10-315 Notes
Word Embeddings
Version: 0.1

Carnegie Mellon University
Machine Learning Department

Contents
1 Word embeddings
2 Running example

3 Word Embedding Language Model
3.1 Task: Text Generation e
3.2 Model e
3.3 Cosine Similarity
3.4 Sampling

3.5 Training

1 Word embeddings

When processing text, we need to convert words into numbers. One way to do this is to use a one-hot
encoding, where each word in the vocabulary is represented by a vector of zeros with a single one at
the index corresponding to that word. For example, if our vocabulary is {dog, ran, the}, then the
one-hot encoding for “ran” would be [0, 1,0]. However, this representation has some limitations. For
example, it does not capture any information about the relationships between words. To address
this, we can use word embeddings, which are dense vector representations of words that capture
their meanings and relationships. Word embeddings are typically learned from large corpora of text
using neural networks. The idea is to train a model to predict the next word in a sentence given
the previous words. During this process, the model learns to represent words that appear in similar
contexts with similar vectors.

Word embeddings allow us to embed words (or more genearlly, tokens) into vectors of real numbers.
They also help us to unembed vectors, converting them back into words. Note: while we commonly
refer to “word embeddings”, it would be more accurate to refer to them as “token embeddings”,
since they can be used for any token, not just words. For example, we can use them for punctuation
marks, numbers, portions of words, and even emojis and other character symbols.

Word embedding models are sometimes trained independently of the task at hand, and the resulting
embeddings are then used to engineer features for other NLP tasks, such as sentiment analysis or
named entity recognition.

Alternatively, word embeddings can be trained as part of a larger model that is specifically designed
for a particular task. In this case, the embeddings are learned in conjunction with the other param-
eters of the model, and they are optimized to perform well on that task. This is the approach used
in many modern large language models, such as GPT and LLaMA. Word embeddings are one of the
first and last layers in these models.

Current text Large Next text

l Language
Model 4—* Sampling

e.g GPT, Llama, etc !

Input tokens Next token Probabilty
of each token
in vocab
Word Many layers of Output o] soft
Embedding transformer/attention blocks ! Embedding ! " ormax
! !
Embedded Embedded Similarity scores
vector vector for each token
representation representation in vocab

2 Running example

Through these notes, we’ll use the following training corpus as a running example. A corpus is just
a body of text, often much, much bigger than this small example. Our training corpus is tokenized
into words and puctuation tokens. The resulting vocabulary is the set of unique tokens in the
corpus and in this case is only 8 tokens long.

Corpus:

The
The
The
The
The

dog ran.
dog ate.

dog ran
cat ate
cat ran

(Simple) Tokenized Corpus:

L

the zoo.
the dog!
the zoo.

'the',
'dOg' R
'ran',
'cat',
'the',
'zoo',

'dog',
'ate',
'the',
'ate',
'cat',

]

'ran',
1 1 1
. b

zZoo',
"the',
'ran',

Vocabulary:
l.l’ '"the', .
the', 'dog', [C
l'l lthel * >
ldogl I!l late"
‘the', cat’,

3 Word Embedding Language Model

We are going to implement a really small language model (LM) that predicts the next word in a
sentence given the previous word. We are essentially striping out all of the attention/transformer
layers in a large language model (LLM) and just using the embedding layers. This is a very simple
model, but it will help us to understand the critical concept of vector representation of words and
how they are used in LLMs, including the attention mechanism.

Current text

|

Input tokens

Word

Embedding

Really Small Next text
Language
Model 4—|| Sampling
I F 9
Next token Probabilty
of each token
in vocab
o Output N
! "| Embedding ! »|__Softmax
i i
Embedded Similarity scores
vector for each token

representation

in vocab

3.1 Task: Text Generation

The task for our language model is to predict the next token in a sentence given the previous token.
This is a common task in natural language processing (NLP) and is often used as a benchmark for
evaluating the performance of language models. In our simple language model, we’ll only use one
previous token as our input context. In a more complex model, we could use multiple previous
tokens as input, but for our purposes, we’ll keep it simple.

This is equivalent to a Markov chain of order 1, where the next state (token) depends only on the
current state (token). In our case, the current state is the previous token, and the next state is the
token we want to predict:

p(Xer1 | X1,X2,. ..

,Xt) = p(Xeq1 | X¢)

Thus, our task is to learn the conditional probability of the next token given the previous token:

X1 = h(x¢) = p(Xe41 | x¢)

3.2 Model

Let K be the the hyperparameter that defines the length of the embedded vectors and let Nyocap
be the size of the vocabulary. Our model will have two sets of K-dimensional vectors for each
token in the vocabulary: one for the previous token and one for the next token. Theses vectors
are parameters; they will be initialized randomly and then updated as we train our model to better
predict the next token.

We will stack these two sets of Nyoeqp vectors into the rows of two Nyoeqp X K matrices, V and U.

Below are examples of V' and U for a for our example dataset with embedded dimension K = 2.
These are the randomly initialized vectors for each token in the vocabulary. Conveniently, K = 2,
so we can visualize the vectors in the 2D embedded space.

Random initialization

V:
I 0.884, 0.196

0.358, -2.343 37
ate: -1.085, 0.560
cat: 0.939, -0.978 5] |
dog: 0.503, 0.406 o cat
ran: 0.323, -0.493 F
the: -0.792, -0.842 11
zoo: -1.280, 0.246

0
U:
I -0.044, 1.568 iy
. 1.051, 0.406
ate: -0.169, -3.190
cat: 1.120, 1.333 -2
dog: -0.243, -0.130
ran: -0.109, 1.556 -3 J
the: 0.129, -2.067 atd
zoo: -0.885, -1.105 , ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3

In the figure below, we can see the V and U vectors before and after training for 10,000 epochs. At
first glance, they both look pretty random, but as we learn more about sampling and training our
model, we’ll be able to see some organization in the trained vectors.

Random initialization Epoch 10000
4
3
2 ran
1 cat 2
1 the ran
dog
0 0 cat
ate
-1
-2
-2
-3
—4 the
-3 2 3 —4 -2 0 2 4

3.3 Cosine Similarity

The way that our model works is that we take the vector associated with the previous token, v; and
compare it to all of the next token vectors in U.

Process:
1. Look up the index ¢ for the vocab token ‘the’
2. Access the i-th row of V, v;

3. Compare v; to all of the rows of U
For example, if the previous token is ‘the’, then we focus only on the vector for ‘the’ from V and
compare it to all of the vectors in U. Given the plots below for previous token ‘the’, what do you

think the model will predict as the next token? We would probably expect the model to predict
‘dog’ as the next token, as the dog vector in U seems to be the most similar to the ‘the’ vector in V.

Epoch 10000

Prev: the ®

To make this more rigorous, we need to define a similarity metric to compare two vectors. We've
seen Euclidean distance before d(u,v) = |lu—v||2, but a more common metric for comparing vectors
is within neural networks is dot product similarity or (unnormalized) cosine similarity.

Cosine similarity is defined as the cosine of the angle between two vectors. It is a measure of how
similar two vectors are, regardless of their magnitude. The cosine similarity between two vectors u

and v is defined as:

uTv

FY) = T

This is equivalent to the dot product of the two vectors divided by the product of their magnitudes.
The cosine similarity ranges from -1 to 1, where 1 indicates that the two vectors are identical, 0
indicates that they are orthogonal (i.e., not similar), and -1 indicates that they are opposite.

Rather than using the cosine similarity, we use the much more computationally efficient dot product
similarity. The dot product simliarity just drops the normalization aspect of cosine similarity, so we
can just use the dot product of the two vectors:

flu,v)=u'v

See our Desmos demo for (unnormalized) cosine similarity. Moving these vectors around, you can
see how both the angle and the magnitude of the vectors affect the similarity score. Rather than
having values range from -1 to 1, the dot product similarity can take on any value from —oo to co.

Input; "eat"
-

/-~ #"green" Similarity=3
"them" Similarity=0 @&

3.4 Sampling

Now that we have similarity scores we can use them to choose the next token. We could simply
take the argmax of the similarity scores. However, given that this is really a classification problem
(where the classes are the tokens in the vocabulary), we can would much rather have a probability
distribution over next tokens. Just like in logistic regression, we can use the softmax function to
convert the similarity scores into a probability distribution over the next tokens.

Epoch 10000 Epoch 10000
Loss: 0.7114
4 4
2 . 2
Prev: the A o Prev: the :

L -

0 0
2]

-2 -2

L]
—4 ° -4

-4 -2 0 2 4 -4 -2 0 2 4

For previous token ‘the’ and next token vectors shown above, we can compute the similarity scores
all once with U ij and then apply the softmax function to get the probability distribution over the
next tokens.

Similarity scores UQv: Probabilities softmax(UQv):
the ! -0.823 the ! 0.002
the . 0.683 the . 0.008
the ate -6.376 the ate 0.000
the cat 4.174 the cat 0.250
the dog 4.860 the dog 0.496
the ran -3.803 the ran 0.000
the the -7.149 the the 0.000
the zoo 4.152 the zoo 0.245

https://www.desmos.com/calculator/82m4zkjlkc

3.5 Training

Vectors before and after training, weighted by X;11 = p(x¢41 | 2 = ‘the?)

Random initialization Epoch 10000
Loss: 2.8257 4 Loss: 0.7114
3
2
2
1 . Brev: the
0 0
do
-1 Prev: thé
-2
-2
-3
-4
3 2 -1 o0 1 2 3 -4 -2 0 2 a

)

20 generated tokens from untrained (randomly initialized) model starting with context “the dog”:
the dog cat ate ran zoo zoo zoo dog dog cat cat ate ran . ate . ate ate ! the ate
20 generated tokens from trained model starting with context “the dog”:

the dog ate . the dog ! the zoo . the dog ran the zoo . the dog ate the dog !

References

Y. Bengio, R. Ducharme, P. Vincent. A neural probabilistic language model. Journal of Machine
Learning Research, 3:1137-1155, 2003. https://www. jmlr.org/papers/volume3/bengio03a/bengiol3a.
pdf

T. Mikolov, K. Chen, G. Corrado, J. Dean. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013. https://arxiv.org/pdf/1301.3781

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://arxiv.org/pdf/1301.3781

	Word embeddings
	Running example
	Word Embedding Language Model
	Task: Text Generation
	Model
	Cosine Similarity
	Sampling
	Training

