classification AlexNet, 2012
Input: 3, 224, 224

Model Top-1 Top-5 nn.Conv2d(channels=96, kernel_size=11, stride=4),
Sparse coding [2] | 47.1% | 28.2% nn.BatchNorm(), nn.ReLU(),
SIFT + FVs [24] 45.7% | 25.7% nn.MaxPool2d(kernel _size=3, stride=2),
CNN 37.5% | 17.0% nn.Conv2d(channels=256, kernel_size=5),
nn.BatchNorm(256), nn.RelLU(),
Table 1: Comparison of results on ILSVRC- nn.MaxPool2d(kernel_size=3, stride=2),
2010 test set. In italics are best results nn.Conv2d(channels=384, kernel_size=3),
achieved by others. nn.BatchNorm(384), nn.RelU(),
nn.Conv2d(channels=384, kernel_size=3),
nn.BatchNorm(384), nn.RelLU(),
nn.Conv2d(channels=256, kernel_size=3),
nn.BatchNorm(256), nn.RelLU(),
nn.MaxPool2d(kernel _size=3, stride=2),
Network changes (other than bigger, deeper) nn.Dropout(0.5),
= tanh = RelU nn.Linear(channels=4096), nn.ReLU(),
= Avg Pool = Max Pool nn.Dropout(0.5),
= + Batch Normalization (keep values in reasonable range) nn.Linear(channels=4096), nn.RelLU(),
= + Dropout (form of regularization) nn.Linear(channels=1000)




2012: AlexNet (+ ImageNet + GPUs) opened doors

Key Revolution of Depth

= Network + Data + Compute 152 layers
Additional innovations (s ][ I
= Deep learning toolkits N B R |
] (Caffe’ Torch) 9 (PyTO rch, Tensorf|OW) IL:;/S&:;S éLOSc\)/gF::Z::t ILS\\;Z(CS'M ILSVRC'13 II;\SI\e/s'(\i'eltZ ILSVRC'11 ILSVRC'10
"Model zoos"
. . = X
= Residual connections (ResNet) \ pr—
= (aka skip connections) F(x) Jrelu .
. . weight layer identi
* Shortcuts for information flow (forward dentiy
Fix)+x
and backward) |
- ~ Figure 2. Residual learning: a building block

Kaiming He, et al, Deep Residual Learning for Image Recognition



2012: AlexNet (+ ImageNet + GPUs) opened doors

Kaiming He, et al, Deep Residual Learning for Image Recognition
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CNN Architectures



Convolutional Neural Networks

Lenet5 — Lecun, et al, 1998

= Convnets for digit recognition

_ 3 f. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 15@5;..[5
99D @2 828

S2. 1. maps 05: layer 76 layer ouTPUT

| FuII cmrllecnﬂn Gausalan connections
Convaolutions Subsampling Comvolutions Su L‘raamplmg Full mnna:mn

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11
(1998): 2278-2324.



Convolutional Neural Networks

Alexnet — Krizhevsky, et al, 2012
= Convnets for image classification

* More data & more compute power

192

13

224 I

27

e 'I i

13

Max
pooling

48

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural

networks." NIPS, 2012.

192
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pooling

2048

dense

2048



2012: AlexNet (+ ImageNet + GPUs) opened doors

Key Revolution of Depth

= Network + Data + Compute 152 ayers
Additional innovations wzz'aversrrwlavers» I I I
= Deep learning toolkits I I ] (e
. (Caffe’ Torch) 9 (PyTorCh, Tensorf|OW) IL:;/S\?;S (ISLOSC\)/gl:le:t ILS\\;Z((I;M ILSVRC'13 Il;flzslg(:tz ILSVRC'11 ILSVRC'10
= "Model zoos"
X

= Residual connections (ResNet)

weight layer
= (aka skip connections) F(x) Trelu .
weight layer identity

= Shortcuts for information flow (forward

and backward) Fx) +x

Figure 2. Residual learning: a building block
Kaiming He, et al, Deep Residual Learning for Image Recognition



