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Q1. [0 pts] ML Concepts

In this problem, we will see how you can debug a classifier by looking at its train and test errors. Consider a classifier
trained till convergence on some training data Dtrain, and tested on a separate test set Dtest. You look at the test
error, and find that it is very high. You then compute the training error and find that it is close to 0.

(a) Which of the following is expected to help? Select all that apply.

⊠ Increase the training data size.

□ Decrease the training data size.

□ Increase model complexity

⊠ Decrease model complexity.

□ Train on a combination of Dtrain and Dtest and test on Dtest

□ Conclude that Machine Learning does not work.

(b) Explain your choices.

Answer:
The model is overfitting. In order to address the problem, we can either increase training data size or
decrease model complexity. We should never train on the test set, the model shouldn’t see any testing
data in the training or validation process.

(c) What is this scenario called?

Answer:
Overfitting

(d) Say you plot the train and test errors as a function of the model complexity. Which of the following two plots
below is your plot expected to look like?

A. B.

Answer:
B. When model complexity increases, model can overfit better, so training error will decrease. But when
it overfits too much, testing error will increase.
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(e) In this question we will consider the effect of increasing the model complexity, while keeping the size of the
training set fixed. To be concrete, consider a classification task on the real line R with distribution D and
target function c∗(x) : R → {±1} and suppose we have a random sample S of size N drawn i.i.d. from D. For
each degree d, let ϕd be the feature map given by ϕd(x) = (1, x, x2, . . . , xd) that maps points on the real line
to (d+ 1)-dimensional space.

Now consider the learning algorithm that first applies the feature map ϕd to all the training examples and
then runs logistic regression as in the previous question. A new example is classified by first applying the
feature map ϕd and then using the learned classifier.

(i) [0 pts] For a given dataset S, is it possible for the training error to increase when we increase the degree
d of the feature map? Please explain your answer in 1 to 2 sentences.

Answer:
No. Every linear separator using the feature map ϕd can also be expressed using the feature map ϕd+1,
since we are only adding new features. It follows that the training error must decrease for any given
sample S.

(ii) [0 pts] Briefly explain in 1 to 2 sentences why the true error first drops and then increases as we
increase the degree d.

Answer:
When the dimension d is small, the true error is high because it is not possible to the target function is
not well approximated by any linear separator in the ϕd feature space. As we increase d, our ability to
approximate c∗ improves, so the true error drops. But, as we continue to increase d, we begin to overfit
the data and the true error increases again.

(f) What are the effects of the following on overfitting? Choose the best answer.

(i) [0 pts] Increasing decision tree max depth.

⃝ Less likely to overfit

 More likely to overfit

Answer:
More likely to overfit

(ii) [0 pts] Increasing decision tree mutual information split threshold.

 Less likely to overfit

⃝ More likely to overfit

Answer:
Less likely to overfit

(iii) [0 pts] Increasing decision tree max number of nodes.

⃝ Less likely to overfit

 More likely to overfit

Answer:
More likely to overfit
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(iv) [0 pts] Increasing k in k-nearest neighbor.

 Less likely to overfit

⃝ More likely to overfit

Answer:
Less likely to overfit

(v) [0 pts] Increasing the training data size for decision trees. Assume that training data points are drawn
randomly from the true data distribution.

 Less likely to overfit

⃝ More likely to overfit

Answer:
Less likely to overfit

(vi) [0 pts] Increasing the training data size for 1-nearest neighbor. Assume that training data points are
drawn randomly from the true data distribution.

 Less likely to overfit

⃝ More likely to overfit

Answer:
Less likely to overfit

(g) Consider a learning algorithm that uses two hyperparameters, γ and ω, and it takes 1 hour to train regardless
of the size of the training set.

We choose to do random subsampling cross-validation, where we do K runs of cross-validation and for each run,
we randomly subsample a fixed fraction αN of the dataset for validation and use the remaining for training,
where α ∈ (0, 1) and N is the number of data points.

(i) [0 pts] In combination with the cross-validation method above, we choose to do grid search on discrete
values for the two hyperparameters.

Given N = 1000 data points, K = 4 runs, and α = 0.25, if we have 100 hours to complete the entire
cross-validation process, what is the most number of discrete values of γ that we can include in our search
if we also want to include 8 values of ω? Assume that any computations other than training are negligible.

Answer:
3 +−0.001. Round 100/4/8 = 3.33 down to 3.

(ii) [0 pts] In one sentence, give one advantage of increasing the value of α.

Answer:
More data used for validation, giving a better estimate of performance on held-out data.
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Q2. [0 pts] Decision Trees

Perceptron Trees: To exploit the desirable properties of decision tree classifiers and perceptrons, Adam came up
with a new algorithm called “perceptron trees”, which combines features from both. Perceptron trees are similar to
decision trees, however each leaf node is a perceptron, instead of a majority vote.

To create a perceptron tree, the first step is to follow a regular decision tree learning algorithm (such as ID3) and
perform splitting on attributes until the specified maximum depth is reached. Once maximum depth has been
reached, at each leaf node, a perceptron is trained on the remaining attributes which have not been used up in that
branch. Classification of a new example is done via a similar procedure. The example is first passed through the
decision tree based on its attribute values. When it reaches a leaf node, the final prediction is made by running the
corresponding perceptron at that node.

Assume that you have a dataset with 6 binary attributes (A, B, C, D, E, F) and two output labels (-1 and 1).
A perceptron tree of depth 2 on this dataset is given below. Weights of the perceptron are given in the leaf nodes.
Assume bias=1 for each perceptron:

Figure 1: Perceptron Tree of max depth=2

(a) Numerical answer: Given a sample = [1, 1, 0, 1, 0, 1], predict the output label for this sample.

Explanation:
1, Explanation: A=1 and D=1 so the point is sent to the right-most leaf node, where the perceptron
output is (1*1)+(0*0)+((-1)*0)+(1*1)+1 = 3. Prediction = sign(3) = 1.

(b) True or False: The decision boundary of a perceptron tree will always be linear.

 True

⃝ False

Explanation:
False, since decision tree boundaries need not be linear.

(c) [0 pts] True or False: For small values of max depth, decision trees are more likely to underfit the data than
perceptron trees

 True

⃝ False
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Explanation:
True. For smaller values of max depth, decision trees essentially degenerate into majority-vote classifiers
at the leaves. On the other hand, perceptron trees have the capacity to make use of “unused” attributes
at the leaves to predict the correct class.

Explanation:
Decision trees: Non-linear decision boundaries
Perceptron: Ability to gracefully handle unseen attribute values in training data/ Better generalization
at leaf nodes

(d) Select all that apply: Given a set of input features x, where x ∈ Rn, you are tasked with predicting a label
for y, where y = 1 or y = −1. You have no knowledge of about the distribution of x and of y. Which of the
following methods are appropriate?

□ Perceptron

⊠ k-Nearest Neighbors

□ Linear Regression

⊠ Decision Tree with unlimited depth

□ None of the Above

Explanation:
Kth Nearest Neighbours and Decision Tree with unlimited depth since these two methods do not making
the assumption of linear separation.

(e) ID3 algorithm is a greedy algorithm for growing Decision Tree and it suffers the same problem as any other
greedy algorithm that finds only locally optimal trees. Which of the following method(s) can make ID3 ”less
greedy”? Select all that apply:

□ Use a subset of attributes to grow the decision tree

⊠ Use different subsets of attributes to grow many decision trees

□ Change the criterion for selecting attributes from information gain (mutual information) to information
gain ratio (mutual information divided by entropy of splitting attributes) to avoid selecting attributes with
high degree of randomness

⊠ Keep using mutual information, but select 2 attributes instead of one at each step, and grow two
separate subtrees. If there are more than 2 subtrees in total, keep only the top 2 with the best performance
(e.g., top 2 with lowest training errors at the current step)

Explanation:
2nd and 4th choices; 1st choice should be wrong as the best performance will be determined by the deepest
tree. Any shallower tree will make more mistakes, so ensemble learning can only make performance worse
and it won’t change the local optimality of the forest.

(f) (i) [0 pts] [0 pts] ID3 algorithm is guaranteed to find the optimal solution for decision tree.

⃝ True

 False

(ii) [0 pts] [0 pts] One advantages of decision trees algorithm is that they are not easy to overfit comparing
to naive Bayes.

⃝ True

 False
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Q3. [0 pts] K Nearest Neighbors

(a) True or False: Consider a binary (two classes) classification problem using k-nearest neighbors. We have
n 1-dimensional training points {x1, x2, ..., xn} with xi ∈, and their corresponding labels {y1, y2, ..., yn} with
yi ∈ {0, 1}.
Assume the data points x1, x2, ..., xn are sorted in the ascending order, we use Euclidean distance as the distance
metric, and a point can be it’s own neighbor. True or False: We CAN build a decision tree (with decisions at
each node has the form “x ≥ t” and “x < t”, for t ∈) that behave exactly the same as the 1-nearest neighbor
classifier, on this dataset.

 True

⃝ False

Explanation:
True, we can build a decision tree by setting the internal nodes at the mid-points between each pair of
adjacent training points.

(b) Select all that apply: Please select all that apply about kNN in the following options:

Assume a point can be its own neighbor.

⊠ k-NN works great with a small amount of data, but struggles when the amount of data becomes large.

□ k-NN is sensitive to outliers; therefore, in general we decrease k to avoid overfitting.

□ k-NN can only be applied to classification problems, but it cannot be used to solve regression problems.

⊠ We can always achieve zero training error (perfect classification) with k-NN, but it may not generalize
well in testing.

Explanation:
True: A, Curse of dimensionality; D, by setting k = 1
False: B, we increase k to avoid overfitting; C, KNN regression

(c) Select one: A k-Nearest Neighbor model with a large value of K is analogous to...

 A short Decision Tree with a low branching factor

⃝ A short Decision Tree with a high branching factor

⃝ A long Decision Tree with a low branching factor

⃝ A long Decision Tree with a high branching factor

Explanation:
A short Decision Tree with a low branching factor

(d) Select one. Imagine you are using a k-Nearest Neighbor classifier on a data set with lots of noise. You want
your classifier to be less sensitive to the noise. Which is more likely to help and with what side-effect?

 Increase the value of k => Increase in prediction time

⃝ Decrease the value of k => Increase in prediction time

⃝ Increase the value of k => Decrease in prediction time

⃝ Decrease the value of k => Decrease in prediction time

Explanation:
Increase the value of k => Increase in prediction time
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(e) Select all that apply: Identify the correct relationship between bias, variance, and the hyperparameter k in
the k-Nearest Neighbors algorithm:

⊠ Increasing k leads to increase in bias

□ Decreasing k leads to increase in bias

□ Increasing k leads to increase in variance

⊠ Decreasing k leads to increase in variance

Explanation:
A and D

(f) Consider a training dataset for a regression task as follows.

D =
{(

x(1), y(1)
)
,
(
x(2), y(2)

)
, · · · ,

(
x(N), y(N)

)}
with x(i) ∈ R and y(i) ∈ R.
For regression with k-nearest neighbor, we make predictions on unseen data points similar to the classification
algorithm, but instead of a majority vote, we take the mean of the output values of the k nearest points to
some new data point x. That is,

h(x) =
1

k

∑
i∈N (x,D)

y(i)

where N (x,D) is the set of indices of the k closest training points to x.

Please answer the following questions using this example dataset:

The red X’s denote training points and the black semi-circles A, B, C denote test points of unknown output
values. For convenience, all training data points have integer input and output values.

Any ties are broken by selecting the point with the lower x value.
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(i) [0 pts] With k = 1, what is the mean squared error on the training set?

Explanation:
0± 0.00001

(ii) [0 pts] With k = 2, what is the predicted value at A?

Explanation:
4± 0.00001

(iii) [0 pts] With k = 2, what is the predicted value at B?

Explanation:
5± 0.00001

(iv) [0 pts] With k = 3, what is the predicted value at C?

Explanation:
7± 0.00001

(v) [0 pts] With k = 8, what is the predicted value at C?

Explanation:
5.375± 0.1

(vi) [0 pts] With k = N , for any dataset D with the form specified in the beginning of this question, write
down a mathematical expression for the predicted value ŷ = h(x). Your response shouldn’t include a
reference to the neighborhood function N ().

Explanation:
ȳ = 1

N

∑N
i=1 y

(i)
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Q4. [0 pts] Linear Regression

(a) Select one: The closed form solution for linear regression is θ = (XTX)−1XTy. Suppose you have N = 35
training examples and M = 5 features (excluding the bias term). Once the bias term is now included, what
are the dimensions of X, y, θ in the closed form equation?

 X is 35× 6, y is 35× 1, θ is 6× 1

⃝ X is 35× 6, y is 35× 6, θ is 6× 1

⃝ X is 35× 5, y is 35× 1, θ is 5× 1

⃝ X is 35× 5, y is 35× 5, θ is 5× 5

(b) Please fill in True or False for the following questions, providing brief explanations to support your answer.

(i) [0 pts] Consider the linear regression model y = wTx + ϵ. Assuming ϵ ∼ N (0, σ2) and maximizing the
conditional log-likelihood is equivalent to minimizing the sum of squared errors ∥y −Xw∥22. Recall:

N (µ, σ2) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )2

 True

⃝ False

Answer:
True. The squared error term comes from the squared term in the Gaussian distribution.

(ii) [0 pts] Consider N data points, each with one feature xi and an output yi. In linear regression, we assume
yi ∼ N (wxi, σ

2) and compute ŵ through MLE.

Suppose yi ∼ N (log(wxi), 1) instead. Then the maximum likelihood estimate ŵ is the solution to the
following equality:

N∑
i=1

xiyi =

N∑
i=1

xi log(wxi)

⃝ True

 False

Answer:
False. The likelihood function can be written as

N∏
i=1

exp(−(yi − log(wxi))
2/2)√

2π
=

exp(−
∑N

i=1(yi − log(wxi))
2/2)√

2π

Differentiating wrt w and setting to zero gives us

N∑
i=1

2(yi − log(wxi))
xi

wxi
= 0 =⇒

N∑
i=1

yi =

N∑
i=1

log(wxi)
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(iii) [0 pts] Consider a linear regression model with only one parameter, the bias, ie., y = β0. Then given N
data points (xi, yi) (where xi is the feature and yi is the output), minimizing the sum of squared errors
results in β0 being the median of the yi values.

⃝ True

 False

Answer:
False.

∑N
i=1(yi − β0)

2 is the training cost, which when differentiated and set to zero gives β0 =
∑N

i=1 yi

n ,
the mean of the yi values.

(iv) [0 pts] Given data D = {(x(1), y(1), ..., (x(N), y(N))}, we obtain ŵ, the parameters that minimize the
training error cost for the linear regression model y = wTx we learn from D.

Consider a new dataset Dnew generated by duplicating the points in D and adding 10 points that lie along
y = ŵTx, for a total of 2N + 10 points. Then the ŵnew that we learn for y = wTx from Dnew is equal to
ŵ.

 True

⃝ False

Answer:
True. The new squared error can be written as 2k +m, where k is the old squared error. m = 0 for the
10 points that lie along the line, the lowest possible value for m. And 2k is least when k is least, which
is when the parameters don’t change.

(c) Short answer: Assume we have data X ∈ Rn×d with label y ∈ Rn. If the underlying distribution of the data

is y = Xβ∗ + ϵ, where ϵ ∼ N(0, I). Assume the closed form solution β̂ for mean squared error linear regression

exists for this data, write out β̂’s distribution:

Answer:
β̂ = (XTX)−1XTy = (XTX)−1XT (Xβ∗ + ϵ) = β∗ + (XTX)−1XT ϵ ∼ N(β∗, (XTX)−1)

(d) Consider linear regression on 1-dimensional data x ∈ Rn with label y ∈ Rn. We apply linear regression in both
directions on this data, i.e., we first fit y with x and get y = β1x as the fitted line, then we fit x with y and get
x = β2y as the fitted line. Discuss the relations between β1 and β2:

(i) [0 pts] True or False: The two fitted lines are always the same, i.e. we always have β2 = 1
β1
.

⃝ True

 False
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Answer:
False.

(ii) [0 pts] Numerical answer: We further assume that xTy > 0. What is the minimum value of 1
β1

+ 1
β2
?

Answer:
2.

(e) Please circle True or False for the following questions, providing brief explanations to support your answer.

(i) [0 pts] [0 pts] Consider a linear regression model with only one parameter, the bias, ie., y = β0. Then
given n data points (xi, yi) (where xi is the feature and yi is the output), minimizing the sum of squared
errors results in β0 being the median of the yi values.

Circle one: True False
Brief explanation:

Answer:
False.

∑n
i=1(yi − β0)

2 is the training cost, which when differentiated and set to zero gives β0 =
∑n

i=1 yi

n ,
the mean of the yi values.

(ii) [0 pts] [3 pts] Given data D = {(x1, y1), ..., (xn, yn)}, we obtain ŵ, the parameters that minimize the
training error cost for the linear regression model y = wTx we learn from D.

Consider a new dataset Dnew generated by duplicating the points in D and adding 10 points that lie along
y = ŵTx. Then the ŵnew that we learn for y = wTx from Dnew is equal to ŵ.

Circle one: True False
Brief explanation:

Answer:
True. The new squared error can be written as 2k +m, where k is the old squared error. m = 0 for the
10 points that lie along the line, the lowest possible value for m. And 2k is least when k is least, which
is when the parameters don’t change.

(f) Given a set of training pairs {(xi, yi), i = 1, . . . , n} where xi ∈ Rd is the input and yi ∈ R is the output, we want
to find a linear function f(x) = wTx that minimizes a tradeoff between training error and model complexity.
The ridge regression formulation captures this tradeoff:

ŵ = argmin
w∈Rd

J(w)

= argmin
w∈Rd

1

2

n∑
i=1

(wTxi − yi)
2 +

λ

2

d∑
i=1

w2
i ,

where λ ≥ 0. It is possible to derive a closed form expression for the parameter vector ŵ that minimizes this
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cost function. The gradient, using matrix notation, is

∇J(w) =


∂ℓ(w)
∂w1

...
∂ℓ(w)
∂wd

 = XTXw −XT y + λw,

where X ∈ Rn×d is the matrix with the the training input instances on the rows (xi on row i), and y ∈ Rn is
the vector of training output instances.

(i) [0 pts] [0 pts.] What is the closed form expression for ŵ that we obtain by solving ∇ℓ(w) = 0? Hint: use
λw = Iwλ, where I is the identity matrix.

Answer:
∇J(w) = 0 =⇒ ŵ = (XTX + λI)−1XT y.

(ii) [0 pts] [0 pts.] What is the meaning of the λ parameter? What kind of tradeoff between training error
and model complexity we have when λ approaches zero? What about when λ goes to infinity?

Answer:
When λ → 0, we prefer models that achieve the smallest possible training error, irrespective their
complexity (squared ℓ2 norm). When λ → +∞, we prefer models that are the simplest possible (i.e. that
have small norm). We expect ŵ to approach the zero vector in this case.

(iii) [0 pts] [0 pts.] Answer true or false to each of the following questions and provide a brief justification for
your answer:

• [0 pt.] T or F: In ridge regression, when solving for the linear regressor that minimizes the training
cost function, it is always preferable to use the closed form expression rather than using an iterative
method like gradient descent, even when the number of parameters is very high.

Answer:
False. Using the closed form expression to solve for ŵ requires O(d3) operations (the cost of solving
the linear system or computing the inverse), while using a gradient descent approach requires O(d2)
(the cost of matrix multiplication) per step. If the number of parameters is very high, it may not be
computationally feasible to use the closed form expression. Also, if the required precision for the solution
ŵ is moderate, as it is typically the case in machine learning applications, gradient descent may be
preferable.

• [0 pt.] T or F: Using a non-linear feature map is never useful as all regression problems have linear
input to output relations.

Answer:
False. We very rarely believe that the true regression function is linear in the initial input space. Many
times, the choice of a linear model is done out of mathematical convenience.

• [0 pt.] T or F: In linear regression, minimizing a tradeoff between training error and model complexity,
usually allows us to obtain a model with lower test error than just minimizing training error.

Answer:
True. Not using regularization leads us to choose more complex models, which have higher variance. In
practice it is typically better to optimize a tradeoff between data fitting and model complexity. This is
especially true when the ratio between the size of the training set and the number of parameters is not
very big.

• [0 pt.] T or F: When λ = 0, we recover ordinary least squares (OLS). If n < d, then XTX does not
have an inverse and the estimator ŵ is not well-defined.
Answer:
True. This is a problem with the ordinary least squares estimator for the case where the number of
parameters is bigger than the number of data points.
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(g) (i) [0 pts] Which of the following are valid expressions for the mean squared error objective function for linear
regression with dataset D = {x(i), y(i)}Ni=1, with each x(i) ∈ RM and the design matrix X ∈ RN×(M+1).
y and θ are column vectors.

