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1 Summary: Generative vs Discriminative andMLE vs MAP

An overview highlighting the differences and similarities between MLE vs MAP estimation and

discriminative vs generative models in one table:

Maximum likelihood estimation Maximum a posteriori estimation
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2 Bayes Rule (again)

2.1 Bayes rule: General version

Recall the we can write Bayes rule in terms of generic variables a and b, without assigning particular

meaning to them:

p(a | b) = p(b | a) p(a)
p(b)

p(a | b) ∝ p(b | a) p(a)

2.2 Bayes rule: Data and parameters

When formulating a MAP estimate with the dataset D = {y(i)}Ni=1 and generic model parameter(s)

θ, we used Bayes rule to convert the likelihood and prior into the posterior:

p(θ | D) =
p(θ) p(D | θ)

p(D)

p(θ | D) ∝ p(θ) p(D | θ)

= p(θ)

N∏
i=1

p(y(i) | θ)

where:

• p(D | θ) is the likelihood,

• p(θ) is the prior on the parameters, and

• p(θ | D) is the posterior

Additonally, if we had a dataset D = {(x(i), y(i))}Ni=1, we defined the conditional likelihood as follows

p(D | θ) =
∏N

i=1 p(y
(i) | x(i), θ). We can then similarly formulate a MAP estimate with this dataset

over generic model parameter(s), θ by using the Bayes rule to convert the conditional likelihood

and prior into the posterior:

p(θ | D) =
p(θ) p(D | θ)

p(D)

p(θ | D) ∝ p(θ) p(D | θ)

= p(θ)

N∏
i=1

p(y(i) | x(i), θ)

where:

• p(D | θ) is the conditional likelihood,

• p(θ) is the prior on the parameters, and

• p(θ | D) is the posterior
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2.3 Bayes rule: ML input and output data

What if we take the generic Bayes rule formula and use variables x and y, where x and y represent

the input and output of a machine learning prediction problem:

p(y | x) = p(x | y) p(y)
p(x)

p(y | x) ∝ p(x | y) p(y)

Now this takes on a different meaning than the use of Bayes rule in the MAP formulation above.

Here, we have that

• p(x | y) is defined as the class conditional distribution

• p(y) is the label class prior distribution

• p(y | x) is the conditional likelihood

3 Discriminative vs Generative Models

First, when we define a machine learning model, it falls into either one of two categories: discrimi-

native or generative models. We define the key difference between the two types of models below.

A discriminative model is when we directly model the p(y | x, θ) distribution, i.e. the conditional
likelihood (the output data given the input data and the parameters).

A generative model is a more in-depth model that directly or indirectly models the p(x, y | θ)
distribution, i.e. the likelihood (the joint distribution of input and output data given the parameters).

3.1 Discriminative Models

So far, we have only been using discriminative models to represent the relationship between the

input, x, and the output, y, so far. For example, logistic regression is a discriminative model. The

term discriminative comes from the fact that we are trying to discriminate between different classes

of y, given information about x. Despite the term “discriminative,” we can also use discriminative

models for regression, e.g. linear regression is a discriminative model.

A discriminative model is convenient because it directly gives us the probability distributions that

we are typically interested in for machine learning tasks, namely p(y | x, θ). However, it is not a very

strong probability model. One property of a strong probability model is its ability to generate new

data points. If we only have the distribution p(y | x, θ), we can sample a new value of y ∼ p(y | x, θ),
but only if we have the input data, x. A discriminative model doesn’t provide us with a way to

sample values for the input data, x.

3.1.1 Example: Iris Classification

The canonical discriminative model for classification is logistic regression. Consider the case where

we apply logistic regression to classify two species of Iris flowers given their petal measurements.

Here is a plot of the Iris data with just two species and just two of the four input parameters:
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To simplify our introductory examples, let’s just consider a single feature, x1, as shown in the

histogram below:
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When applying logistic regression to model this classification task, we learn the slope and intercept

parameters of a linear model, z = wx1 + b, inside of a logistic function, p(y | x1, w, b) =
1

1+e−(wx1+b) :
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While logistic regression does seem to be doing the right thing, i.e., predicting P (Y = 1 | x1) values

> 0.5 when x1 is greater than 5.5. However, it seems overly simplistic to have the underlying model

be based on a linear expression of the input data. Let’s now turn to generative models, which may

be more satisfying.
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3.2 Generative Models

Bear with us a moment as we build up to a generative model by continuing with our iris example

from above.

3.2.1 Example: Iris Classification

Looking at the single-feature version of the iris dataset, one might suspect that a Gaussian distri-

bution may be helpful to model this data, especially when we visualize the two species Y = 0 and

Y = 1 separately:
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If we only consider x1 values for the datapoints with Y = 0 (blue triangles), then we can estimate the

Gaussian mean and standard deviation parameters, which gives us a model for the Gaussian density,

p(x1 | Y = 0, µY=0, σY=0), shown on the left below. Similarly, but separately, we can estimate the

Gaussian parameters for only the Y = 1 points in our dataset, p(x1 | Y = 1, µY=1, σY=1), shown on

the right below.
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These two distributions are called class conditional distributions, as they both require the class of

the output variable Y to be given. It is important to note (and easy to forget later), that these are

two different distributions with two different mean and standard deviation parameters. By plotting

these together, as in the figure below, we can see that µY=0 and µY=1 are different, as are σY=0

and σY=1, so there are four total parameters, because there are two Gaussians, and we have two

parameters for each Gaussian (a µ and a σ).
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Now while these two class conditional distributions, p(x1 | y, µy, σy) are interesting, they don’t really

provide enough information for our desired probability p(y | x1). In fact, if you look at the plot

above, you might guess that the decision boundary for p(y | x1) = 0.5 is roughly x1 = 6.5, where

the blue and orange Gaussian density functions intersect. However, this is incorrect! We need one

more piece of the puzzle to help us convert from the p(x1 | y) distributions to the desired p(y | x1).

