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Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

 Pat Virtue

# Marie Curie

# Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in
the new answer:

Select One: Who taught this course?

 Pat Virtue

# Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

□ I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and
bubble in the new answer(s):

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully
included in the given space. You may cross out answers or parts of answers, but the final
answer must still be within the given space.

Fill in the blank: What is the course number?

10-315 10-��SS7315
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1 Optimization

1. Select all that apply: Which of the following are correct regarding Gradient Descent
(GD) and stochastic gradient descent (SGD)

2 Each update step in SGD pushes the parameter vector closer to the parameter
vector that minimizes the objective function.

2 The gradient computed in SGD is, in expectation, equal to the gradient com-
puted in GD.

2 The gradient computed in GD has a higher variance than that computed in
SGD, which is why in practice SGD converges faster in time than GD.

B.

A is incorrect, SGD updates are high in variance and may not go in the direction of the
true gradient. C is incorrect, for the same reason. D is incorrect since they can converge
if the function is convex, not just strongly convex.

2. (a) Determine if the following 1-D functions are convex. Assume that the domain of
each function is R. The definition of a convex function is as follows:

f(x) is convex ⇐⇒ f(αx+(1−α)z) ≤ αf(x)+(1−α)f(z),∀α ∈ [0, 1] and ∀x, z.

Select all convex functions:

2 f(x) = x+ b for any b ∈ R

2 f(x) = c2x for any c ∈ R

2 f(x) = ax2 + b for any a ∈ R and any b ∈ R

2 f(x) = 0

2 None of the Above

f(x) = x+ b for any b ∈ R, f(x) = c2x for any c ∈ R, f(x) = 0.

(b) Consider the convex function f(z) = z2. Let α be our learning rate in gradient
descent.

For which values of α will limt→∞ f(z(t)) = 0, assuming the initial value of z is
z(0) = 1 and z(t) is the value of z after the t-th iteration of gradient descent.

Select all that apply:

2 α = 0

2 α = 1
2

2 α = 1

2 α = 2
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2 None of the Above

α = 1
2

Give the range of all values for α ≥ 0 such that limt→∞ f(z(t)) = 0, assuming the
initial value of z is z(0) = 1. Be specific.

(0, 1).



10-315 Machine Learning Exam 2 Practice Problems - Page 5 of 42

2 Logistic Regression

1. [2 pts] If today I want to predict the probability that a student sleep more than 8 hours
on average (SA) given the Course loading (C), I will choose to use linear regression over
logistic regression.

Circle one: True False

False.

2. Answer the following questions with brief explanations where necessary.

a) [2 pts] A generalization of logistic regression to a multiclass settings involves ex-

pressing the per-class probabilities P (y = c|x) as the softmax function exp(wT
c x)∑

d∈C exp(wT
d x)

,

where c is some class from the set of all classes C.

Consider a 2-class problem (labels 0 or 1). Rewrite the above expression for this
situation, to end up with expressions for P (Y = 1|x) and P (Y = 0|x) that we have
already come across in class for binary logistic regression.

P (y = 1|x) = exp(wT
1 x)

exp(wT
0 x)+exp(wT

1 x)
= exp((w1−w0)T x)

1+exp((w1−w0)T x)
= exp(wT x)

1+exp(wT x)
= p

Therefore, 1− p = 1
1+exp(wT x)

b) [3 pts] Given 3 data points (1, 1), (1, 0), (0, 0) with labels 0, 1, 0 respectively. Con-
sider 2 models, Model 1: σ(w1x1 + w2x2), Model 2: σ(w0 + w1x1 + w2x2) (σ(z) is
the sigmoid function 1

1+e−z ) that compute p(y = 1|x). Using the given data, we can
learn parameters ŵ by maximizing the conditional log-likelihood.

Suppose we switched (0, 0) to label 1 instead.

Do the parameters learnt for Model 1 change?

Circle one: True False
One-line explanation:

False. The parameters learnt for Model 1 don’t change because w1x1 + w2x2 = 0
for (0, 0). Hence p = 0.5 irrespective of the labels or the values of w.

What about Model 2?

Circle one: True False
One-line explanation:

True. This model has a bias term which remains non-zero for (0, 0), and can thus
change the model depending on the label assigned.

c) [2 pts] For logistic regression, we need to resort to iterative methods such as
gradient descent to compute the ŵ that maximizes the conditional log likelihood.
Why?

There is no closed-form solution.
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d) [3 pts] Considering a Gaussian prior, write out the MAP objective function J(w)MAP

in terms of the MLE objective J(w)MLE. Name the variant of logistic regression
this results in.

JMAP (w) = JMLE(w)− λ∥w∥22. This is L2 regularized logistic regression.

3. Given a training set {(xi, yi), i = 1, . . . , n} where xi ∈ Rd is a feature vector and yi ∈
{0, 1} is a binary label, we want to find the parameters ŵ that maximize the likelihood
for the training set, assuming a parametric model of the form

p(y = 1|x;w) = 1

1 + exp(−wTx)
.

The conditional log likelihood of the training set is

ℓ(w) =
n∑

i=1

yi log p(yi, |xi;w) + (1− yi) log(1− p(yi, |xi;w)),

and the gradient is

∇ℓ(w) =
n∑

i=1

(yi − p(yi|xi;w))xi.

a) [5 pts.] Is it possible to get a closed form for the parameters ŵ that maximize the
conditional log likelihood? How would you compute ŵ in practice?

There is no closed form expression for maximizing the conditional log likelihood.
One has to consider iterative optimization methods, such as gradient descent, to
compute ŵ.

b) [5 pts.] For a binary logistic regression model, we predict y = 1, when p(y = 1|x) ≥
0.5. Show that this is a linear classifier.

Using the parametric form for p(y = 1|x):

p(y = 1|x) ≥ 1

2
=⇒ 1

1 + exp(−wTx)
≥ 1

2

=⇒ 1 + exp(−wTx) ≤ 2

=⇒ exp(−wTx) ≤ 1

=⇒ −wTx ≤ 0

=⇒ wTx ≥ 0,

so we predict ŷ = 1 if wTx ≥ 0.

c) Consider the case with binary features, i.e, x ∈ {0, 1}d ⊂ Rd, where feature x1 is
rare and happens to appear in the training set with only label 1. What is ŵ1? Is the
gradient ever zero for any finite w? Why is it important to include a regularization
term to control the norm of ŵ?
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If a binary feature fired for only label 1 in the training set then, by maximizing
the conditional log likelihood, we will make the weight associated to that feature
be infinite. This is because, when this feature is observed in the training set, we
will want to predict predict 1 irrespective of everything else. This is an undesired
behaviour from the point of view of generalization performance, as most likely we
do not believe this rare feature to have that much information about class 1. Most
likely, it is spurious co-occurrence. Controlling the norm of the weight vector will
prevent these pathological cases.

4. Given the following dataset, D, and a fixed parameter vector, θ, write an expression for
the binary logistic regression conditional likelihood.