Select all that apply:
J(θ) = 1

N ∥y − θX∥22 J(θ) = 1
N ∥yT − θX∥22 J(θ) = 1

N ∥yT −Xθ∥22 J(θ) = 1
N ∥Xθ − y∥22 None of the

Above

Answer:
J(θ) = 1

N ∥Xθ − y∥22

(ii) [0 pts] Your friend accidentally solved linear regression using the wrong objective function for mean squared
error, specifically, they used the following objective function that contains two mistakes: 1) they forgot
the 1/N and 2) they have one sign error.

J(w, b) =

N∑
i=1

y(i) −

 M∑
j=1

wjx
(i)
j − b

2

You realize that you can still use the parameters that they learned, w and b, to correctly predict y given
x.

Write the equation that implements this corrected prediction function h(x,w, b) using your friend’s learned
parameters, w and b. The w and x vectors are column vectors.

Answer:
h(x,w, b) = wTx− b

(iii) [0 pts] We have 2 data points:

x(1) = [2, 1]T y(1) = 7

x(2) = [1, 2]T y(2) = 5

We know that for linear regression with a bias/intercept term and mean squared error, there are infinite
solutions with these two points.

Give a specific third point x(3), y(3), such that, when included with the first two, will cause linear regression
to still have infinite solutions. Your x(3) should not equal x(1) or x(2) and your y(3) should not equal y(1)

or y(2).

x
(3)
1 Answer:

x
(3)
2 Answer:

y(3) Answer:
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Answer:
Any x(3) that is colinear with the first
two x’s; y doesn’t matter.

After adding your third point, if we then double the output of just the first point such that now y(1) = 14,
will this change the number of solutions for linear regression?

Yes No

Answer:
No

(h) Given that we have an input x and we want to estimate an output y, in linear regression we assume the
relationship between them is of the form y = wx+ b+ ϵ, where w and b are real-valued parameters we estimate
and ϵ represents the noise in the data. When the noise is Gaussian, maximizing the likelihood of a dataset
S = {(x1, y1), . . . , (xn, yn)} to estimate the parameters w and b is equivalent to minimizing the squared error:

argmin
w

n∑
i=1

(yi − (wxi + b))2.

Consider the dataset S plotted in Fig. 2 along with its associated regression line. For each of the altered data
sets Snew plotted in Fig. 4, indicate which regression line (relative to the original one) in Fig. 3 corresponds to
the regression line for the new data set. Write your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Answer:
Dataset (a) (b) (c) (d) (e)

Regression line (b) (c) (b) (a) (a)

Figure 2: An observed data set and its associated regression line.
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Figure 3: New regression lines for altered data sets Snew.

Q5. [0 pts] Logistic Regression

Given a training set {(x(i), y(i)), i = 1, ..., N} where x(i) ∈ RD is a feature vector and y(i) ∈ {0, 1} is a binary label,
we want to find the parameters ŵ that maximize the likelihood for the training set, assuming a model of the form:

p(Y = 1 | x,w) =
1

1 + exp(−wTx)

The conditional log likelihood of the training set is:

ℓ(w) =

N∑
i=1

y(i) log(p(y(i) | x(i),w)) + (1− y(i)) log(1− p(y(i) | x(i),w))

and the gradient is:

∇ℓ(w) =

n∑
i−1

(y(i) − p(y(i) | x(i),w))x(i)

(a) Is it possible to get a closed form for the parameters ŵ that maximize the conditional log likelihood? How
would you compute ŵ in practice?

Answer:
There is no closed form expression for maximizing the conditional log likelihood. One has to consider
iterative optimization methods, such as gradient descent, to compute ŵ.

(b) In this problem, we will consider the effect of training sample size N on a logistic regression classifier with
M features. The classifier is trained by optimizing the conditional log-likelihood. The optimization procedure
stops if the estimated parameters perfectly classify the training data or they converge.

The following plot shows the general trend for how the training and testing error change as we increase the
sample size N = |S|. Your task in this question is to analyze this plot and identify which curve corresponds to
the training and test error. Specifically:

(i) [0 pts] Which curve represents the training error? Please provide 1–2 sentences of justification.
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(a) Adding one outlier to the
original data set.

(b) Adding two outliers to the original data set.

(c) Adding three outliers to the original data set. Two
on one side and one on the other side.

(d) Duplicating the original data set.

(e) Duplicating the original data set and adding four
points that lie on the trajectory of the original regres-
sion line.

Figure 4: New data set Snew.
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Answer:
Curve (ii) is the training set. Training error increases as the training set increases in size (more points
to account for). However, the increase tapers out when the model generalizes well. Evidently, curve (i)
is testing, since larger training sets better form generalized models, which reduces testing error.

(ii) [0 pts] In one word, what does the gap between the two curves represent?

Answer:
Overfitting

(c) We have a set of 2-dimensional data points {x(1),x(2), ...,x(N)} with x(i) ∈ R2, and their corresponding labels
{y(1), y(2), ..., yN)} with y(i) ∈ {0, 1} shown below in figure 5. Let “◦” denote 1 and “×” denote 0.

Figure 5: Non-linear classification boundary

(i) [0 pts] True or False: We can engineer a set of features such that a binary logistic regression model
trained on the transformed features perfectly categorizes this dataset.

 True

⃝ False

(ii) [0 pts] If true, please specify the feature map ϕ(x1, x2) such that binary logistic regression can perfectly
categorize the above dataset. If false, please explain why.

Answer:
For example, ϕ(x1, x2) = [1, x2

1, x
2
2]

T . A model such as y = g(θ0 + θ1x
2
1 + θ2x

2
2), θi ∈ R, can perfectly

categorize such model.
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Q6. [0 pts] Regularization

(a) Select all that apply: Recall in regularization, given an objective function J(Θ), we have

Θ̂ = argmin
Θ

J(Θ) + λr(Θ)

where r(Θ) is the regularization term. Which of the following are true.

□ The recommended way to choose λ is to pick the value of λ that minimizes the training set error.

⊠ The recommended way to choose λ is to pick the value of λ that minimizes the validation error.

□ The recommended way to choose λ is to pick the value of λ that minimizes the test set error.

(b) Select all that apply: Which of the following is true about the regularization parameter λ.

□ Larger values of λ can overfit the data.

□ Larger λ does not affect the performance of your hypothesis

⊠ Adding a regularization term to a classifier, (λ > 0), may cause more training examples to be classified
incorrectly.

(c) In logistic regression, adding a regularization term typically results in a decrease in the training error.

⃝ True

 False

Explain:
False. Regularization prevents overfitting — overfitting leads to trivially low training error.

(d) In the unregularized binary logistic regression, the log likelihood may be written as:

ℓ (w) =

N∑
i=1

(
y(i)wTx(i) − log

(
1 + exp(wTx(i))

))
In this question, the goal is to find the following parameter estimates by optimizing the objective function with
an extra regularization term:

ŵ = argmax
w

f(w),

f(w) = ℓ (w)− 1

2

M∑
m=1

qm(wm)2

where, instead of a single hyperparameter, λ, we have a hyperparameter, qm, on each weight.

Write the partial derivative of the objective function, f with respect to its m-th feature, ∂f
∂wm

. You do not need
to simplify the final form with linear algebra.

Answer:

∂f

∂wm
=

∂

∂wm

(
N∑
i=1

(
y(i)wTx(i) − log

(
1 + exp(wTx(i))

))
− 1

2

M∑
m=1

qm(wm)2

)

=

n∑
i=1

(
y(i)x(i)

m − exp(wTx(i))

1 + exp(wTx(i))
x(i)
m

)
− 1

2
qm ∗ 2wm

=

n∑
i=1

(
y(i)x(i)

m − exp(wTx(i))

1 + exp(wTx(i))
x(i)
m

)
− qmwm
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Q7. [0 pts] Optimization

(a) Select all that apply: Which of the following are correct regarding Gradient Descent (GD) and stochastic
gradient descent (SGD)

□ Each update step in SGD pushes the parameter vector closer to the parameter vector that minimizes
the objective function.

⊠ The gradient computed in SGD is, in expectation, equal to the gradient computed in GD.

□ The gradient computed in GD has a higher variance than that computed in SGD, which is why in
practice SGD converges faster in time than GD.

Explanation:
B is the correct answer. A is incorrect, SGD updates are high in variance and may not go in the direction
of the true gradient. C is incorrect, for the same reason.

(b) (i) [0 pts] Determine if the following 1-D functions are convex. Assume that the domain of each function is
R. The definition of a convex function is as follows:

f(x) is convex ⇐⇒ f(αx+ (1− α)z) ≤ αf(x) + (1− α)f(z),∀α ∈ [0, 1] and ∀x, z.

Select all convex functions:

⊠ f(x) = x+ b for any b ∈ R
⊠ f(x) = c2x for any c ∈ R
□ f(x) = ax2 + b for any a ∈ R and any b ∈ R
⊠ f(x) = 0

□ None of the Above

Explanation:
f(x) = x+ b for any b ∈ R, f(x) = c2x for any c ∈ R, f(x) = 0.

(ii) [0 pts] Consider the convex function f(z) = z2. Let α be our learning rate in gradient descent.

For which values of α will limt→∞ f(z(t)) = 0, assuming the initial value of z is z(0) = 1 and z(t) is the
value of z after the t-th iteration of gradient descent.

Select all that apply:

□ α = 0

⊠ α = 1
2

□ α = 1

□ α = 2

□ None of the Above

Explanation:
α = 1

2

(iii) [0 pts] Give the range of all values for α ≥ 0 such that limt→∞ f(z(t)) = 0, assuming the initial value of
z is z(0) = 1. Be specific.

Explanation:
(0, 1).
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Q8. [0 pts] MLE

(a) Let D = X1, X2, . . . , XN be a set of i.i.d. random variables with a Poisson probability distribution.

p(X = x | λ) = λxe−λ

x!

Derive the maximum likelihood estimate for D.

Answer:

L(λ) =

N∏
i=1

p (xi|λ) =
N∏
i=1

λxie−λ (xi!)
−1

Take log of both sides. RHS will be

N∑
i=1

log
[
λxie−λ (xi!)

−1
]

N∑
i=1

xi log λ− λ− log (xi!)

Differentiate wrt λ to get:

N∑
i=1

(xi

λ
− 1
)

Simplify further to get:

λ =

∑N
i=1 xi

N



22

Q9. [0 pts] Neural Networks

(a) Select all that apply: The XOR function for two binary variables x and y is defined as follows:

f(x, y) = 0, x = y

= 1, x ̸= y

Based on this information, select all statements which are true.

□ The XOR function is linearly separable.

⊠ A single-layer perceptron is incapable of representing the XOR function.

□ A multi-layer perceptron is incapable of representing the XOR function.

□ None of the above.

Answer:
B is the only correct option. The XOR function is not linearly separable, hence a single-layer perceptron
cannot represent it but a multi-layer perceptron can.

(b) Consider the neural network architecture shown below for a binary classification problem.

We define:

a1 = w11x1 + b11

a2 = w12x1 + b12

a3 = w21z1 + w22z2 + b21

z1 = ReLU(a1)

z2 = ReLU(a2)

z3 = g(a3)

g(x) =
1

1 + e−x

(i) [0 pts] Write the partial derivative of loss function L(y, z3) with respect to the bias term b21,
∂L
∂b21

, in terms

of the partial derivatives ∂α
∂β , where α and β can be any of L, zi, ai, bij , wij , x1 for all valid values of i,j.

Your answer should be as explicit as possible – that is, making sure each partial derivative ∂α
∂β cannot be

decomposed further into simpler partial derivatives. Do NOT evaluate the partial derivatives.

Answer:
∂L
∂b21

= ∂L
∂z3

∂z3
∂a3

∂a3

∂b21
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(ii) [0 pts] Using the same neural network, write the partial derivative of the loss function L(y, z3) with
respect to the bias term b12,

∂L
∂b12

, in terms of the partial derivatives ∂α
∂β , where α and β can be any of

L, zi, ai, bij , wij , x1 for all valid values of i,j. Your answer should be as explicit as possible—that is, make
sure each partial derivative ∂α

∂β cannot be decomposed further into simpler partial derivatives. Do NOT
evaluate the partial derivatives.

Answer:
∂L
∂b12

= ∂L
∂z3

∂z3
∂a3

∂a3

∂z2
∂z2
∂a2

∂a2

∂b12



24

THIS PAGE INTENTIONALLY LEFT BLANK


