10-315: Introduction to Machine Learning Recitation 5

1 Definitions

(a)

()

Convexity: A function f: RM — R is convex if and only if Yo € [0,1], ie., 0 < a < 1,
flaxi + (1 —a)x2) < af(x1) + (1 —a)f(x2)

You can think of a convex function as a curve or surface that opens upward like a smiley face. It could
also be completely flat or flat in some places, but it definitely can’t curve/bend downward.

Multivariate Chain Rule: Let f : RY — R. Let g; : R — R for all i € {1,2,...,N}. Let € R,
z; = gi(x), and y = f(g1(x), g2(2),...,gn(2)). Then, the multivariate chain rule states that:

N

%f(gl(fﬂ)»fh(x), . gn(2) = Z dy dz;
i=1

dz; dx

If instead, we combined all of the g; functions into one function g : R — RY z = g(z), we effectively
have the same thing but now using vectors (and partial derivatives). Given y = f(g(z))

9 ey =S 205 _Oy0e
or & n 08z; Ox ~ 0z Oz

i=1

Note that the above chain rule is written according to numerator layout. If specified to use denominator
layout, the order of the derivatives is opposite that of numerator layout.

Numerator layout | Denominator layout | Notes
& Fg(), n(t)) o gy drdh Same F:RxR) >R, teR
g:R—>R A:R—>R
& F D), () | XL, L Same fi(Rx - xR) >R teR
fi: R—>R Vie{l,...,N}
%f(g(t)) %é%% %%% f:RYN 5R, g:R— RV
teR
= (&) 5/ % 29/ fiRY SR, g:RM 4 RV
veRM
2 f(g(v),h(v)) 908 1 Gioh 80l | ohif h:RE xRN SR, veRM
f:RM 5 RE g:RM 4 RN

Neural Network: A machine learning model that aims to approximate some function through the
composition of both linear and nonlinear functions. There are two parts of neural networks: forward
pass and backpropagation.

(a) Forward Pass: The process of calculating the predicted output of your network (and correspond-
ing loss), given data, weights, and network structure. Given the input data x, we can 1) transform
the data using the weights associated with the first layer, W, then 2) apply the corresponding
activation function to the output, and then 3) pass the result to the next layer and repeat. The
forward pass does not involve taking derivatives and proceeds from the input layer to the output
layer.

(b) Backpropagation: Given a neural network and a corresponding loss function, backpropagation
gives us the gradient of the loss function with respect to the weights of the neural network. The
method is called backward propagation because to efficiently apply the chain rule repeatedly, we
calculate the dervatives of the final layer first, then proceed backward to the first layer.
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(d) Activation Function: A nonlinear function, that is added to a neural network in order to help the

network learn more complex patterns in the data. A few common ones are listed below.

Name Function Definition Derivative
logistic (sigmoid) g(z) = 1+£_Z g (z) = g(2)(1 — g(2))
tanh 9(z) = zi;—zii 1—g%(2)

1 ifz2>0
ReLU — max(0, /() =
: o2 =max(0,2) | g(2) {0 o
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2 Chain Rule Is All You Need

Note: Just generic math notation here. So, for example, h(x) definitely doesn’t refer to a hypothesis function.

Let m:R?2 -5 R, g: R =R, and h: R — R be functions defined as follows:
o m(x1,x2) = T2 Note: we used m for multiply :)
e g(x) =sin(x)
o h(x) =212
Suppose x € R is given. We define the composite function y = m(u,v) = m(g(z), h(x)), where u = g(x) and
v = h(x).
dy dy du

1. Apply multivariate chain rule to write g—g in terms of 5Z, 2% 4 and %'

4 )
dx_da?mu’v

_dydu | dyd
T dudr  dvdx

2. Find Z—Z using the equation from the previous part.

dy _dydu  dydv

dr  dudr = dvdx
= v(cosx) + u(2x)

= 2% cos x + 2 sin(z)

3. Rewrite the equation from part 1 to show that d(dlf) =udt 4 pdu,
d(uv) dy
de ~ dz
_dydu  dydv
T dudr ' dvdx
_ du dv
= U% + U@

4. Note that the statement proven in part 3 is the product rule. Now, try to prove the quotient rule in a
similar way. Let ¢ : R? — R and y € R such that q(xq,72) = 2 and y = q(u,v) = q(g(x), h(z)). Prove
the following equation:

d d
dy _ Vg — Vg
dx 02

dy_dydl dy@

dr  dudx ' dvdx

_ (1) (du) _udv
T \w dx v2 da
du dv
Ve ~ Y

02
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3 Neural Networks Are Fun

Assume we have the following data point x:

with corresponding binary label:

which is part of a larger dataset X with binary labels y.

Pat has tasked you with creating a neural network to solve this classification problem. For the loss function,
he wants you to use the squared error: £(y,9) = (y —9)?. (Pat would like to note that using squared error for
classification problems is very strange!) He also requests you to use stochastic gradient descent to train the
network by minimizing the loss. Finally, he specifies that the neural network should have only one hidden
layer with two neurons, a ReLLU activation function at the hidden layer, a sigmoid activation function at the
output layer, and all bias terms should be included.

3.1 Forward Pass

1. Draw what the neural network will look like.

Tl ——— > ¥ > 21,1 > ReLU P> a1
w,b \
/

Ty ————| Y > 21,2 | ReLU > a2 w,b

S %2 > 0>y >

J

2. We often group weights into a single matrix for each layer of neurons. How many weight matrices are
there in the neural network?
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Assume our weights and biases are as follows with W;; ; and b; where [ represents the layer and 4, j
represent the row and column index, respectively:

Wity Wine| _ |3 —1
Wioa1 Wipgo -3 1

b1 |2
=l =

Wy = [War1 Waip] =[-2 2]

Here are some intermediate values that we’ll use going forward (haha, “forward” and“backward”):

For the hidden layer

7z = W1X + b1
a = RelLU(zq)
For the output layer
Z9 = Wza -+ b2
§=0(z)

3. What are the values in z7, the output of the hidden neurons before applying the activation? Recall we
need to add an extra one to the start of x vector to account for the bias term in this layer!

o= 4 [ [

4. What is a, the output values of our hidden neurons?

We need to apply the ReLU function to this vector to get the output. Recall that the ReLU
function is applied to each element individually and is defined as:

g(x) = max(0, )

Our output will be a = [g}

5. What is z3, the values from the output layer (before activation)?
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29 =Waa+by=[-2 2] m +1=—-6+0+1=-5

\.

6. What is our final output §?

We need to apply the sigmoid function to the value z5.

§ = 135 = 0.00669

7. What does our model classify x as?

8. What is the loss ¢(y, §) on this example? (Note: recall that Pat admitted that using squared error with
classification is strange, but we can still do it.)

Uy, 9) = (y — )% = (1 — 0.00669)? = 0.98666

Objective Function

When we are considering all of the training data, as we do in gradient descent, our objective function is:

(Wi, Waiy, X) = }Vie (v9.92) 1)
i=1
- % ZN: (y(i) p (WgReLU (Wlx@ + bl) + bz))2 2)
i=1

However, when we are using stochastic gradient descent, our objective function is with respect to just one
training point, x, y, at a time and thus, the output of the loss, ¢, is our objective function for that one point:

J(Wi, Wasy,x) = £ (y, 7) (3)
= (y — o (WaReLU (Wix + by) + by))? (4)
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3.2 Parameter Counting

1. How many parameters are learned in the first hidden linear layer?

The parameters are the weights and biases learned. Since the first weight matrix is W; € R?*2
and the bias is by € R?*!, there are 6 parameters in the first linear layer.

