
10-315 Notes

Neural Networks

Carnegie Mellon University
Machine Learning Department

Contents

1 Neural Networks 1

1.1 Networks Diagrams for Linear and Logistic Regression 2

1.2 Neuron . 3

1.3 Activation functions . 3

1.4 Three Neuron Neural Network . 3

1.5 Adding More Neurons . 5

1.5.1 Fully-connected networks . 5

1.5.2 Vocab . 5

1.5.3 Counting parameters . 6

2 Calculus Background 8

2.1 Chain Rule . 8

2.2 Multivariate Chain Rule . 10

2.2.1 Adding More Functions . 10

2.2.2 Vector Notation of Chain Rule . 12

2.2.3 Chain Rule with Multiple Inputs . 13

1 Neural Networks

𝑎11

𝑎12

𝑤131

𝑤123

𝑎13

𝑤212

𝑎22

𝑤223

𝑤221

𝑤211 𝑎21

𝑤222

𝑎31 = ො𝑦
𝑤311

𝑤312

ො𝑦 = ℎ𝜽 𝐱 = 𝑎3,1

𝑎3,1 = 𝑔 𝑧3,1

𝑎2,𝑖 = 𝑔 𝑧2,𝑖

𝑧1,𝑖 = 𝑏1,𝑖 + ෍
𝑗

𝑤1,𝑖,𝑗 𝑥𝑗

ො𝑦 = ℎ𝜽 𝐱 = 𝑔 𝑏3,1 + ෍
𝑘

𝑤3,1,𝑘 𝑔 𝑏2,𝑘 + ෍
𝑖

𝑤2,𝑘,𝑖 𝑔 𝑏1,𝑖 + ෍
𝑗

𝑤1,𝑖,𝑗 𝑥𝑗

𝑤213

𝑥1

𝑥2

𝑥3

𝑤111

𝑤121

𝑤113

𝑤112

𝑤122

𝑤132

𝑤133

𝑏11

𝑏12

𝑏13

𝑏21

𝑏22

𝑏31

Parameter naming conventions
𝑤𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛𝑝𝑢𝑡
 𝑏𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡

𝑧11

𝑧12

𝑧13

𝑔

𝑔

∑ 𝑔

∑ 𝑔

∑ 𝑔

∑

∑

𝑧22

𝑧21

∑ 𝑔
𝑧31

𝑧3,1 = 𝑏3,1 + ෍
𝑗

𝑤3,1,𝑗 𝑎2,𝑗

𝑧2,𝑖 = 𝑏2,𝑖 + ෍
𝑗

𝑤2,𝑖,𝑗 𝑎1,𝑗

𝑎1,𝑖 = 𝑔 𝑧1,𝑖

Often squared error or cross-entropy

ℓ 𝑦, ො𝑦

𝐽 𝜃 = ℓ 𝑦(𝑖), ො𝑦(𝑖)

Using objective for just N=1 point

𝜕𝐽
𝜕𝑏3,1

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝑏3,1

𝜕𝐽
𝜕𝑏2,𝑖

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝑎2,𝑖

𝜕𝑎2,𝑖
𝜕𝑧2,𝑖

𝜕𝑧2,𝑖
𝜕𝑏2,𝑖

For now, just the bias term derivatives (less crazy indexing notation)

𝜕𝐽
𝜕𝑏1,𝑖

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝐚2

𝜕𝐚2
𝜕𝐳2

𝜕𝐳2
𝜕𝑎1,𝑖

𝜕𝑎1,𝑖
𝜕𝑧1,𝑖

𝜕𝑧1,𝑖
𝜕𝑏1,𝑖

Network diagram

Model function

Parameters

Loss function

Objective

Derivatives

SGD update

Fully connected neural network with three layers of neurons

𝑏𝑙𝑎𝑦𝑒𝑟,𝑖 ← 𝑏𝑙𝑎𝑦𝑒𝑟,𝑖 − 𝛼
𝜕𝐽

𝜕𝑏𝑙𝑎𝑦𝑒𝑟,𝑖

𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 ← 𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 − 𝛼
𝜕𝐽

𝜕𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗

𝑤1,𝑖,𝑗 (9) 𝑏1,𝑖 (3) 𝑤2,𝑖,𝑗 (6) 𝑏2,𝑖 (2) 𝑤3,1,𝑗 (2) 𝑏3,1 (1) (23 parameters)

1

1.1 Networks Diagrams for Linear and Logistic Regression

Neural networks, including the diagram above, can be intimidating. But, you actually know so much
about them already!

To help you see that and make the transition to neural networks. Let’s summarize both linear and
logistic regression using the diagrams and notation that we’ll be using for neural networks. A key
difference is writing the partial derivatives of the objective function using the chain rule.

ො𝑦 = ℎ𝜽 𝐱 = 𝑏 + ෍
𝑗

𝑤𝑗𝑥𝑗 ො𝑦 = ℎ𝜽 𝐱 = 𝑔𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑏 + ෍
𝑗

𝑤𝑗𝑥𝑗

∑

𝑥1

𝑥2

𝑤1

𝑤2
𝑏

ො𝑦

𝑦
ℓ

∑ 𝑔𝑧

𝑏

ො𝑦

𝑦
ℓ

𝑥1

𝑥2

𝑤1

𝑤2

Squared error

ℓ 𝑦, ො𝑦 = 𝑦 − ො𝑦 2

Cross-entropy

ℓ 𝐲, ො𝐲 = − ෍
𝑘=1

𝐾

𝑦𝑘 log ො𝑦𝑘

Linear Regression Logistic Regression

𝑤1, 𝑤2, 𝑏

𝐽 𝜃 =
1
𝑁

෍
𝑖=1

𝑁

ℓ 𝑦(𝑖), ො𝑦(𝑖)

𝜕𝐽
𝜕𝑤𝑗

=
1
𝑁

෍
𝑖=1

𝑁
𝜕ℓ

𝜕 ො𝑦(𝑖)
𝜕 ො𝑦(𝑖)

𝜕𝑤𝑗

=
1
𝑁

෍
𝑖=1

𝑁

−2 𝑦(𝑖) − ො𝑦(𝑖) ⋅ 𝑥𝑗
(𝑖)

= −
2
𝑁

෍
𝑖=1

𝑁

𝑦(𝑖) − ො𝑦(𝑖) 𝑥𝑗
(𝑖)

𝜕𝐽
𝜕𝑏

=
1
𝑁

෍
𝑖=1

𝑁
𝜕ℓ

𝜕 ො𝑦(𝑖)
𝜕 ො𝑦(𝑖)

𝜕𝑏

=
1
𝑁

෍
𝑖=1

𝑁

−2 𝑦(𝑖) − ො𝑦(𝑖) ⋅ 1

= −
2
𝑁

෍
𝑖=1

𝑁

𝑦(𝑖) − ො𝑦(𝑖)

𝜕𝐽
𝜕𝑤𝑗

=
1
𝑁

෍
𝑖=1

𝑁
𝜕ℓ

𝜕 ො𝑦(𝑖)
𝜕 ො𝑦(𝑖)

𝜕𝑧(𝑖)
𝜕𝑧(𝑖)

𝜕𝑤𝑗

= −
1
𝑁

෍
𝑖=1

𝑁

෍
𝑘=1

𝐾
𝑦𝑘

(𝑖)

ො𝑦𝑘
(𝑖) ⋅ ො𝑦(𝑖) 1 − ො𝑦(𝑖) ⋅ 𝑥𝑗

(𝑖)

= −
1
𝑁

෍
𝑖=1

𝑁

𝑦(𝑖) − ො𝑦(𝑖) 𝑥𝑗
(𝑖)

𝜕𝐽
𝜕𝑏

=
1
𝑁

෍
𝑖=1

𝑁
𝜕ℓ

𝜕 ො𝑦(𝑖)
𝜕 ො𝑦(𝑖)

𝜕𝑧(𝑖)
𝜕𝑧(𝑖)

𝜕𝑏

=
1
𝑁

෍
𝑖=1

𝑁

−
1

ො𝑦𝑘
(𝑖) ⋅ ො𝑦𝑘

(𝑖) 1 − ො𝑦𝑘
(𝑖) ⋅ 1

= −
1
𝑁

෍
𝑖=1

𝑁

1 − ො𝑦𝑘
(𝑖)

Network diagram

Model

Parameters

Loss function

Objective

Derivatives
(using chain rule)

𝑤𝑗 ← 𝑤𝑗 − 𝛼
𝜕𝐽 𝑖

𝜕𝑤𝑗

𝑏 ← 𝑏 − 𝛼
𝜕𝐽(𝑖)

𝜕𝑏

SGD update

2

1.2 Neuron

The logistic regression function is a neuron! A neuron is a linear function followed by an activation
function. The linear function, just like linear regression and logistic regression, is a linear combi-
nation of the input values multiplied by weight parameters and bias parameter, z = b+

∑
j wjxj .

1.3 Activation functions

The activation function in a neuron is basically any nonlinear function. Common neuron activation
functions include the logistic (sigmoid) function and the ReLU (rectified linear unit) function, which
just takes the input value and clamps any negative values to zero.

1.4 Three Neuron Neural Network

Consider the traffic volume prediction dataset. Clearly, a linear model with just the single x1 input
feature will not suffice. We’ve learned that we could use polynomial feature engineering to create
x2 = x2

1, and then use a linear model to effectively fit a quadratic function to this data. Alternatively,
we can start building a simple, three-neuron neural network.

With two separate neurons, we can try to separately model the upward trend and downward trends
in the data for the morning and evening, respectively. Then a third neuron can combine these to
model, resulting in the green prediction function in the following figure. The input to the third
neuron is just the output of the previous two neurons.

3

Here’s a summary table comparing the model and optimization of linear regression with a quadratic
feature to our three-neuron network. Be sure to note both the similarities and the differences.

ො𝑦 = ℎ𝜽 𝐱 = 𝑏 + ෍
𝑗

𝑤𝑗𝑥𝑗

∑

𝑥1

𝑤1

𝑤2
𝑏

ො𝑦

𝑦
ℓ

Squared error

ℓ 𝑦, ො𝑦 = 𝑦 − ො𝑦 2

Linear Regression
w/ quadratic feature

𝑤1, 𝑤2, 𝑏 (3 params)

𝐽 𝜃 = ℓ 𝑦(𝑖), ො𝑦(𝑖)

𝜕𝐽
𝜕𝑤𝑗

=
𝜕ℓ
𝜕 ො𝑦

𝜕 ො𝑦
𝜕𝑤𝑗

𝑤𝑗 ← 𝑤𝑗 − 𝛼
𝜕𝐽

𝜕𝑤𝑗

∑

𝑧1,1
𝑤2,1

𝑤2,2
𝑏2,1

ො𝑦

𝑦
ℓ

𝑥1
2 → 𝑥2

𝑤1,1

𝑤1,2

𝑏1,1

𝑎1,1𝑔

𝑧1,2

𝑏1,2

𝑔 𝑎1,2

∑

∑

𝑥1

ො𝑦 = ℎ𝜽 𝐱 = 𝑏2 + ∑𝑗 𝑤2,𝑗 𝑎1,𝑗

Three-neuron Network

𝑎1,𝑗 = 𝑔𝑅𝑒𝐿𝑈 𝑏1,𝑗 + 𝑤1,𝑗 𝑥1

𝑤1,1, 𝑏1,1, , 𝑏1,2, 𝑤2,1, 𝑤2,2, 𝑏2,1 (7 params)

𝜕𝐽
𝜕𝑤2,𝑗

=
𝜕ℓ
𝜕 ො𝑦

𝜕 ො𝑦
𝜕𝑤2,𝑗

𝜕𝐽
𝜕𝑏1,𝑗

=
𝜕ℓ
𝜕 ො𝑦

𝜕 ො𝑦
𝜕𝑎1,𝑗

𝜕𝑎1,𝑗

𝜕𝑧1,𝑗

𝜕𝑧1,𝑗

𝜕𝑏1,𝑗

𝜕𝐽
𝜕𝑏

=
𝜕ℓ
𝜕 ො𝑦

𝜕 ො𝑦
𝜕𝑏

𝜕𝐽
𝜕𝑏2,1

=
𝜕ℓ
𝜕 ො𝑦

𝜕 ො𝑦
𝜕𝑏2,1

𝜕𝐽
𝜕𝑤1,𝑗

=
𝜕ℓ
𝜕 ො𝑦

𝜕 ො𝑦
𝜕𝑎1,𝑗

𝜕𝑎1,𝑗

𝜕𝑧1,𝑗

𝜕𝑧1,𝑗

𝜕𝑤1,𝑗

𝑤1,𝑗 ← 𝑤1,𝑗 − 𝛼
𝜕𝐽

𝜕𝑤1,𝑗

𝑤2,𝑗 ← 𝑤2,𝑗 − 𝛼
𝜕𝐽

𝜕𝑤2,𝑗

𝑏1,𝑗 ← 𝑏1,𝑗 − 𝛼
𝜕𝐽

𝜕𝑏1,𝑗

𝑏2,𝑗 ← 𝑏2,𝑗 − 𝛼
𝜕𝐽

𝜕𝑏2,𝑗

𝑏 ← 𝑏 − 𝛼
𝜕𝐽
𝜕𝑏

Using objective for just N=1 point

4

1.5 Adding More Neurons

Once we know how to build a three-neuron network, we can start building more and more complex
networks that can handle more inputs and outputs and model more complex functions than we could
with just three neurons.

𝑎11

𝑎12

𝑤131

𝑤123

𝑎13

𝑤212

𝑎22

𝑤223

𝑤221

𝑤211 𝑎21

𝑤222

𝑎31 = ො𝑦
𝑤311

𝑤312

ො𝑦 = ℎ𝜽 𝐱 = 𝑎3,1

𝑎3,1 = 𝑔 𝑧3,1

𝑎2,𝑖 = 𝑔 𝑧2,𝑖

𝑧1,𝑖 = 𝑏1,𝑖 + ෍
𝑗

𝑤1,𝑖,𝑗 𝑥𝑗

ො𝑦 = ℎ𝜽 𝐱 = 𝑔 𝑏3,1 + ෍
𝑘

𝑤3,1,𝑘 𝑔 𝑏2,𝑘 + ෍
𝑖

𝑤2,𝑘,𝑖 𝑔 𝑏1,𝑖 + ෍
𝑗

𝑤1,𝑖,𝑗 𝑥𝑗

𝑤213

𝑥1

𝑥2

𝑥3

𝑤111

𝑤121

𝑤113

𝑤112

𝑤122

𝑤132

𝑤133

𝑏11

𝑏12

𝑏13

𝑏21

𝑏22

𝑏31

Parameter naming conventions
𝑤𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛𝑝𝑢𝑡
 𝑏𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡

𝑧11

𝑧12

𝑧13

𝑔

𝑔

∑ 𝑔

∑ 𝑔

∑ 𝑔

∑

∑

𝑧22

𝑧21

∑ 𝑔
𝑧31

𝑧3,1 = 𝑏3,1 + ෍
𝑗

𝑤3,1,𝑗 𝑎2,𝑗

𝑧2,𝑖 = 𝑏2,𝑖 + ෍
𝑗

𝑤2,𝑖,𝑗 𝑎1,𝑗

𝑎1,𝑖 = 𝑔 𝑧1,𝑖

Often squared error or cross-entropy

ℓ 𝑦, ො𝑦

𝐽 𝜃 = ℓ 𝑦(𝑖), ො𝑦(𝑖)

Using objective for just N=1 point

𝜕𝐽
𝜕𝑏3,1

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝑏3,1

𝜕𝐽
𝜕𝑏2,𝑖

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝑎2,𝑖

𝜕𝑎2,𝑖
𝜕𝑧2,𝑖

𝜕𝑧2,𝑖
𝜕𝑏2,𝑖

For now, just the bias term derivatives (less crazy indexing notation)

𝜕𝐽
𝜕𝑏1,𝑖

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝐚2

𝜕𝐚2
𝜕𝐳2

𝜕𝐳2
𝜕𝑎1,𝑖

𝜕𝑎1,𝑖
𝜕𝑧1,𝑖

𝜕𝑧1,𝑖
𝜕𝑏1,𝑖

Network diagram

Model function

Parameters

Loss function

Objective

Derivatives

SGD update

Fully connected neural network with three layers of neurons

𝑏𝑙𝑎𝑦𝑒𝑟,𝑖 ← 𝑏𝑙𝑎𝑦𝑒𝑟,𝑖 − 𝛼
𝜕𝐽

𝜕𝑏𝑙𝑎𝑦𝑒𝑟,𝑖

𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 ← 𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 − 𝛼
𝜕𝐽

𝜕𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗

𝑤1,𝑖,𝑗 (9) 𝑏1,𝑖 (3) 𝑤2,𝑖,𝑗 (6) 𝑏2,𝑖 (2) 𝑤3,1,𝑗 (2) 𝑏3,1 (1) (23 parameters)

1.5.1 Fully-connected networks

This network above is an example of a fully connected network. There are potentially lots of ways
to connect neurons to each other. A fully connected network organized the neurons into L layers,
L=3 layers in our example. Each neuron in each layer is “fully connected” to all of the neurons in
the previous layer. (For the first layer of neurons, each neuron is “fully connected” to the input
data.) This means that if there are M neurons in the previous layer, each neuron would have M
input values leading into its linear function.

Here are two other common conventions for displaying fully connected neural network diagrams.
Once we understand all of the details in the more complex figure above, we’ll be able to switch to
the much simpler figures below.

1.5.2 Vocab

We often refer to the last layer as the output layer and any previous layers as hidden layers. You’ll
also hear references to the input data as the “input layer”; just be careful with that terminology so
you don’t get confused between this data layer and a layer of neurons.

Fully connected layers are also referred to as linear layers and dense layers. A fully connected
network is sometimes called an multi-layer perceptron (MLP); though this can be a bit confusing
because a perceptron is a single-neuron network with a hard threshold activation function, while
any modern fully connected networks will use more practical activation functions, rather than the
historic threshold activation function.

5

1.5.3 Counting parameters

Just like linear and logistic regression, a neuron with M inputs will have exactly one bias parameter,
b, and M weight parameters, wj , one for each of its M inputs.

For a fully connected layer of K neurons with a previous layer of M values, each neuron of the
K neurons has M inputs and thus it will have M weight parameters plus one bias parameter. This
layer then has a total of K ·M weight parameters and K bias parameters (one for each neuron), for
a total of KM +M = K(M + 1) parameters.

Example: For our fully connected network with three input values, three neurons in the first layer,
two neurons in the second layer, and one output neuron, here is a breakdown of the number of
neurons:

Layer 1 (3 inputs for 3 neurons) : 3 · 3 weights + 3 bias = 12

Layer 2 (3 inputs for 2 neurons) : 2 · 3 weights + 2 bias = 8

Layer 3 (2 inputs for 1 neuron) : 1 · 2 weights + 1 bias = 3

Total : 21

𝑎11

𝑎12

𝑤131

𝑤123

𝑎13

𝑤212

𝑎22

𝑤223

𝑤221

𝑤211 𝑎21

𝑤222

𝑎31 = ො𝑦
𝑤311

𝑤312

ො𝑦 = ℎ𝜽 𝐱 = 𝑎3,1

𝑎3,1 = 𝑔 𝑧3,1

𝑎2,𝑖 = 𝑔 𝑧2,𝑖

𝑧1,𝑖 = 𝑏1,𝑖 + ෍
𝑗

𝑤1,𝑖,𝑗 𝑥𝑗

ො𝑦 = ℎ𝜽 𝐱 = 𝑔 𝑏3,1 + ෍
𝑘

𝑤3,1,𝑘 𝑔 𝑏2,𝑘 + ෍
𝑖

𝑤2,𝑘,𝑖 𝑔 𝑏1,𝑖 + ෍
𝑗

𝑤1,𝑖,𝑗 𝑥𝑗

𝑤213

𝑥1

𝑥2

𝑥3

𝑤111

𝑤121

𝑤113

𝑤112

𝑤122

𝑤132

𝑤133

𝑏11

𝑏12

𝑏13

𝑏21

𝑏22

𝑏31

Parameter naming conventions
𝑤𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛𝑝𝑢𝑡
 𝑏𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡

𝑧11

𝑧12

𝑧13

𝑔

𝑔

∑ 𝑔

∑ 𝑔

∑ 𝑔

∑

∑

𝑧22

𝑧21

∑ 𝑔
𝑧31

𝑧3,1 = 𝑏3,1 + ෍
𝑗

𝑤3,1,𝑗 𝑎2,𝑗

𝑧2,𝑖 = 𝑏2,𝑖 + ෍
𝑗

𝑤2,𝑖,𝑗 𝑎1,𝑗

𝑎1,𝑖 = 𝑔 𝑧1,𝑖

Often squared error or cross-entropy

ℓ 𝑦, ො𝑦

𝐽 𝜃 = ℓ 𝑦(𝑖), ො𝑦(𝑖)

Using objective for just N=1 point

𝜕𝐽
𝜕𝑏3,1

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝑏3,1

𝜕𝐽
𝜕𝑏2,𝑖

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝑎2,𝑖

𝜕𝑎2,𝑖
𝜕𝑧2,𝑖

𝜕𝑧2,𝑖
𝜕𝑏2,𝑖

For now, just the bias term derivatives (less crazy indexing notation)

𝜕𝐽
𝜕𝑏1,𝑖

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝐚2

𝜕𝐚2
𝜕𝐳2

𝜕𝐳2
𝜕𝑎1,𝑖

𝜕𝑎1,𝑖
𝜕𝑧1,𝑖

𝜕𝑧1,𝑖
𝜕𝑏1,𝑖

Network diagram

Model function

Parameters

Loss function

Objective

Derivatives

SGD update

Fully connected neural network with three layers of neurons

𝑏𝑙𝑎𝑦𝑒𝑟,𝑖 ← 𝑏𝑙𝑎𝑦𝑒𝑟,𝑖 − 𝛼
𝜕𝐽

𝜕𝑏𝑙𝑎𝑦𝑒𝑟,𝑖

𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 ← 𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 − 𝛼
𝜕𝐽

𝜕𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗

𝑤1,𝑖,𝑗 (9) 𝑏1,𝑖 (3) 𝑤2,𝑖,𝑗 (6) 𝑏2,𝑖 (2) 𝑤3,1,𝑗 (2) 𝑏3,1 (1) (23 parameters)

6

Here is the model and optimization summary for our three-layer network.

The model and optimization math effectively stay the same, there is just more of it. Specifically,
the composite functions get deeper and deeper, leading to longer and longer derivative chain rules.

There is one exception: As we start to have cycles in our network diagram, we’ll need the multi-
variate chain rule for calculus rather than the single-variable version that you might be familiar with
from calculus class.

𝑎11

𝑎12

𝑤131

𝑤123

𝑎13

𝑤212

𝑎22

𝑤223

𝑤221

𝑤211 𝑎21

𝑤222

𝑎31 = ො𝑦
𝑤311

𝑤312

ො𝑦 = ℎ𝜽 𝐱 = 𝑎3,1

𝑎3,1 = 𝑔 𝑧3,1

𝑎2,𝑖 = 𝑔 𝑧2,𝑖

𝑧1,𝑖 = 𝑏1,𝑖 + ෍
𝑗

𝑤1,𝑖,𝑗 𝑥𝑗

ො𝑦 = ℎ𝜽 𝐱 = 𝑔 𝑏3,1 + ෍
𝑘

𝑤3,1,𝑘 𝑔 𝑏2,𝑘 + ෍
𝑖

𝑤2,𝑘,𝑖 𝑔 𝑏1,𝑖 + ෍
𝑗

𝑤1,𝑖,𝑗 𝑥𝑗

𝑤213

𝑥1

𝑥2

𝑥3

𝑤111

𝑤121

𝑤113

𝑤112

𝑤122

𝑤132

𝑤133

𝑏11

𝑏12

𝑏13

𝑏21

𝑏22

𝑏31

Parameter naming conventions
𝑤𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛𝑝𝑢𝑡
 𝑏𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡

𝑧11

𝑧12

𝑧13

𝑔

𝑔

∑ 𝑔

∑ 𝑔

∑ 𝑔

∑

∑

𝑧22

𝑧21

∑ 𝑔
𝑧31

𝑧3,1 = 𝑏3,1 + ෍
𝑗

𝑤3,1,𝑗 𝑎2,𝑗

𝑧2,𝑖 = 𝑏2,𝑖 + ෍
𝑗

𝑤2,𝑖,𝑗 𝑎1,𝑗

𝑎1,𝑖 = 𝑔 𝑧1,𝑖

Often squared error or cross-entropy

ℓ 𝑦, ො𝑦

𝐽 𝜃 = ℓ 𝑦(𝑖), ො𝑦(𝑖)

Using objective for just N=1 point

𝜕𝐽
𝜕𝑏3,1

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝑏3,1

𝜕𝐽
𝜕𝑏2,𝑖

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝑎2,𝑖

𝜕𝑎2,𝑖
𝜕𝑧2,𝑖

𝜕𝑧2,𝑖
𝜕𝑏2,𝑖

For now, just the bias term derivatives (less crazy indexing notation)

𝜕𝐽
𝜕𝑏1,𝑖

=
𝜕ℓ
𝜕 ො𝑦

𝜕𝑎3,1
𝜕𝑧3,1

𝜕𝑧3,1
𝜕𝐚2

𝜕𝐚2
𝜕𝐳2

𝜕𝐳2
𝜕𝑎1,𝑖

𝜕𝑎1,𝑖
𝜕𝑧1,𝑖

𝜕𝑧1,𝑖
𝜕𝑏1,𝑖

Network diagram

Model function

Parameters

Loss function

Objective

Derivatives

SGD update

Fully connected neural network with three layers of neurons

𝑏𝑙𝑎𝑦𝑒𝑟,𝑖 ← 𝑏𝑙𝑎𝑦𝑒𝑟,𝑖 − 𝛼
𝜕𝐽

𝜕𝑏𝑙𝑎𝑦𝑒𝑟,𝑖

𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 ← 𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 − 𝛼
𝜕𝐽

𝜕𝑤𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗

𝑤1,𝑖,𝑗 (9) 𝑏1,𝑖 (3) 𝑤2,𝑖,𝑗 (6) 𝑏2,𝑖 (2) 𝑤3,1,𝑗 (2) 𝑏3,1 (1) (23 parameters)

7

2 Calculus Background

2.1 Chain Rule

From single-variable calculus, recall the original definition of the chain rule. Give f : R → R and
g : R → R. Consider the computation f(g(x)). The chain rule states that

d

dx
(f(g(x))) = f ′(g(x))g′(x)

We can additionally write this using derivative notation as

d

dx
(f(g(x))) =

df

dg

dg

dx

We can note that these two representations are the same thing where df
dg = f ′(g(x)) and dg

dx = g′(x).
While we have these two notations of the chain rule, we can also think about the chain rule in terms
of the computation graph. For example, the computation graph for h(x) = f(g(x)) is notated as

As in the neural network graphs, we read this computation graph from left to right, and we can see
that, given our input x, we apply our function g to compute g(x). Then, we apply f on the result
to get h(x) = f(g(x)).

Now, we can try to think about what it looks like to take the derivative notated through this
computation graph. In our graph, whenever we have an input being passed into a function, we can
think of the derivative of that computation occurring on that edge of the graph as well. Consider
the graph annotated with derivatives below,

Here, we can note that we have the derivative of the computations on our graphs. For example,
performing the operation g(x) (the left-most edge on the graph), we can note that the operation has
a derivative of dg

dx . A similar operation is done when we apply f onto g(x), giving us the derivative
df
dg .

Now, we can note that if we wanted to compute the derivative of df
dx , using our understanding of

the chain rule, we are multiplying the derivatives along the edges together, giving us that
df
dx = df

dg
dg
dx .

This is an important notion to understand as the process of ”multiplying the derivatives along edges”
will be a crucial building block when computing the derivatives for more complicated functions.

Before moving onto more complicated functions. We can see that this chain rule generalizes to any
number of compositions. If we had a composition of four functions: f1, f2, f3, f4 : R → R, then we
could express the computation graph of h(x) = f4(f3(f2(f1(x)))) as follows

8

By writing the appropriate derivatives on this graph, we can see we are getting the individual terms
of our chain rule.

Now, if we consider what the derivative of df4
dx is, when we are performing repeated applications the

chain rule, we know that df4
dx = df4

df3

df3
df2

df2
df1

df1
dx . However, if we also multiply the derivative along the

edges of the graph together, we get the same result! Hopefully, with these two examples, we can get
a good idea of how we can think of derivatives and the chain rule over computation graphs (as they
are essentially the same thing).

9

Order of things to cover

• Recap: single dimensional chain rule (do for composition of 2 functions and 3 functions to
express general form, express in terms of computation graph), show both forward and backward
passes

• Adding complexity: what happens if you have a function that takes in two inputs, scalar form,
write graph, express chain rule for this, explain what happens with multiple outgoing edges,
(explain intuition for the meaning)

• Vector form: notes that you can now re-express the inputs as a vector v, and note that you
get the same resulting derivatives with the multi-variate chain rule

• Multiple inputs: our output is now a vector derivative. We apply the same process for each
element of the input to produce the vector derivative. Chain rule applies in the same way

• Multiple outputs: our output is now a vector, so that means we are now going to have a matrix
derivative of our result, express the resulting size of that computation and how computing the
chain rule will still result in an appropriately sized matrix

2.2 Multivariate Chain Rule

2.2.1 Adding More Functions

Now, armed with a better understanding of the chain rule in the form of a computation graph, we
can think about what happens when we start adding more variables and start using functions of
multiple variables.

Suppose that we had now three functions, g1, g2 : R → R and f : R2 → R, and we define h(x) =
f(g1(x), g2(x)). First, before thinking about derivatives, let’s draw what the computation of h(x)
looks like as a computation graph.

Reading from left to right as usual, we can see that first, x is passed into both g1 and g2 to compute
g1(x) and g2(x), respectively. Note that because x is used twice in two different functions, we have
two outgoing edges from x. Next, using those results, we pass them into the function f , which takes
in two real-valued inputs, computing f(g1(x), g2(x)). Note that because f is a function with two
real inputs, we have two edges going into the f function block.

Now considering derivatives, note that h(x) is simply a function h : R → R. As a result, we
should still have a single-variable derivative. First, let’s perform our usual process of annotating our
computation graph with derivative values.

10

After writing the derivatives, we can see that the derivatives for individual edges are normal to
compute. However, there is a slight difficulty. Typically, using our normal chain rule, we would
multiply the derivatives along the single path from x to our result (in this case h(x)); however,
we now have multiple paths from x to h(x). We have a path going through g1 and another going
through g2, visualized below in two copies of the same computation graph.

x now influences the resulting output h(x) in multiple ways due to the fact that f takes in two
input values and x is used to compute both of f ’s inputs. If we consider the derivative of x along
a single path, by multiplying the derivatives along the left path, we get that the left-most path has
derivative df

dg1

dg1
dx and the right-most path has derivative df

dg2

dg2
dx .

To reconcile the fact that our derivative contributes to the output in two ways, we sum the product
of derivatives along each path. This is a generalization of the original single-variable chain rule.
As a result, we can now state that

df

dx
=

df

dg1

dg1
dx

+
df

dg2

dg2
dx

In this generalized chain rule formulation, for each path, we are taking the product of the derivatives
along that path. Then, we are summing the resulting products over all paths (in this case the path
in the left image and the path in the right image). The intuition is that if a variable contributes to
the derivative in multiple ways (i.e. multiple paths), then we need to sum these contributions to get
the actual derivative.

Now, that we have a better understanding of a more general chain rule. We can take a look at
this a little more. