
10-315 Notes

PCA, Recommender Systems, Clustering

Carnegie Mellon University

Machine Learning Department

Contents

1 PCA Math Background 2

1.1 PCA Motivation: Dimensionality Reduction . 2

1.2 Projections . 2

1.2.1 Scalar Projection . 2

1.2.2 Vector Projection . 3

1.3 Rotating Data . 3

1.3.1 Rotation . 3

1.3.2 Projection Matrix . 4

1.4 Covariance Matrix . 5

2 Recommender Systems 7

2.1 Examples . 7

2.2 Latent Factor Model . 8

2.2.1 Optimization . 8

3 Unsupervised Learning: Clustering 9

3.1 Examples . 9

3.2 K-means clustering . 10

3.2.1 Algorithm . 10

3.2.2 Optimization Formulation . 12

3.2.3 Alternating Minimization . 13

1

1 PCA Math Background

1.1 PCA Motivation: Dimensionality Reduction

Dimensionality reduction is a key technique in machine learning and data analysis. It aims to map

the original dataset to a smaller dimension, where each sample has fewer features. Dimensionality

reduction can be thought of as reducing the dimensions of the data matrix X from N ×M to N ×K

where K < M , hence the name dimensionality reduction. By reducing the number of features, we

can

• Reduce computational cost and therefore increase the training speed of our models because

there are fewer features to train on

• Improve model performance by excluding irrelevant or noisy features

• Reconstruct high-dimensional data in two or three dimensions for better visualization

Principal component analysis is just one dimensionality reduction strategy, which we will cover in

detail below.

1.2 Projections

1.2.1 Scalar Projection

Given two vectors in RN denoted x and v, the scalar projection of x onto v is defined as:

d =
v⊤x

∥v∥2

Note that if we assume that v is a unit vector, i.e., ∥v∥2 = 1, the projection formula is much simpler:

d = v⊤x

x

v

d

θ

The scalar projection, d, is the length of the vector x projected onto v. We can prove this geomet-

rically (recall that v⊤x = v · x = ∥v∥2∥x∥2 cos(θ)):

cos(θ) ≜
d

∥x∥2
d = ∥x∥2 cos(θ)

d =
v⊤x

∥v∥2

2

1.2.2 Vector Projection

Recall from linear algebra, the definition of vector projection. Given two vectors in RN denoted x

and v, the vector projection of x onto v, or projvx, is defined as:

z =
v⊤x

∥v∥2
v

∥v∥2

Note that if we assume that v is a unit vector, i.e., ∥v∥2 = 1, the projection formula is much simpler:

z =
(
v⊤x

)
v

The projected vector z lies in the direction of v and represents the component of x in the direction

of v. We can think of the projection z as a restriction of x to the v-axis. The vector projection is

visualized below:

x

vz

d

θ

Geometrically, the vector projection can be thought of as the vector z above, when both vectors are

anchored at the origin.

To develop a better understanding of how projections work and what they mean, feel free to use

this Desmos link. Moving around the u and v points in the Desmos link will change the projected

vector.

1.3 Rotating Data

Now that we have established an intuition for projections, we can use this concept for rotating data.

Recall that a basis for RN is a set of unit vectors V = {v1, . . . ,vN} such that any vector x ∈ RN

can be written as a linear combination of v1, . . . ,vN . When the basis vectors are perpendicular

to each other, they can also be thought of as the axes of our data. For example, the basis vectors

v1 = [1, 0]⊤ and v2 = [0, 1]⊤ represent the x-axis and y-axis in the standard Cartesian coordinate

system. You should observe that vector x ∈ R2 can be written as z1v1 + z2v2 where z1 and z2 are

scalars.

1.3.1 Rotation

We can transform the data to be aligned to any set of axes by projecting onto the corresponding set

of basis vectors. Consider the x = [2, 3]⊤. Now we will project x onto the basis vectors

v1 =

[
2√
5
,
1√
5

]⊤
and v2 =

[
−1√
5
,
2√
5

]⊤

3

https://www.desmos.com/calculator/ejek9vjv5n

Note that v1 and v2 are once again unit vectors. Performing the projection calculation, we have

that

z1 = v⊤
1 x =

7√
5
≈ 3.13

z2 = v⊤
2 x =

4√
5
≈ 1.79

−2 2

−2

2

z1 z2

v1

v2

x

A

−2 2

−2

2

z2

z1

v1

v2 z

B

1.3.2 Projection Matrix

You may have noticed that when the vi are unit vectors, zi is just the dot product of v1 and x. Let

us now define V as:

V =


− v⊤

1 −
...

− v⊤
N −


Then it follows that z = V x where the matrix V is called the projection matrix. Sometimes we

want to reconstruct the original x from the projection z. Let x′ = V ⊤z = V ⊤V x. When the

projection matrix V is a square matrix, we are projecting x into a space with the same number of

dimensions. Then V ⊤V = I =⇒ x′ = x, so we can reconstruct x perfectly. When we project into

a lower-dimensional space, V is not a square matrix and thus we cannot reconstruct x perfectly.

Now, we can consider reversing that rotation through a different rotation matrix. Define U = V ⊤.

We can see that by applying the rotation U onto z, we get x′ = Uz. Note that this is simply another

rotation; however, because we have specifically chosen U = V −1 = V ⊤, we get that x′ = x.

Intuitively, if x represents the data in terms of the standard basis [1, 0]⊤ and [0, 1]⊤, then z represents

the data in terms of v1 =

[
2√
5
,
1√
5

]
and v2 =

[
−1√
5
,
2√
5

]
. We can visualize what is happening

below. Moving from plot A to plot B represents applying the rotation matrix V onto x to get z.

Then, by moving from plot C to D, we can see the reverse step by applying the rotation matrix U

onto z to get x′.

4

−2 2

−2

2

z1 z2

v1

v2

x

A

−2 2

−2

2

z2

z1

v1

v2 z

B

−2 2

−2

2
x′
2

x′
1

u1

u2

x′

D

−2 2

−2

2

x′
2

x′
1

u1

u2 z

C

1.4 Covariance Matrix

You may be wondering what we mean by the variance of our dataset. In machine learning, when

our dataset D has multiple features, each sample is represented as a column vector x(i) ∈ RM . Then

we can represent the entire dataset as a matrix x = [x(i) . . .x(N)]⊤.

In this context, variance measures the variability of each feature in the dataset, as well as the

relationships between different features. We will now introduce the covariance matrix.

The covariance matrix Σ ∈ RM×M is a square matrix that summarizes the covariance between each

pair of features in the dataset. The size of the matrix is determined by the number of features.

• Diagonal Elements: The diagonal elements of the covariance matrix represent the variances

of each feature. In other words, they represent how spread out the values are for a specific

feature. Mathematically, the variance of feature m is
1

N

∑N
i=1(x

(i)
m − µm)2 where x

(i)
m is the

value of feature m for the i-th data point and µm is the mean of feature m.

• Off-Diagonal Elements: The off-diagonal elements of the covariance matrix represent the

covariance between different features. Covariance is a measure of how two features vary to-

gether. If the covariance is positive, it means that when one feature increases, the other

tends to increase as well. If it’s negative, it means that when one feature increases, the

other tends to decrease. Mathematically, the covariance between feature j and feature j is
1

N

∑N
i=1(x

(i)
j − µj)(x

(i)
k − µk).

5

Generally, we assume that our data is centered and scaled for each feature, in other words µm =∑N
i=1 x

(i)
m = 0.

Because each feature of our dataset has a mean of zero, and Σjk =
1

N

∑N
i=1(x

(i)
j − µj)(x

(i)
k − µk),

the covariance matrix simplifies to

Σ =
1

N
x⊤x

6

2 Recommender Systems

Recommender systems are a class of algorithms that predict which items (products) a user is most

likely to be interested in. They are widely used in e-commerce, social media, and other online

platforms to help users discover new products and services.

2.1 Examples

Example: Netflix movie recommendations Netflix uses a recommender system to recommend

movies to users to help users quickly find movies they are likely to enjoy (and of course, keep them

happy using the product).

Example: Amazon product recommendations Amazon uses a recommender system to recom-

mend products to users based on their browsing and purchasing history. This helps users discover

new products and increases the likelihood of a purchase.

7

2.2 Latent Factor Model

One specific type of recommender system algorithm is the latent factor model. The idea behind

latent factor models is to represent both users and items in a K-dimensional embedded space. Each

user and item is represented by a K-dimensional vector, and the recommendation is made based on

the similarity between the user and item vectors.

In the case where users have given ratings to items, the latent factor model tries to predict the

ratings based on the learned user and item vectors. Specifically, we can try to predict the numerical

rating of user i on item j as the dot product of the user and item vectors, r̂ = u⊤
i vj .

This latent factor model can work even when we don’t have any information or features about the

users or the items other than a dataset of user-item ratings!

Here’s a quick example of book items (purple) and users (blue) embedded in a K = 2 dimensional

space. These are just the initial random parameters in U and V . As we train, it is likely that similar

books will move closer to each other, as will readers with similar interests.

2.2.1 Optimization

The specific optimization problem is as follows:

• Input: N users, M items, and a dataset of user-item ratings S = {(i, j, r)(1), (i, j, r)(2), · · · }

• Hyperparameter: K, the size of the embedded space

• Parameters: U ∈ RN×K and V ∈ RM×K , where the ith row of U , ui, is the K-dimensional

vector learned to represent user i and the jth row of V , vj is the K-dimensional vector learned

to represent item j

We will use square error as the loss function to measure the difference between an actual rating from

user i on item j, r, and the predicted rating r̂ = u⊤
i vj . The objective function is then:

J(U,V) =
∑

(i,j,r)∈S

(r − u⊤
i vj)

2

Once we compute the gradients of the objective function with respect to each user and item vector,

we can run stochastic gradient descent to optimize the user and item vectors, where each data point

is a single user-item rating tuple (i, j, r).

u
(t+1)
i ← u

(t)
i − α∇ui

J(U(t),V(t))

v
(t+1)
j ← v

(t)
j − α∇vjJ(U

(t),V(t))

8

3 Unsupervised Learning: Clustering

Supervised learning is the process of learning a function that maps an input to an output based

on example input-output pairs. In contrast, unsupervised learning is the process of learning a

function that maps an input to an output based on input data without example output pairs.

Clustering is a type of unsupervised learning that groups similar data points together. It is

essentially classification when we don’t have labeled data.

Even though we don’t have labeled classes for our data points, clustering can be incredibly valuable.

For example, clustering can be used to segment customers based on their purchasing behavior, to

group similar documents together, or to identify patterns in data.

Clustering can also be use to analyze the underlying structure of the data or as a preprocessing

step for a later task. For example, Google Photos can cluster photos without any labels, and then

prompt the user to label the cluster with the name of the person that appears in the cluster photos.

3.1 Examples

Example: Google News Google News uses clustering to group similar news articles together.

When a new article is published, Google News uses clustering to determine which cluster the article

belongs to. This allows Google News to group similar articles together and present them to the user.

9

Example: Google PhotosGoogle Photos uses clustering to group similar photos together. Despite

going out of your way not to identify your college roommates, Google Photos can still group photos

containing them together.

3.2 K-means clustering

K-means clustering is a popular clustering algorithm that groups data points into K clusters.

Given a dataset of N unlabeled M -dimensional data points, {x(i)}Ni=1 with x(i) ∈ RM , the goal is to

assign each point to a cluster such that we minimize the sum of the distances between each point and

the center of its assigned cluster. The center of each cluster is the mean of all data points assigned

to that cluster.

3.2.1 Algorithm

The K-means clustering algorithm is as follows:

Plain english version:

1. Randomly initialize K cluster centers

2. Assign each point in the training data to the cluster with the closest center

3. Update the cluster centers by computing the mean of all data points assigned to each cluster

4. Repeat steps 2 and 3 until the cluster centers no longer change

Repeated with a few more details:

1. Randomly initializeK M -dimensional points to represent the initial cluster means, µ1,µ2, . . . ,µK .

2. Assign each data point a cluster index, z(i) ∈ {1, 2, . . . ,K}, by finding the cluster centroid

that is closest to the data point. That is, z(i) = argmink∥x(i) − µk∥2

3. Update the cluster means by computing the mean of all data points assigned to each cluster,

µk = 1
Nk

∑N
i=1 x

(i)I{z(i) = k}, where Nk is the number of data points assigned to cluster k.

4. Repeat steps 2 and 3 until the cluster means no longer change (i.e. cluster centers converge)

10

x1

x2

x(1)

x(2)

x(3)

x(4)

x(5)

Step 1: Random Initialization We randomly initialize the cluster centers. For example, we

might initialize the cluster centers as follows:

x1

x2

x(1)

x(2)

x(3)

x(4)

x(5)

µ1

µ2

Where the 2 cluster centers are µ1 = [3, 1.5]⊤ and µ2 = [1, 3]⊤.

Step 2: Assign Data Points to Clusters We assign each data point to the cluster with the

closest center. For example, we would assign the data points as follows:

x1

x2

x(1)

x(2)

x(3)

x(4)

x(5)

µ1

µ2

Where the data points are assigned to clusters as follows: {z(1) = 1, z(2) = 2, z(3) = 1, z(4) = 1, z(5) =

2}.

11

Step 3: Update Cluster Centers We update the cluster centers by computing the mean of all

data points assigned to each cluster. For example, we would update the cluster centers as follows:

x1

x2

x(1)

x(2)

x(3)

x(4)

x(5)

µ1

µ2

x1

x2

x(1)

x(2)

x(3)

x(4)

x(5)

µ1

µ2

Repeat Steps 2 (above, right) and 3 (below, left):

x1

x2

x(1)

x(2)

x(3)

x(4)

x(5)

µ1

µ2

x1

x2

x(1)

x(2)

x(3)

x(4)

x(5)

µ1

µ2

Repeat Step 2 again (above, right):

We could repeat step three again, but the cluster assignments didn’t change, so the cluster means

will stay the same.

3.2.2 Optimization Formulation

Our goal is to minimize the sum of the distances between each point and the center of its assigned

cluster. We can formulate this as an optimization problem:

• Input: {x(i)}Ni=1 with x(i) ∈ RM

• Output: z(i) ∈ {1, 2, . . . ,K}, the cluster assignment for each data point i

• Output: µk ∈ RM be the center of cluster k

min
{z(i)},{µk}

N∑
i=1

∥x(i) − µz(i)∥22

12

3.2.3 Alternating Minimization

The objective is actually quite difficult to optimize directly. Instead, we can use an alternating

minimization approach. We alternate between two steps: (1) fixing the cluster assignments and

updating the cluster centers, and (2) fixing the cluster centers and updating the cluster assignments.

1. Fix cluster assignments, update cluster centers: Given the cluster assignments, we can

update the cluster centers by computing the mean of all data points assigned to each cluster.

µk =
1

Nk

N∑
i=1

x(i) I{z(i) = k}

2. Fix cluster centers, update cluster assignments: Given the cluster centers, we can

update the cluster assignments by assigning each data point to the cluster with the closest

center.

z(i) = argmink∥x(i) − µk∥22

13

	PCA Math Background
	PCA Motivation: Dimensionality Reduction
	Projections
	Scalar Projection
	Vector Projection

	Rotating Data
	Rotation
	Projection Matrix

	Covariance Matrix

	Recommender Systems
	Examples
	Latent Factor Model
	Optimization

	Unsupervised Learning: Clustering
	Examples
	K-means clustering
	Algorithm
	Optimization Formulation
	Alternating Minimization