2. How many parameters are learned in the first activation layer?

0. Activation layers do not learn parameters.

3. How many parameters are learned in the entire neural network?

9. There are 6 parameters from the first linear layer and 3 parameters from the second linear
layer.

3.3 Backpropagation

Since our goal is to find the best weights that optimize our neural network, now we’ll do backpropagation
to update the weights we were given. You will need to calculate the derivative of J with respect to the
weights W7 and Wa, then you use gradient descent to update them. Throughout this assignment, we will use
numerator layout for our derivatives!

: : ‘o 3 : : . oJ oJ
In the interest of time, let’s just calculate the derivatives: Waia and Wiis

Let’s start with #2‘]11, where Wy 11 is the 1,1 entry in Wy weight matrix.

1. Using the multivariate chain rule, write the derivative chain expression for m{?j —.

Hint: think about writing out the chain rule as d-out/d-in for cach layer: Gutout . SBout

8J o 8y 9z

OWa1,1 0y 9z2 OWa,11

2. What is %? Write in terms of y and g

—2(y —9)
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3. What is g—i? Write in terms of zo (but then simplify it to write in terms of just §).

The derivative of the sigmoid function is o(z2)(1 — o(22)).

We can simplify this further as g(1 — 7).

: 8Z2 ?
4. What is o

29 = Woa+by =Wy 1 1a1 + Wa o102 + by

5. Finally, what is 8‘/32‘]1 - ? Hint: remember the chain rule that we wrote for this above.

0] o0 oj 0
OWar1 @372’23‘/[/2,1,1
=-2(y—-9y(l-9)-3
= —2(1 —0.00669)(0.00669) (1 — 0.00669)(3) = —0.03960

J

Now we will calculate the derivative with respect to Wy i o: %, where Wy 1 is the 1,2 entry in W,
weight matrix.

6. What is the derivative chain expression for --22—? Reminder: d-out /d-in, d-out/d-in, ...
oW1 1,2

oJ Of 0y Oz Oa Oz

OWr1,2 ~ 09 0z2 Oa 0z1 OWi 1,2

Note: Here’s a huge shortcut that we’ll take. Given that there are some zeros in various
partial derivatives when we only need the derivative with respect to Wi 1 2 (not requiring the
full vector a but only aq), we can do:

8J Ol O Ozy da; Oz11

3W1,1,2 - 8’!] 0z2 Oay 821,1 3W1,1,2

. J

We already have the first two derivatives calculated from the previous question.

7. What is 9227
aq

2o = Woa+by = Wo 1 1a1 + Wa i 202 + bo

P
g =Wa11=-2
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8.

10.

11.

What is ;247
21,1

This is the derivative of the ReL U function, which is equal to 1 if the input is greater than 0,
else it is equal to 0 if the input is less than 0. In this case, since z1,; = 3, the derivative is 1.

. What is 0227

oOWi 12"

2110 = Wiz +Wii222 + b1
0z1,1 _
OWii2 Tz =5

oJ 9

Finally, what is Wris

sl = —2(y — )31 — §)(=2)(1)(5)
= —2(1 — 0.00669)(0.00669)(1 — 0.00669)(—2)(1)(5) = 0.13202

. J

What is our updated W3 ;1 and W 1 o if we use learning rate o = 27

Recall gradient descent rule: 9§t+1) = 0§t) — agTJj
Wai11=—-2—2-(—0.03960) = —1.9208 '

Wiq2=—-1-2-(0.13202) = —1.2640

Conceptually Understanding Neural Networks

. Compare neural networks with linear regression and logistic regression. How are the models similar,

and how are they different?

One similarity between all three models is that they can be trained using gradient descent.
Only linear regression has a closed-form solution.

Neural networks are the only model within the three that can model nonlinear data without
using feature engineering. This is due to nonlinear activation functions. On the other hand,
linear regression and logistic regression are simpler models. If they perform well enough, they
may be preferred because they are more interpretable.




	Definitions
	Chain Rule Is All You Need
	Neural Networks Are Fun
	Forward Pass
	Parameter Counting
	Backpropagation

	Conceptually Understanding Neural Networks