D = {(x(1), y(1) = 0), (x(2), y(2) = 0), (x(3), y(3) = 1), (x(4), y(4) = 1)}

• Write your answer in terms of θ, x(1), x(2), x(3), and x(4).

• Do not include y(1), y(2), y(3), or y(4) in your answer.

• Don’t try to simplify your expression.

Conditional likelihood:

(
1− 1

1+e−θT x1

)(
1− 1

1+e−θT x2

)
1

1+e−θT x3
1

1+e−θT x4

5. Write an expression for the decision boundary of binary logistic regression with a bias
term for two-dimensional input features x1 ∈ R and x2 ∈ R and parameters b (the
intercept parameter), w1, and w2. Assume that the decision boundary occurs when
P (Y = 1 | x, b, w1, w2) = P (Y = 0 | x, b, w1, w2).

(a) Write your answer in terms of x1, x2, b, w1, and w2.

Decision boundary equation:

(b) What is the geometric shape defined by this equation?

(a) 0 = b+ w1x1 + w2x2 (b) A line.

6. We have now feature engineered the two-dimensional input, x1 ∈ R and x2 ∈ R, mapping

it to a new input vector: x =

 1
x1

2

x2
2
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(a) Write an expression for the decision boundary of binary logistic regression with this
feature vector x and the corresponding parameter vector θ = [b, w1, w2]

T . Assume
that the decision boundary occurs when P (Y = 1 | x,θ) = P (Y = 0 | x,θ). Write
your answer in terms of x1, x2, b, w1, and w2.

Decision boundary expression:

(b) What is the geometric shape defined by this equation?

(c) If we add an L2 regularization on [w1, w2]
T , what happens to parameters as we

increase the λ that scales this regularization term?

(d) If we add an L2 regularization on [w1, w2]
T , what happens to the decision bound-

ary shape as we increase the λ that scales this regularization term?

(a) 0 = b+w1x
2
1+w2x

2
2 (b) An ellipse. Probably decent partial credit for circle. (c) The

magnitude of the parameters will decrease. (d) The parameters shrink, so the ellipse
will get bigger.
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3 Feature Engineering and Regularization

1. Model Complexity: In this question we will consider the effect of increasing the
model complexity, while keeping the size of the training set fixed. To be concrete, con-
sider a classification task on the real line R with distribution D and target function
c∗ : R→ {±1} and suppose we have a random sample S of size n drawn iid from D. For
each degree d, let ϕd be the feature map given by ϕd(x) = (1, x, x2, . . . , xd) that maps
points on the real line to (d+ 1)-dimensional space.

Now consider the learning algorithm that first applies the feature map ϕd to all the
training examples and then runs logistic regression as in the previous question. A new
example is classified by first applying the feature map ϕd and then using the learned
classifier.

a) [4 pts.] For a given dataset S, is it possible for the training error to increase when
we increase the degree d of the feature map? Please explain your answer in 1
to 2 sentences. No. Every linear separator using the feature map ϕd can also be
expressed using the feature map ϕd+1, since we are only adding new features. It
follows that the training error must decrease for any given sample S.

b) [4 pts.] Briefly explain in 1 to 2 sentences why the true error first drops and then
increases as we increase the degree d. When the dimension d is small, the true error
is high because it is not possible to the target function is not well approximated
by any linear separator in the ϕd feature space. As we increase d, our ability to
approximate c∗ improves, so the true error drops. But, as we continue to increase
d, we begin to overfit the data and the true error increases again.
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4 Neural Networks

Figure 1: neural network

1. Consider the neural network architecture shown above for a 2-class (0, 1) classification
problem. The values for weights and biases are shown in the figure. We define:

a1 = w11x1 + b11

a2 = w12x1 + b12

a3 = w21z1 + w22z2 + b21

z1 = relu(a1)

z2 = relu(a2)

z3 = σ(a3), σ(x) =
1

1+e−x

Use this information to answer the questions that follow.

(i) [6 pts] For x1 = 0.3, compute z3, in terms of e. Show all work.
z3 =

z3 =
1

1+e−0.15

(ii) [2 pts] To which class does the network predict the given data point (x1 = 0.3),
i.e., ŷ =? Note that ŷ = 1 if z3 >

1
2
, else ŷ = 0.

Circle one: 0 1

ŷ(x1 = 0.3) = 1
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(iii) [6 pts] Perform backpropagation on the bias b21 by deriving the expression for
the gradient of the loss function L(y, z3) with respect to the bias term b21,

∂L
∂b21

, in

terms of the partial derivatives ∂α
∂β
, where α and β can be any of L, zi, ai, bij, wij, x1

for all valid values of i, j. Your backpropagation algorithm should be as explicit
as possible—that is, make sure each partial derivative ∂α

∂β
cannot be decomposed

further into simpler partial derivatives. Do not evaluate the partial derivatives.

∂L
∂b21

= ∂L
∂z3

∂z3
∂a3

∂a3
∂b21

(iv) [6 pts] Perform backpropagation on the bias b12 by deriving the expression for
the gradient of the loss function L(y, z3) with respect to the bias term b12,

∂L
∂b12

, in

terms of the partial derivatives ∂α
∂β
, where α and β can be any of L, zi, ai, bij, wij, x1

for all valid values of i, j. Your backpropagation algorithm should be as explicit
as possible—that is, make sure each partial derivative ∂α

∂β
cannot be decomposed

further into simpler partial derivatives. Do not evaluate the partial derivatives.

∂L
∂b12

= ∂L
∂z3

∂z3
∂a3

∂a3
∂z2

∂z2
∂a2

∂a2
∂b12

2. In this problem we will use a neural network to classify the crosses (×) from the circles (◦)
in the simple dataset shown in Figure 2a. Even though the crosses and circles are not
linearly separable, we can break the examples into three groups, S1, S2, and S3 (shown
in Figure 2a) so that S1 is linearly separable from S2 and S2 is linearly separable from
S3. We will exploit this fact to design weights for the neural network shown in Figure 2b
in order to correctly classify this training set. For all nodes, we will use the threshold
activation function

ϕ(z) =

{
1 z > 0
0 z ≤ 0.
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(a) The dataset with groups S1, S2, and S3.

y
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(b) The neural network architecture

Figure 2

0 1 2 3 4 5
0

1

2

3

4

5

x1

x
2

(a) Set S2 and S3
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(b) Set S1 and S2
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(c) Set S1, S2 and S3

Figure 3: NN classification.

(i) First we will set the parameters w11, w12 and b1 of the neuron labeled h1 so that its
output h1(x) = ϕ(w11x1 +w12x2 + b1) forms a linear separator between the sets S2

and S3.

(a) [1 pt.] On Fig 3a, draw a linear decision boundary that separates S2 and S3.