2012: AlexNet (+ ImageNet + GPUs) opened doors

Kaiming He, et al, Deep Residual Learning for Image Recognition

output
size: 224

output
size: 112

output
size: 56

output
size: 28

VGG-19

image

\ 4

3x3 conv, 64

<

3x3 conv, 64

pel
Q
1-:%4-

3x3 conv, 128

<€

3x3 conv, 128

34-layer plain

image

<

<€

~
N

o]

o
o

<

7x7 conv, 64, /2

3x3 conv, 256

<= €

<

3x3 conv, 64

3x3 conv, 256

<€

3x3 conv, 64

3x3 conv, 256

<

3x3 conv, 64

3x3 conv, 256

—

pool, /2

<

3x3 conv, 64

3x3 cony, 64

€S €S €S €S €

3x3 cony, 64

<€

3x3 conv, 128, /2

3x3 conv, 512

<

\ 4

3x3 conv, 128

A¥3 conv 5172

\ 4

Av2 conv. 128

34-layer residual

image

\ 4
7x7 conv, 64, /2 |

A

poal, /2

| 3x3 cony, 64

\ 4

| 3x3 cony, 64

I 3x3 cony, 64

\ 4

| 3x3 cony, 64

I 3x3 conv, 64

\ J
I 3x3 conv, 64
Y.
| 3x3conv,128,/2 | T,
L]
v y

I 3x3 conv, 128

-
-
....

Revolution of Depth

152 layers
i
[ 22 layers } l 19 Iayers I
\ 6.7

3 57 l_ X I 8 layers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

weight layer
j—"'[xj lrelu <
weight layer identity
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Practical Deep Learning



Deep learning issues and Fixes

Issues Fixes

* Numerical Stability * Input normalization

= Vanishing/Exploding gradients = Weightinitialization

= Qverfitting = Batch normalization
= Adam

= Exponential moving average
= Momentum
=  RMSprop

Andrew Ng videos on Hyperparameter Tuning!

= Learning rate decay

Optimization
Algorithms

= Skip connections

Adam optimization
algorithm

= Dropout



https://youtube.com/playlist?list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&si=i2lBXNVrBAdgEiYt

CNN Summary



Convolution and Pooling Layers

Maintain spatial context across first layer

= The output of a convolution layer is still an image

= Canrepresent the location of the detected features
Leverage spatially invariance

» The same kernel moves across the image to detect features regardless of where
they are in the image

Fewer weights

= Avoids having to learn specific weights to detect features in many, many
different locations in the image

Downsampling

= Convolution/pooling layers with stride > 1 will reduce the total number of
values going forward, easing the next layer learning



Convolution and Pooling Layers

Hyperparameters

= Kernel size: Defines the K X K (usually square) shape of the kernel/weight
matrix. Note: There will also be a channel dimesion to the kernel

= Qutput channels: Similar to number of neurons in a linear layer, allows different
features to be learned in each output channel. There isone C;,, X K X K kernel
for each output channel, where K is the kernel size and C;,, is the number of
input channels

= Bias term or not: Just like linear layers, we can include a bias term or not. If
including a bias term for a convolutional layer, there is one bias parameter for
each output channel

Parameters

= The contents of every entry in a kernel is a weight parameter. So the total
number of parameters for one 2D convolution layeris C,,; X (Cip X K X K)
plus C,,; bias parameters if those are included.



Convolution and Pooling Layers

Hyperparameters (cont.)

Stride: How much to shift the kernel over while performing the convolution
(usually the same in each direction). A stride of 1 will output and image that is
roughly the same size as the input (see padding), while a stride of 2 will
produce an image that is 2x smaller in both width and height

Padding: Effectively add rows/columns around the input image to deal with

(literal) edge cases better. Often used to keep the exact same size output image
as the input (with stride=1)

Pooling: Average or Max convolutions are just operations to combine pixels and
don't have any parameters. Max pooling is more common over average pooling



Convolution and Pooling Layers

Forward and backward passes

Math: Convolutions are just multiplications and additions with a bunch of for-
loops, just like the matrix multiplication in linear layers. In fact, convolutions are
linear layers; they just apply the linear operations to different combinations of
input values and weights. Thus, the calculus for backpropagation is essentially
the same as a linear layer, just with some reshaping of the data.

Computation: Just like linear layers convolutions and pooling layers have a ton
of embarrassingly parallel multiplication and addition operations across lots of
data. GPUs and more recently TPUs are designed for these operations, making
these hardware components essentially for neural net training



Vision / Computer Vision History

LeNet 5, 1998 AlexNet, 2012

Input: 1, 32, 32 Input: 3, 224, 224

nn.Conv2d(out_channels=6, kernel_size=5), nn.Conv2d(channels=96, kernel_size=11, stride=4),
nn.Tanh(), nn.BatchNorm(), nn.RelLU(),

nn.AvgPool2d(kernel _size=2, stride=2), nn.MaxPool2d(kernel _size=3, stride=2),

nn.Conv2d(out_channels=16, kernel size=5), nn.Conv2d(channels=256, kernel_size=5),
nn.Tanh(), nn.BatchNorm(256), nn.RelLU(),

nn.AvgPool2d(kernel _size=2, stride=2) nn.MaxPool2d(kernel _size=3, stride=2),

nn.Conv2d(channels=384, kernel_size=3),

nn.Linear(out_features=120), nn.BatchNorm(384), nn.RelLU(),
nn.Tanh(), nn.Conv2d(channels=384, kernel_size=3),

nn.Linear(out_features=84), nn.BatchNorm(384), nn.RelLU(),
nn.Tanh(), nn.Conv2d(channels=256, kernel_size=3),

nn.Linear(out_features=10) nn.BatchNorm(256), nn.RelLU(),

nn.MaxPool2d(kernel size=3, stride=2),

Network changes (other than bigger, deeper) nn.Dropout(0.5),

= tanh = RelU nn.Linear(channels=4096), nn.ReLU(),

= Avg Pool = Max Pool nn.Dropout(0.5),

= + Batch Normalization (keep values in reasonable range) nn.Linear(channels=4096), nn.ReLU(),

= + Dropout (form of regularization) nn.Linear(channels=1000)




2012: AlexNet (+ ImageNet + GPUs) opened doors

Key Revolution of Depth

= Network + Data + Compute 152 ayers
Additional innovations wzz'aversrrwlavers» I I I
= Deep learning toolkits I I ] (e
. (Caffe’ Torch) 9 (PyTorCh, Tensorf|OW) IL:;/S\?;S (ISLOSC\)/gl:le:t ILS\\;Z((I;M ILSVRC'13 Il;flzslg(:tz ILSVRC'11 ILSVRC'10
= "Model zoos"
X

= Residual connections (ResNet)

weight layer
= (aka skip connections) F(x) Trelu .
weight layer identity

= Shortcuts for information flow (forward

and backward) Fx) +x

Figure 2. Residual learning: a building block
Kaiming He, et al, Deep Residual Learning for Image Recognition



Additional Slides



Pre-reading

Convolutions and CNNs



Convolutional Neural Networks

Convolution




Convolution




Convolution

o0 @011 11 0 0|0
coo0w@o 1T 1110 00

oo o01j11i1 11 0 0|0

o0 @04 @111 1 000
o0 @0 @111 1 000
oo @041 111 0 0|0
oco¢o0w@om1T1 110 00

oo @041 111 0 (0|0
o0 @011 11 000
ocoo0@o 11110 00




Convolution

O 1O 0|00 |0 |0 0|0 | O
O 1O 0|00 |0 | O 0|0 | O
© O O |00 O 0|0 | O |0
o | v [ | [ [ | [ [ |
o [ [ [ | | | | [ |
o [ [ [ | | | | [ |
o [ [ [ | | | | [ |
-] <] <