Enter Bayes rule:

If we also have the class prior distributions, p(y), then we have enough information to apply Bayes

rule to get to the desired conditional likelihood p(y | x1).

Fortunately, we can model P (Y = 1) (and simultaneously P (Y = 0)) as a Bernoulli distribution, and

estimate the Bernoulli parameter ϕ by simply calculating the fraction of occurrences of Y = 1 in the

dataset out of the total N points. Multiplying this class prior times the class conditional, we arrive

at the numerator of Bayes rule, p(x1 | y) p(y), which can be written as the joint probability p(x1, y).

Below are the plots of the following two joint distributions for our iris example: p(x1, Y = 1) and

p(x1, Y = 0):
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Using Bayes rule to normalize these, we arrive at the desired conditional likelihood p(y | x1):

p(Y = 1 | x1) =
p(x | Y = 1) P (Y = 1)

p(x)
(1)

=
p(x | Y = 1) P (Y = 1)∑

y p(x, y)
(2)

=
p(x | Y = 1) P (Y = 1)

p(x, Y = 0) + p(x, Y = 1)
(3)

=
p(x | Y = 1) P (Y = 1)

p(x | Y = 0)P (Y = 0) + p(x | Y = 1)P (Y = 1)
(4)
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This generative model of p(y | x1) ∝ p(x1 | y) p(y) seems to produce reasonable P (Y = 1 | x1) = 0.5

decision boundaries at x1 = 5.8 and at x1 = 4.2. The latter decision boundary makes some sense

when we consider the larger Gaussian standard deviation for p(x1 | Y = 1, µY=1, σY=1) scaled by

the also larger P (Y = 1, ϕ).
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Let’s recap what we have completed so far. We have modelled 3 different probability distributions

1. Prior: p(y | ϕ) using a Bernoulli distribution

2. Class Conditional Distributions:

• p(x1 | Y = 0, µY=0, σY=0) as a Gaussian

• p(x1 | Y = 1, µY=1, σY=1) as a Gaussian

Using these 3 models for the probability distribution, we were able to calculate p(Y = 1 | x1) using

these distributions above as shown in equation (4). As a result, not only is this model generative

because it models p(x1, y) = p(x1 | y) p(y) which we have defined the two distributions on the RHS

of the equality; however, it also has the capabilities of a discriminative model because it can estimate

P (Y = 1 | x1), although with a different decision boundary.

Now, what’s so powerful about this? We’ve defined more probability distributions (made more

assumptions) than the logistic regression model to create a more complex decision boundary for

P (Y = 1 | x1). We could create a more complex discriminative model that could perform something

similar (e.g. logistic regression with feature engineering), so what sets generative models apart from

discriminative models? It’s their ability to generate new data.

4 The Generative Story

Briefly, we will continue with the examples that we had before. Recall that our logistic regression

model had a model for the probability distribution p(y | x1) while we defined a generative model

with a Bernoulli class prior distribution, p(y) and Gaussian class conditional distributions, p(x1 | y).

Suppose that we wanted to sample new, unseen points, (x, y) pairs, from our model. If we had our

discriminative model, which models p(y | x1), we would not be able to generate new (x, y) pairs.

This is because p(y | x1) requires a known x1 value in order to generate a probability distribution

over the classes to sample from. However, requiring an x1 sample simply assumes what we are trying

to get, which is a new (x1, y) pair.

This is where generative models come in. A discriminative model’s distribution will not match a

joint distribution that we can sample from p(x1, y) ̸= p(y | x1). However, a generative model that

models the joint, p(x1, y), will be able to sample from the joint distribution because it can calculate

those probabilities.

For example, we can note that for our generative model that classifies the Iris dataset, p(x1, y) ∝
p(x1 | y) p(y). This means that we can use the p(x1 | y) and p(y) to sample from p(x1, y). The

generative process is as follows

1. First, sample a class, y, from p(y). Note that this must be done first because all other

probability distributions to sample from require a y value to condition on. In our case, this

sampling is done by flipping a biased coin with the probability matching that of the Bernoulli

distribution that p(y) represents.

2. Second, given the y from the prior step, sample a point, x1, using appropriate class conditional

distribution, p(x1 | Y = y). Recall that we can only perform this step once we have a known

Y = y value. Note that we can use one of the many algorithms to sample from a 1D-Gaussian

distribution.

7



3. Finally, take the (x1, y) pair. That is our new sample which did not occur in our original

dataset D. Instead, it was generated from our model which was fitted to model the

probability distribution that generated the dataset D.

As a result, we can see that any discriminative model can’t necessarily generate new samples due

to their limited modeling assumptions. However, by making stronger assumptions and defining the

class prior and class conditional distributions, we are able to construct a generative model which

then allows us to sample from it to generate new points.
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