(b) [1 pt.] Write down the corresponding weights w11, w12, and b1 so that h1(x) = 0
for all points in S3 and h1(x) = 1 for all points in S2. One solution would suffice
and the same applies to (ii) and (iii).

w11 = −1, w12 = 0, b1 = 3

(ii) Next we set the parameters w21, w22 and b2 of the neuron labeled h2 so that its
output h2(x) = ϕ(w21x1 +w22x2 + b2) forms a linear separator between the sets S1

and S2.

(a) [1 pt.] On Fig 3b, draw a linear decision boundary that separates S1 and S2.
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(b) [1 pt.] Write down the corresponding weights w21, w22, and b2 so that h2(x) = 0
for all points in S1 and h2(x) = 1 for all points in S2.

w21 = 3, w22 = 1, b2 = −7

(iii) Now we have two classifiers h1 (to classify S2 from S3) and h2 (to classify S1 from
S2). We will set the weights of the final neuron of the neural network based on
the results from h1 and h2 to classify the crosses from the circles. Let h3(x) =
ϕ
(
w31h1(x) + w32h2(x) + b3

)
.

(a) [1 pt.] Compute w31, w32, b3 such that h3(x) correctly classifies the entire
dataset. w31 = 1, w32 = 1, b3 = −1.5

(b) [1 pt.] Draw your decision boundary in Fig 3c.

(iv) Back propagation
In the above example, we need to learn the weights by according to the data. At
first step, we need to get the gradients of the parameters of neural networks.

Suppose there m data points xi with label yi, where i ∈ [1,m]. xi is a d× 1 vector
and yi ∈ {0, 1}. We use the data to train a neural network with one hidden layer:

h(x) =σ(W1x+ b1)

p(x) =σ(W2h(x) + b2),

where σ(x) = 1
1+exp(−x)

is the sigmoid function, W1 is a n by d matrix and b1 is a n
by 1 vector, W2 is a 1 by n matrix and b1 is a 1 by 1 vector.

We use cross entropy loss function and minimize the negative log likelihood to train
the neural network:

l =
1

m

∑
i

li =
1

m

∑
i

−(yi log pi + (1− yi) log(1− pi)),

where pi = p(xi), hi = h(xi).

(a) Describe how you would drive the gradients w.r.t the parameters W1,W2 and
b1, b2. (No need to write out the detailed mathematical expression.) Use chain
rule.

(b) When m is large, we typically use a small sample of all the data set to estimate
the gradient, this is call stochastic gradient descent (SGD). Explain why we
use SGD instead of gradient descent.
SGD converges faster than gradient descent.

(c) Work out the following gradient: ∂l
∂pi

, ∂l
∂W2

, ∂l
∂b2

, ∂l
∂hi

, ∂l
∂W1

, ∂l
∂b1

. When deriving the
gradient w.r.t. the parameters in lower layers, you can may assume the gradient
in upper layers are available to you (i.e., you can use them in your equation).
For example, when calculating ∂l

∂W1
, you can assume ∂l

∂pi
, ∂l
∂W2

, ∂l
∂b2

, ∂l
∂hi

are known.
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∂l

∂pi
=

1

m
(−yi

pi
+

1− yi
1− pi

)

∂l

∂W2

=
1

m

∑
i

∂li
∂pi

∂pi
∂W2

=
1

m

∑
i

∂li
∂pi

pi(1− pi)h
T
i

∂l

∂b2
=

1

m

∑
i

∂li
∂pi

pi(1− pi)

∂l

∂hi

=
∂l

∂pi

∂pi
∂hi

=
∂l

∂pi
pi(1− pi)W

T
2

∂l

∂W1

=
1

m

∑
i

∂li
∂hi

∂hi

∂W1

=
1

m

∑
i

[
∂li
∂hi

◦ hi ◦ (1− hi)

]
xT
i

∂l

∂b1
=

1

m

∑
i

∂li
∂hi

∂hi

∂b1
=

1

m

∑
i

∂li
∂hi

◦ hi ◦ (1− hi)

3. Consider the following neural network for a 2-D input, x1 ∈ R and x2 ∈ R where:

Figure 4: Neural Network

• All g functions are the same arbitrary non-linear activation function with no pa-
rameters

• ℓ(y, ŷ) is an arbitrary loss function with no parameters, and:

z1 = wAx1 + wBx2 a1 = g(z1)

z2 = wCa1 a2 = g(z2)

z3 = wDa1 a3 = g(z3)

z4 = wEa2 + wFa3 ŷ = g(z4)

Note: There are no bias terms in this network.

(a) What is the chain of partial derivatives needed to calculate the derivative ∂ℓ
∂wE

?

Your answer should be in the form: ∂ℓ
∂wE

= ∂?
∂?

∂?
∂?

. . . Make sure each partial derivative
∂?
∂?

in your answer cannot be decomposed further into simpler partial derivatives.
Do not evaluate the derivatives. Be sure to specify the correct subscripts in
your answer.

∂ℓ
∂wE

=
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∂ℓ
∂wE

= ∂ℓ
∂ŷ

∂ŷ
∂z4

∂z4
∂wE

(b) The network diagram from above is repeated here for convenience: What is the

Figure 5: Neural Network

chain of partial deriviatives needed to calculate the derivative ∂ℓ
∂wC

?
Your answer should be in the form:

∂ℓ

∂wC

=
∂?

∂?

∂?

∂?
...

Make sure each partial derivative ∂?
∂?

in your answer cannot be decomposed further
into simpler partial derivatives. Do not evaluate the derivatives. Be sure to
specify the correct superscripts in your answer.

∂ℓ
∂wC

=

∂ℓ
∂wC

= ∂ℓ
∂ŷ

∂ŷ
∂z4

∂z4
∂a2

∂a2
∂z2

∂z2
∂wC

(c) The gradient descent update step for weight wc is:

wc ← wc − α
∂Q

∂t
=

∂s

∂t

where α (alpha) is the learning rate (step size).
Now, we want to change our neural network objective function to add an L2 regu-
larization term on the weights. The new objective is:

ℓ(y, ŷ) + λ
1

2
∥w∥22

where λ (lambda) is the regularization hyperparamter and w is all of the weights
in the neural network stacked into a single vector, x = [wA, wB, wC , wD, wE, wF ]

T .
Write the right-hand side of the new gradient descent update step for weight wC

given this new objective function. You may use ∂ℓ
∂wC

in your answer.

Update: wC ← ...



10-315 Machine Learning Exam 2 Practice Problems - Page 16 of 42

Update for wC : wC ← wC − α
(

∂ℓ
∂wC

+ λwC

)



10-315 Machine Learning Exam 2 Practice Problems - Page 17 of 42

5 MLE/MAP

1. Please circle True or False for the following questions, providing brief explanations to
support your answer.

(i) [2 pts] Consider the linear regression model y = wTx+ ϵ. Assuming ϵ ∼ N (0, σ2)
and maximizing the conditional log-likelihood is equivalent to minimizing the sum
of squared errors ∥y − wTx∥22.

Circle one: True False
One line justification (only if False):

True. The squared error term comes from the squared term in the Gaussian distri-
bution.

(ii) [4 pts] Consider n data points, each with one feature xi and an output yi. In linear
regression, we assume yi ∼ N (wxi, σ

2) and compute ŵ through MLE.

Suppose yi ∼ N (log(wxi), 1) instead. Then the maximum likelihood estimate ŵ is
the solution to the following equality:

n∑
i=1

xiyi =
n∑

i=1

xi log(wxi)

Circle one: True False
Brief explanation:

False. The likelihood function can be written as

n∏
i=1

exp(−(yi − log(wxi))
2/2)√

2π
=

exp(−
∑n

i=1(yi − log(wxi))
2/2)√

2π

Differentiating wrt w and setting to zero gives us

n∑
i=1

2(yi − log(wxi))
xi

wxi

= 0 =⇒
n∑

i=1

yi =
n∑

i=1

log(wxi)

2. Select all that apply: Which of the following are correct regarding Gradient Descent
(GD). Assume data log-likelihood is L(θ|X), which is a function of the parameter θ, and
the objective function is negative log-likelihood .

2 GD requires that L(θ|X) is concave with re sp ect to parameter θ in order to
converge
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2 GD requires that L(θ|X) is convex with re sp ect to parameter θ in order to
converge

2 GD update rule is θ ← θ − α∇θL(θ|X)

2 Given a fixed small learning rate (say α = 10−10), GD will always reach the
optimum after infinite iterations (assume that the objective function satisfies
the convergence condition).

A

Analysis: C should replace minus with plus. D is wrong because it is possible that θ
will jump around the minimum and never reach the optimum even though α is (finitely)
small.

3. Let X1, X2, ..., XN be i.i.d. data from a uniform distribution over a diamond-shaped
area with edge length

√
2θ in R2, where θ ∈ R+ (see Figure 6). Thus, Xi ∈ R2 and the

distribution is

p(x|θ) =
{

1
2θ2

if ∥x∥ ≤ θ
0 otherwise

where ∥x∥ = |x1|+ |x2| is L1 norm. Please find the maximum likelihood estimator of θ.

Figure 6: Area of ∥x∥ ≤ θ

Analysis:

The likelihood function is

L(X1, X2, ..., XN ; θ) =
1

(2θ2)N
1

{
max
1≤i≤N

∥Xi∥ ≤ θ

}
To maximize likelihood, we want θ to be as small as possible with the constraint of
max
1≤i≤N

∥Xi∥ ≤ θ, otherwise the likelihood drops to 0. So the MLE of θ is

θ̂ = max
1≤i≤N

∥Xi∥

4. Short answer: Suppose we want to model a 1-dimensional dataset of N real valued
features

(
x(i)

)
and targets

(
y(i)

)
by:

y(i) ∼ N
(
exp(wx(i)), 1

)
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Where w is our unknown (scalar) parameter and N is the normal distribution with
probability density function:

f(a)N (µ,σ2) =
1√
2πσ2

exp

(
−(a− µ)2

2σ2

)
Can the maximum conditional negative log likelihood estimator of w be solved analyti-
cally? If so, find the expression for wMLE. If not, say so and write down the update rule
for w in gradient descent.

Cannot be found analytically.

Taking the derivative of the negative log likelihood with respect to w yields:

∂NLL

∂w
=

N∑
i

−x(i)y(i) exp(wx(i)) + x(i) exp(2wx(i))

Update rule is thus

w ← w − η
∂NLL

∂w

5. Assume we have n iid random variables xi, i ∈ [1, n] such that each xi belongs to a
normal distribution with mean µ and variance σ2.

p(x1, x2, ..., xn|µ, σ2) =
n∏

i=1

1√
2πσ

exp
{−(xi − µ)2

2σ2

}
a) Write the log likelihood function l(x1, x2...xn|µ, σ2)

log(
n∏

i=1

1√
2πσ

exp
{−(xi − µ)2

2σ2

}
) =

n∑
i=1

[log(
1√
2πσ

)− (xi − µ)2

2σ2
] (1)

= −n log(
√
2πσ)− 1

2σ2

n∑
i=1

(xi − µ)2 (2)

b) Derive an expression for the Maximum Likelihood Estimate for the variance (σ2)

We can find the estimator by solving ∇σl(x1, x2...xn|µ, σ2) = 0.

− n
1√
2πσ

√
2π +

1

σ3

n∑
i=1

(xi − µ)2 = 0 (3)

1

σ3

n∑
i=1

(xi − µ)2 =
n

σ
(4)

1

n

n∑
i=1

(xi − µ)2 = σ2 (5)
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6. Assume we have a random variable that is Bernoulli distributedX1, . . . , Xn ∼ Bernoulli(θ).
We are going to derive its MLE. Recall that in a Bernoulli X = {0, 1} and the pdf of a
Bernoulli is

p(X; θ) = θx(1− θ)1−x

a) Derive the likelihood, L(θ;X1, . . . , Xn)

L(θ;X1, . . . , Xn) =
∏n

i=1 p(Xi; θ)
L(θ;X1, . . . , Xn) =

∏n
i=1 θ

xi(1− θ)1−xi

L(θ;X1, . . . , Xn) = θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi

Either of the final two steps are acceptable.

b) Derive the following formula for the log likelihood

l(θ;X1, . . . , Xn) = (
n∑

i=1

Xi) log(θ) + (n−
n∑

i=1

Xi) log(1− θ)

l(θ;X1, . . . , Xn) = logL(θ;X1, . . . , Xn)

l(θ;X1, . . . , Xn) = log
[
θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi

]
l(θ;X1, . . . , Xn) = (

∑n
i=1 xi) log(θ) + (n−

∑n
i=1 xi) log(1− θ)

c) Derive the MLE, θ̂, and show that θ̂ =
1

n
(
∑n

i=1Xi)

Take the derivative of the log likelihood and set it to zero
dl

dθ
=

d

dθ

[
(
∑n

i=1 xi) log(θ) + (n−
∑n

i=1 xi) log(1− θ)
]
= 0∑n

i=1 xi

θ
− n−

∑n
i=1 xi

1− θ
= 0(∑n

i=1 xi

)
(1− θ)−

(
n−

∑n
i=1 xi

)
θ = 0∑n

i=1 xi − nθ = 0

θ̂ =
1

n
(
∑n

i=1Xi)

7. Assume we have a random sample that is Bernoulli distributedX1, . . . , Xn ∼ Exponential(θ).
We are going to derive the MLE for θ. Recall that a exponential random variable X has
p.d.f:

P (X; θ) = θ exp(−θX).

a) Derive the likelihood, L(θ;X1, . . . , Xn).