O |00 |00 |0 | O O |0 O
o] oy o

© 10O |00 O | O |0 | O |0
<[ = =

© |0 10 |00 |0 | OO0 |0 O




Convolution
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Convolution




Convolution

Signal progoessionog definition

z z xli—u,j—v] wlu,v

U=—00 P=—00

Relaxed definition
" Drop infinity; don’t flip kernel

K-1K-1

xli+u,j+v]-

c
S

wlu,v]




Convolution

Relaxed definition

K—-1 K-1

z[i,j] = 2 zx[i+u,j+v] -wlu, v]
u=0 v=0

for 1 in range(0, im width - K + 1):

for jJj in range(0, im height - K):

im out[1,J] = 0
for u in range (0, K):
for v in range (0, K):

im out[i,j] += im[i+u, J+V]

GPU!!

* kernel[u, V]




Convolution: Padding
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Exercise: Which kernel goes with which output image?

Input K1 K2 K3
1101 -11-21-1 0|0 |-1
2|1 0|2 000 0 |-2

—_
o
-
-
N
-
_
o
N
oO|lo|r|O




Exercise: Which kernel goes with which output image?

Input K1 K2 K3




Convolutional Neural Networks

Convolution
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Convolutional Neural Networks

Pooling

Convolution
-1 0 1
210 2

0 1
2| -1
0 0
2 1
0 0] -1
0|-21|0
-1 0 2
0 1 0




Convolution: Stride=2

25| .25

251 .25

0/ 0/0;2(12}1;]1]0]0/0

0/ 0/0;2(2}1}]1]0]0|0

0/ 0/0;212(12}1}]1]0]0|0

0/ 0/]0}]1}]1]1}]1/]0;0]0

0/ 0/]0}j1}]1}]1}]1/]0;0]0

0/ 0/0;2(2}1}]1]0]0/0
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0/ 0/0;2(12}1}]1]0]0/0
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Stride: Max Pooling

111121 4

max pool with 2x2 filters
516 |7 |8 and stride 2
3121|110
1123 | 4

Stanford CS 231n, Spring 2017




Convolutional Neural Networks

Pooling

Convolution
-1 0 1
210 2

0 1
2| -1
0 0
2 1
0 0] -1
0|-21|0
-1 0 2
0 1 0




Computer Vision History



CNNs for Image Classification

Revolution of Depth

152 layers

22 layers 19 Iayers ’

\67

357 I I

shallow

ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
%ICCV T

Prrerre Codern s m o foge

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10

Research

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

Slide from Kaiming He




Which neural network are they talking about?

From Wikipedia:

V2 receives strong feedforward connections from V1 and sends robust
connections to V3, V4, and V5. Additionally, it plays a crucial role in the
integration and processing of visual information.

The feedforward connections from V1 to V2 contribute to the
hierarchical processing of visual stimuli. V2 neurons build upon the
basic features detected in V1, extracting more complex visual attributes
such as texture, depth, and color. This hierarchical processing is
essential for the construction of a more nuanced and detailed
representation of the visual scene.


https://en.wikipedia.org/wiki/Visual_cortex

Vision / Computer Vision History et

A few highlights ©

= 1782: Documenting the (human) visual cortex e N

Mitchell Glickstein, The Discovery of the Visual Cortex. 1998
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Vision / Computer Vision History

A few highlights ©

= 1782: Documenting the (human) visual cortex
= 1959: V1 (cat) sensitive to edge orientation

Hubel and Wiesel, RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX. 1959



Vision / Computer Vision History
A few highlights ©

= 1782: Documenting the (human) visual cortex

= 1959: V1 (cat) sensitive to edge orientation

M. Li, F. Liu, H. Jiang, Tai Sing Lee, S. Tang, Long-Term Two-Photon Imaging in Awake Macague Monkey. 2017



https://www.cnbc.cmu.edu/~tai/
https://www.cell.com/neuron/fulltext/S0896-6273(17)30051-X
https://www.youtube.com/watch?v=DD1K06ecuy8
https://www.youtube.com/watch?v=DD1K06ecuy8
https://www.youtube.com/watch?v=DD1K06ecuy8

Vision / Computer Vision History

A few highlights ©

= 1782: Documenting the (human) visual cortex
= 1959: V1 (cat) sensitive to edge orientation

= 1986: Canny edge detection

L - LEES COSwOw

5

V.~
L S035007 OPIREY

[ e

John Canny, A Computational Approach To Edge Detection. 1986 5



Vision / Computer Vision History

A few highlights ©
= 1782: Documenting the (human) visual cortex
= 1959: V1 (cat) sensitive to edge orientation

10 output units 1| [— g

fully connected

) 1986 Canny edge deteCtion layer H3 .-~ TR e
= 1989: LeNet (1) CNN b ‘ i e

~ 6000 links

layer H2 7.
12 x 16=192 ,, |
hidden units ~ 40,000 links
k. from 12 kernels
5x5x8

layer H1
12 x 64 = 768

hidden units H

~20,000 links
from 12 kernels

@5)(5

256 input units

LeCun, et al, Backpropagation Applied to Handwritten Zip Code Recognition. 1989



https://direct.mit.edu/neco/article/1/4/541/5515/Backpropagation-Applied-to-Handwritten-Zip-Code

Vision / Computer Vision History

A few highlights ©

= 1782: Documenting the (human) visual cortex

= 1959: V1 (cat) sensitive to edge orientation

= 1986: Canny edge detection
= 1994: MNIST Database

https://en.wikipedia.org/wiki/MNIST database
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https://en.wikipedia.org/wiki/MNIST_database

Vision / Computer Vision History

A few highlights ©
= 1782: Documenting the (human) visual cortex
= 1959: V1 (cat) sensitive to edge orientation

= 1986: Canny edge detection t,’..E-.-.
= 1996: Learning convolutional filters from |

natural images =========

N B N O (A Y SR (@ =

N MZZIM N

ENPERMEEDR
~ 5
RS SN N R

Olshausen & Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. 1996



https://www.nature.com/articles/381607a0

Vision / Computer Vision History

A few highlights ©

= 1782: Documenting the (human) visual cortex
= 1959: V1 (cat) sensitive to edge orientation

= 1986: Canny edge detection

= 1998: LeNet-5 CNN -2 state-of-the-art digit classification

C3:f. maps 16@10x10

C1: feature maps 34: 1. maps 16@5x5
INPUT 6@28x28 e iee
S2: f. maps

32x32
6@14x1

CS. layer rg. jayer OUTPUT
120 YR AT

|
‘ ‘ Full conrluection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun, Bengio, Haffner, Gradient-Based Learning Applied to Document Recognition. 1995



Vision / Computer Vision History

A few highlights ©

= 1782: Documenting the (human) visual cortex

= 1959: V1 (cat) sensitive to edge orientation

= 1986: Canny edge detection

= 1998: LeNet-5 CNN - state-of-the-art digit classification

= 1998-2012: Lots of edge detection

= 2012: AlexNet CNN —> state-of-the-art ImageNet classification

Alex Krizhevsky, Illya Sutskever, Geoff Hinton, ImageNet Classification with Deep Convolutional Neural Networks. 2012



nat happened in 20127

ICCV T

Prrerre Codern s m o foge

Research

Revolution of Depth 2.2
152 layers :

[ 22 layers 19 Iayers ’

\67

357 I I

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

shallow

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

Slide from Kaiming He




Computer Vision 1998-2012

HoG: Histogram of oriented gradients

-
s'
1
$ 3
!
¥
-
1
~

[Dalal and Triggs, 2005]



Computer Vision 1998-2012

HoG: Histogram of oriented gradients

[Dalal and Triggs, 2005]



Image Classification

HOG features passed to a linear classifier (logistic regression / SVM)
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