L(θ;X1, . . . , Xn) =
∏n

i=1 p(Xi; θ)
L(θ;X1, . . . , Xn) =

∏n
i=1 θ exp

−θxi

b) Find θ that maximizes L(θ;X1, . . . , Xn).

l(θ;X1, . . . , Xn) = logL(θ;X1, . . . , Xn)

l(θ;X1, . . . , Xn) = log
[∏n

i=1 θ exp
−θxi

]



10-315 Machine Learning Exam 2 Practice Problems - Page 21 of 42

l(θ;X1, . . . , Xn) =
∑n

i=1 log(θ) +
∑n

i=1−θxi

dl

dθ
=

d

dθ

[∑n
i=1 log(θ) +

∑n
i=1−θxi

]
= 0∑n

i=1
1
θ
−

∑n
i=1 xi = 0

θ =
n∑n
i=1 xi

8. For each question state True or False and give one line justifications.

a) T or F The value of the Maximum Likelihood Estimate (MLE) is equal to the
value of the Maximum A Posteriori (MAP) Estimate with a uniform prior.

True. Since we know posterior is proportional to the product of likelihood and
prior, i.e.,

p(θ|x) ∝ p(x|θ)p(θ). (6)

Since uniform prior gives us constant value on p(θ), after proper normalization, we
know likelihood and posterior are the same, so do their estimator.

b) T or F The bias of the Maximum Likelihood Estimate (MLE) is typically less than
or equal to the bias of the Maximum A Posteriori (MAP) Estimate.

True. Since MAP estimate allows us to incorporate more prior knowledge, it is
likely to be more biased.

c) T or F The MAP estimate is always better than the MLE.

False. When the prior is chosen poorly, it will take the MAP estimate longer to
converge to a good estimate because it needs to see enough examples to overcome
the bad prior.

d) T or F In the limit as n (the number of samples) increases, the MAP and MLE
estimates become the same.

True. As the number of examples increases, the data likelihood goes to zero very
quickly, while the magnitude of the prior stays the same. In the limit, the prior
plays an insignificant role in the MAP estimate and the two estimates will converge.

e) T or F Naive Bayes can only be used with MAP estimates, and not MLE estimates.

False. Naive Bayes can be used with any technique for estimating the parmaters of
a distribution. In homework 2, we used both the MAP and MLE estimates.
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6 Probability, Naive Bayes and MLE

6.1 Probability

1. For each question, circle the correct option.

1. Which of the following expressions is equivalent to p(A|B,C,D)?

(a) p(A,B,C,D)
p(C|B,D)p(B|D)p(D)

(b) p(A,B,C,D)
p(B,C)p(D)

(c) p(A,B,C,D)
p(B,C|D)p(B)p(C)

Answer is (a). p(A|BCD) = p(A,B,C,D)
p(B,C,D)

= p(A,B,C,D)
p(C|B,D)p(B,D)

= p(A,B,C,D)
p(C|B,D)p(B|D)p(D)

2. Let µ be the mean of some probability distribution. p(µ) is always non-zero.

(a) True

(b) False

No, taking the example of a distribution that put 0.5 probability on +1 and 0.5
probability on -1. Though their mean is 0, p(0) is zero.

2. Assume we have a sample space Ω. Just state T or F, no justification needed.

1. If events A, B, and C are disjoint then they are independent.

False. If they are disjoint, i.e. mutually exclusive, they are very dependent! (what
does disjoint mean in terms of the probabilities of A, B, and C? What about inde-
pendent?)

2. P (A|B) ∝ P (A)P (B|A)
P (A|B)

.

False P (A|B) ∝ P (A)P (B|A)
P (B)

3. P (A ∪B) ≤ P (A).

False P (A ∪B) ≥ P (A)

4. P (A ∩B) ≥ P (A).

False P (A ∩B) ≤ P (A)

6.2 Naive Bayes

1. Consider the following data. It has 4 featuresX = (x1, x2, x3, x4) and 3 labels (+1, 0,−1).
Assume that the probabilities p(X|y) and p(y) are both Bernoulli distributions. Answer
the questions that follow under the Naive Bayes assumption.
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x1 x2 x3 x4 y
1 1 0 1 +1
0 1 1 0 +1
1 0 1 1 0
0 1 1 1 0
0 1 0 0 -1
1 0 0 1 -1
0 0 1 1 -1

1. Compute the Maximum Likelihood Estimate for p(xi = 1|y),∀i ∈ [1, 4],∀y ∈
{+1, 0,−1}.

y = +1 y = 0 y = −1
x1 = 1 0.5 0.5 1/3
x2 = 1 1 0.5 1/3
x3 = 1 0.5 1 1/3
x4 = 1 0.5 1 2/3

2. Compute the Maximum Likelihood Estimate for the prior probabilities p(y =
+1), p(y = 0), p(y = −1)

p(y = +1) = 2
7
, p(y = 0) = 2

7
and p(y = −1) = 3

7
.

3. Use the values computed in the above two parts to classify the data point (x1 =
1, x2 = 1, x3 = 1, x4 = 1) as either belonging to class +1, 0 or −1

According to naive bayes assumption, samples are independent given y, thus we
can write the conditional joint probability as

p(x1 = 1, x2 = 1, x3 = 1, x4 = 1) = p(x1 = 1, x2 = 1, x3 = 1, x4 = 1|y)p(y) (7)

= p(y)
4∏

i=1

p(xi = 1|y). (8)

We calculate the probability given different value on y and pick the y that gives us
largest probability.

p(y = +1)
4∏

i=1

p(xi = 1|y = +1) =
1

2
· 1 · 1

2
· 1
2
· 2
7
=

1

28
(9)

p(y = 0)
4∏

i=1

p(xi = 1|y = 0) =
1

2
· 1
2
· 1 · 1 · 2

7
=

1

14
(10)

p(y = −1)
4∏

i=1

p(xi = 1|y = −1) = 1

3
· 1
3
· 1
3
· 2
3
· 3
7
=

2

189
(11)
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Since y = 0 yields the largest value, we classify the data as ŷ = 0.

2. You are given a data set of 10,000 students with their sex, height, and hair color. You
are trying to build a machine learning classifier to predict the sex of a student, so you
randomly split the data into a training set and a testing set. Here are the specifications
of the data set:

• sex ∈ {male,female}

• height ∈ [0,300] centimeters

• hair ∈ {brown, black, blond, red, green}

• 3240 men in the data set

• 6760 women in the data set

Under the assumptions necessary for Naive Bayes (not the distributional assumptions
you might naturally or intuitively make about the dataset) answer each question with
T or F and a one sentence explanation of your answer:

1. T or F: Height is a continuous valued variable. Therefore Naive Bayes is not
appropriate since it cannot handle continuous valued variables.

False. Naive Bayes can handle both continuous and discrete values as long as
the appropriate distributions are used for conditional probabilities. For example,
Gaussian for continuous and Bernoulli for discrete

2. T or F: Since there is not a similar number of men and women in that dataset
Naive Bayes will have high test error.

False. Since the data was randomly split, the same proportion of male and female
will be in the training and testing sets. Thus this discrepancy will not affect testing
error.

3. T or F: p(height|sex, hair) = p(height|sex).

True. This results from the conditional independence assumption required for Naive
Bayes.

4. T or F: p(height, hair|sex) = p(height|sex) ∗ p(hair|sex).

True. This results from the conditional independence assumption required for Naive
Bayes.

6.3 Naive Bayes, Logistic Regression

1. Suppose you wish to learn P (Y |X1, X2, X3), where Y,X1, X2 and X3 are all boolean-
valued random variables. You consider both Naive Bayes and Logistic Regression as
possible approaches.

For each of the following, answer True or False, and give a one sentence justification for
your answer.
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1. T or F: In this case, a good choice for Naive Bayes would be to implement a
Gaussian Naive Bayes classifier.

Answer: False. Given the Xi are boolean, it is better to model P (Xi|Y ) with a
Bernoulli rather than Gaussian distribution

2. T or F: To learn P (Y |X1, X2, X3) using Naive Bayes, you must make conditional
independence assumptions, including the assumption that Y is conditionally inde-
pendent of X1 given X2.

Answer: False. Naive Bayes assume (∀i ̸= j)Xi is conditionally independent of Xj

given Y .

3. T or F: Logistic regression is certain to be the better choice in this case.

Answer: False. It will depend on the number of training examples available, and
whether the Naive Bayes assumptions are satisfied.

2. Parameter estimation

1. How many parameters must be estimated for your Gaussian Naive Bayes classifier,
and what are they (i.e., please list them).

7 - We need P (Y = 1) and P (Y = 0) = 1 − P (Y = 1). Then we need P (Xi =
0|Y = 0), P (Xi = 1|Y = 0), P (Xi = 0|Y = 1), P (Xi = 1|Y = 1) for i ∈ {1, 2, 3}.

But given the binary parameters, P (Xi = 1|Y = 0) + P (Xi = 0|Y = 0) = 1, so we
only need to estimate one of these conditional probabilities (P (Xi = 0|Y = 0), for
example). So in total we need only 2*3 + 1 = 7

2. How many parameters must be estimated for your Logistic Regression classifier,
and what are they (i.e., please list them).

4 - Weights for: Bias, X1, X2, and X3

3. T or F: We can train Naive Bayes using maximum likelihood estimates for each
parameter, but not MAP estimates. Justify your answer in one sentence.

False: MAP estimates are just MLE spiced up with priors on the parameters of
P (Xi|Yj) (prior knowledge that we can inject into the model), so there’s no reason
we can’t add it in.

4. T or F: We can train Logistic Regression using maximum likelihood estimates for
each parameter, but not MAP estimates. Justify your answer in one sentence.

False: We can assign priors on the regression model by assuming y = wTx+ϵ where
ϵ is ”noise” from a distribution (e.g. Gaussian)

3. Mixing discrete and continuous variables. Suppose we add a numeric, real-valued vari-
able X4 to our problem. Note we now have a mix of some discrete-valued Xi and one
continuous Xi.
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1. Explain in two sentences why we can no longer use Naive Bayes, or if we can, how
we would modify our first solution.

We can’t use our original model because a Bernoulli distribution can’t model the
new data.

We must modify our solution so that a different Naive Bayes model is trained on
the continuous variables, using a different distribution than a Bernoulli one (i.e. a
Gaussian), and then the result is a multiplication of the two.

Since our assumption is that each parameter is conditionally independent anyhow,
we can multiply the results of the two models together safely.

2. Explain in two sentences why we can no longer use Logistic Regression, or if we
can, how we would modify our first solution.

Assuming the discrete variables were already transformed into one-hot features, we
can simply add one weight per continuous feature to our model.
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7 Principal Component Analysis

1. (i) [5 pts] Consider the following two plots of data. Draw arrows from the mean of the
data to denote the direction and relative magnitudes of the principal components.

0 1 0 1
0

1

0

1

Solution:

0 1 0 1
0

1

0

1

(ii) [5 pts] Now consider the following two plots, where we have drawn only the prin-
cipal components. Draw the data ellipse or place data points that could yield the
given principal components for each plot. Note that for the right hand plot, the
principal components are of equal magnitude.

0 1 0 1
0

1

0

1

Solution:
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0 1 0 1
0

1

0

1

2. Circle one answer and explain.

In the following two questions, assume that using PCA we factorize X ∈ Rn×m as
ZTU ≈ X, for Z ∈ Rm×n and U ∈ Rm×m, where the rows of X contain the data points,
the rows of U are the prototypes/principal components, and ZTU = X̂.

(i) [2 pts] Removing the last row of U and Z will still result in an approximation of
X, but this will never be a better approximation than X̂.

Circle one: True False

True.

(ii) [2 pts] X̂X̂T = ZTZ.

Circle one: True False

True.

(iii) [2 pts] The goal of PCA is to interpret the underlying structure of the data in
terms of the principal components that are best at predicting the output variable.

Circle one: True False

False

(iv) [2 pts] The output of PCA is a new representation of the data that is always of
lower dimensionality than the original feature representation.

Circle one: True False

False
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8 K-Means

1. For True or False questions, circle your answer and justify it; for QA questions, write
down your answer.

(i) For a particular dataset and a particular k, k-means always produce the same result,
if the initialized centers are the same. Assume there is no tie when assigning the
clusters.

⃝ True

⃝ False

Justify your answer:

True. Every time you are computing the completely same distances, so the result
is the same.

(ii) k-means can always converge to the global optimum.

⃝ True

⃝ False

Justify your answer:

False. It depends on the initialization. Random initialization could possibly lead
to a local optimum.

(iii) k-means is not sensitive to outliers.

⃝ True

⃝ False

Justify your answer:

False. k-means is quite sensitive to outliers, since it computes the cluster center
based on the mean value of all data points in this cluster.

(iv) k in k-nearest neighbors and k-means has the same meaning.

⃝ True

⃝ False

Justify your answer:
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False. In knn, k is the number of data points we need to look at when classifying
a data point. In k-means, k is the number of clusters.

(v) What’s the biggest difference between k-nearest neighbors and k-means?

Write your answer in one sentence:

knn is a supervised algorithm, while k-means is unsupervised.

2. In k-means, random initialization could possibly lead to a local optimum with very bad
performance. To alleviate this issue, instead of initializing all of the centers completely
randomly, we decide to use a smarter initialization method. This leads us to k-means++.

The only difference between k-means and k-means++ is the initialization strategy, and
all of the other parts are the same. The basic idea of k-means++ is that instead of simply
choosing the centers to be random points, we sample the initial centers iteratively, each
time putting higher probability on points that are far from any existing center. Formally,
the algorithm proceeds as follows.

Given: Data set x(i), i = 1, . . . , N
Initialize:

µ(1) ∼ Uniform({x(i)}Ni=1)
For j = 2, . . . , k

Computing probabilities of selecting each point

pi =
minj′<j ∥µ(j′)−x(i)∥22∑N

i′=1 minj′<j ∥µ(j′)−x(i′)∥22

Select next center given the appropriate probabilities
µ(j) ∼ Categorical({x(i)}Ni=1,p1:N)

Note: n is the number of data points, k is the number of clusters. For cluster 1’s center,
you just randomly choose one data point. For the following centers, every time you
initialize a new center, you will first compute the distance between a data point and
the center closest to this data point. After computing the distances for all data points,
perform a normalization and you will get the probability. Use this probability to sample
for a new center.

Now assume we have 5 data points (n=5): (0, 0), (1, 2), (2, 3), (3, 1), (4, 1). The
number of clusters is 3 (k=3). The center of cluster 1 is randomly choosen as (0, 0).
These data points are shown in the figure below.
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(i) [5 pts] What is the probability of every data point being chosen as the center for
cluster 2? (The answer should contain 5 probabilities, each for every data point)

(0, 0): 0
(1, 2): 0.111
(2, 3): 0.289
(3, 1): 0.222
(4, 1): 0.378

(ii) [1 pts] Which data point is mostly liken chosen as the center for cluster 2?

(4, 1) is mostly likely chosen.

(iii) [5 pts] Assume the center for cluster 2 is chosen to be the most likely one as you
computed in the previous question. Now what is the probability of every data point
being chosen as the center for cluster 3? (The answer should contain 5 probabilities,
each for every data point)
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(0, 0): 0
(1, 2): 0.357
(2, 3): 0.571
(3, 1): 0.071
(4, 1): 0

(iv) [1 pts] Which data point is mostly liken chosen as the center for cluster 3?

(2, 3) is mostly likely chosen.

(v) [3 pts] Assume the center for cluster 3 is also chosen to be the most likely one as
you computed in the previous question. Now we finish the initialization for all 3
centers. List the data points that are classified into cluster 1, 2, 3 respectively.

cluster 1: (0, 0)
cluster 2: (1, 2), (2, 3)
cluster 3: (3, 1), (4, 1)

(vi) [3 pts] Based on the above clustering result, what’s the new center for every cluster?
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center for cluster 1: (0, 0)
center for cluster 2: (1.5, 2.5)
center for cluster 3: (3.5, 1)

(vii) [2 pts] According to the result of (ii) and (iv), explain how does k-means++
alleviate the local optimum issue due to initialization?

k-means++ tends to initialize new cluster centers with the data points that are far
away from the existing centers, to make sure all of the initial cluster centers stay
away from each other.
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9 Kernel Methods

1. [3 pts.] Applying the kernel trick enables features to be mapped into a higher dimen-
sional space, at a cost of higher computational complexity to operate in the higher
dimensional space.

Circle one: True False

False. We didn’t increase computational complexity, that’s the whole point of kernel
trick.

2. [3 pts.] Since the VC dimension for an SVM with a Radial Base Kernel is infinite,
such an SVM must have a larger generalization error than an SVM without kernel
which has a finite VC dimension.

Circle one: True False

False. The learning theory gives a trivial upper bound for generalization error when
VC dimension is infinite. It doesn’t imply that RBF kernel won’t work in practice.

3. [3 pts.] Suppose ϕ(x) is an arbitrary feature mapping from input x ∈ X to ϕ(x) ∈ RN

and let K(x, z) = ϕ(x) · ϕ(z). Then K(x, z) will always be a valid kernel function.

Circle one: True False

True. This is the definition of a kernel function.

4. [3 pts.] Suppose ϕ(x) is the feature map induced by a polynomial kernel K(x, z) of
degree d, then ϕ(x) should be a d-dimensional vector.

Circle one: True False

False. The dimension of ϕ(x) is not a constant but increases with the dimension of
x. For example if x ∈ R2 and K(x, z) = (1 + xT z)2 has a degree of d = 2, then
ϕ(x) = (1, x2

1, x
2
2,
√
2x1x2,

√
2x1,
√
2x2)

T .

5. [3 pts.] The decision boundary that we get from a Gaussian Naive Bayes model with
class-conditional variance is quadratic. Can we in principle reproduce this with an
SVM and a polynomial kernel?

Circle one: Yes No

Yes. Quadratic decision boundaries can be reproduced with an SVM with polynomial
kernel of degree two.

6. Let’s go kernelized!

(a) Perceptron review. Assume we have a binary classification task with dataset
D = {(x(i), y(i))}∞i=1 where x

(i) ∈ Rd and y(i) ∈ {−1, 1}. Recall that the perceptron
learns a linear classifier y = sign(wTx) by applying the following algorithm.
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Algorithm 1: Perceptron algorithm

Initialize the weights w = 0;
for i = 1, 2, · · · do

Predict ŷ(i) = sign(wTx(i));

if ŷ(i) ̸= y(i) then
Update w = w + y(i)x(i);

end
Final classifier: h(x) = sign(wTx)

Show that the final weight vector w is a linear combination of all the samples
x(i) (i = 1, 2, · · · , T ) it has been trained on, and hence for prediction we can write
wTx in the form of wTx =

∑T
i=1 αiK(x(i), x) for some αi where K(x, z) = xT z.

The final weight can be written as w = α1x
(1) + · · ·+ αTx

(T ) where αi = y(i) if a

mistake is made at iteration i and 0 otherwise. Hence wTx =
∑T

i=1 αi

(
x(i)

)T
x =∑T

i=1 αiK(x(i), x).

(b) Kernelized perceptron. Now we are going to introduce a kernel function
K(x, z) to kernelize the perceptron algorithm. Based on your findings in the
previous question, fill in the blanks below to complete the kernelized perceptron
algorithm using the kernel K(x, z). Assume the training loop stops after it has
seen T training samples.

Algorithm 2: Kernelized Perceptron

Initialize ;
for i = 1, 2, · · · do

Predict ŷ(i) = ;

if ŷ(i) ̸= y(i) then
;

end
Final classifier: h(x) = .

(1) Initialize all αi to 0;

(2) ŷ(i) = sign(
∑i−1

j=1 αjK(x(j), x(i)));

(3) Update αi = αi + y(i) (or Set αi = y(i));

(4) h(x) = sign(
∑T

j=1 αjK(x(j), x));

(c) Short answer. Describe one advantage and one disadvantage of using kernelized
perceptron compared to using vanilla perceptron.
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Advantage example: kernels can introduce complex features to perceptron, so that
non-linear decision boundaries can be learned and the resulting model should be
more powerful.

Disadvantage example: kernelized perceptron has to store all training samples it
has seen. This requires a lot of storage and yields a higher time complexity for
prediction when the number of training samples is large.

7. Suppose we have six training samples that lie in a two-dimensional space as is shown in
Figure 7a. Four of them belong to the blue class: (0, 0.5), (0, 2), (0.5, 0), (2, 0), and two
of them belong to the red class: (

√
2/2,
√
2/2), (1.5, 1.5). Unfortunately, this dataset

is not linearly separable. You recall that kernel trick is one technique you can take
advantage of to address this problem. The trick uses a kernel function K(x, z) which
implicitly defines a feature map ϕ(x) from the original space to the feature space.
Consider the following normalized kernel:

K(x, z) =
xT z

∥x∥2∥z∥2
.

(a) Data points in the original space (b) Data points in the feature space

Figure 7: Data points in two spaces

(a) What is the feature map ϕ(x) that corresponds to this kernel? Draw ϕ(x) for
each training sample in Figure 7b.

ϕ(x) = x/∥x∥2. Blue points are mapped to (0, 1) and (1, 0). Red points are
mapped to (

√
2/2,
√
2/2).

(b) The samples should now be linearly separable in the feature space. The classifier
in the feature space that gives the maximum margin can be represented as a line
wTx + α = 0. Draw the decision boundary of this classifier in Figure 7b. What
are the coefficients in the weight vector w = (w1, w2)

T ? Hint: you don’t need to
compute them.

w = (1, 1)T due to symmetry. Observe that 1 ≤ −α ≤
√
2, so the exact value of

α if anyone is interested should be −(1 +
√
2)/2.
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(c) Now we map the decision boundary obtained in (b) back to the original space.
Write down the corresponding boundary in the original space in the format of an
explicit equation. You can keep α in your equation. Try to plot its rough shape
in Figure 7a.

The decision boundary in the original space is

wTϕ(x) + α = 0 =⇒ x1 + x2√
x2
1 + x2

2

+ α = 0 =⇒ (x1 + x2)
2 = α2(x2

1 + x2
2)

=⇒ x2
1 + x2

2 −
2

α2 − 1
x1x2 = 0 =⇒ x2 =

η ±
√
η2 − 4

2
x1 (η =

2

α2 − 1
> 2)

The final step is obtained by solving the quadratic equation. It’s okay if you
didn’t work to the simplest form. So the decision boundary would be two straight
lines. A possible rough shape is shown below.
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10 Recommender Systems

1. [5pts] Applied to the Netflix Prize problem, which of the following methods does NOT
always require side information about the users and the movies?

Select all that apply:

□ Neighborhood methods

□ Content filtering

□ Latent factor methods

□ Collaborative filtering

□ None of the above

ACD

2. [5pts] Select all that apply:

□ Using matrix factorization, we can embed both users and items in the same
space

□ Using matrix factorization, we can embed either solely users or solely items in
the same space, as we cannot combine different types of data

□ In a rating matrix of users by books that we are trying to fill up, the best-
known solution is to fill the empty values with 0s and apply PCA, allowing the
dimensionality reduction to make up for this lack of data

□ Alternating minimization allows us to minimize over two variables

□ Alternating minimization avoids the issue of getting stuck in local minima

□ If the data is multidimensional, then overfitting is extremely rare

□ Nearest neighbor methods in recommender systems are restricted to using eu-
clidian distance for their distance metric

□ None of the above

AD
Filling empty values with 0s is not ideal since we are assuming data values that are
not necessarily true. Thus, we cannot apply PCA when there is missing values.
Alternating minimization can still get stuck at a local minimum.
Both euclidian distance and cosine similarity are valid metrics.

3. [5pts] Your friend Duncan wants to build a recommender system for his new website
DuncTube, where users can like and dislike videos that are posted there. In order to
build his system using collaborative filtering, he decides to use Non-Negative Matrix
Factorization. What is an issue with Duncan’s approach, and what could he change
about the website or the algorithm in order to fix it?
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Since Duncan’s website incorporates negative responses directly, NNMF can’t be used
to model these sorts of responses (since NNMF enforces that both the original and
the factored matrices are all non-negative). To fix this, Duncan would either have to
remove the dislike option from his website, OR use a different matrix factorization
algorithm like SVD.

4. [3pts] You and your friends want to build a movie recommendation system based on
collaborative filtering. There are three websites (A, B and C) that you decide to extract
users rating from. On website A, the rating scale is from 1 to 5. On website B, the
rating scale is from 1 to 10. On website C, the rating scale is from 1 to 100. Assume
you will have enough information to identify users and movies on one website with
users and movies on another website. Would you be able to build a recommendation
system? And briefly explain how would you do it?

Yes. We would be able to do it. First, Normalize the ratings score within certain range.
(E.g. re-scale each dataset ratings to a 0-1 range). After that, combine users ratings
of the three websites by matching movies and users. With users rating, we could con-
duct Matrix Factorization to predict the missing ratings for users. (Or Neighborhood
method)

5. [3pts] What is the difference between collaborative filtering and content filtering?

Content filtering assumes access to side information about items and content filtering
does not.
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11 GMM and EM

1. Which of the quantities are updated in the E-step when EM algorithm is used to fit a
Gaussian mixture model?

Select all that apply.

□ Mixture probabilities (sometimes denoted as π).

□ Assignment probabilities (sometimes denoted as y or z).

□ Cluster centers (sometimes denoted as µ).

□ Cluster variances (sometimes denoted as σ or Σ).

□ None of the above

Assignment probabilities
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2. Bernoulli Mixture Models

There are two coins C1 and C2 with unknown probabilities of heads, denoted by q1 and
q2 respectively. C1 is chosen with probability τ and C2 is chosen with probability 1− τ .
The chosen coin is flipped once and the result is recorded. The experiment is repeated
five times and the final result is recorded as X = {H,H, T,H, T}. You wish to use
the EM algorithm to estimate the parameters θ = [q1, q2, τ ]. Suppose Z denotes the
hidden variable where z(i) = 1 if C1 was tossed for the i-th flip and 0 if C2 was tossed.
You start off with an initial guess of q

(0)
1 = 1

4
, q

(0)
2 = 2

3
, and τ (0) = 1

2
.

In the following questions, please write your answer as an exact irreducible fraction
a

b
where a, b are co-prime integers. For example, if your answer is 0.4125, please write

it as
33

80
. The horizontal bar for the fraction

□

□
is already present in the answer box.

(a) [1 pt] E step: Compute p(z(i) = 1 | x(i) = H, θ(0))

3

11

(b) [1 pt] E step: Compute p(z(i) = 1 | x(i) = T, θ(0))

9

13

(c) [2 pt] M step: Compute τ (1) Hint: θ(t+1) = argmaxθ EZ|X,θ(t) [log p(X,Z | θ)]

63

143

(d) [2 pt] M step: Compute q
(1)
1

13

35

(e) [2 pt] M step: Compute q
(1)
2
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39

50

This is an optional workbox for the above questions. Feel free to leave this blank, we
will only grade this to assign partial credit in the case your above answers are incorrect.
If you choose to add work please label it clearly.


	Optimization
	Logistic Regression
	Feature Engineering and Regularization
	Neural Networks
	MLE/MAP
	Probability, Naive Bayes and MLE
	Probability
	Naive Bayes
	Naive Bayes, Logistic Regression

	Principal Component Analysis
	K-Means
	Kernel Methods
	Recommender Systems
	GMM and EM

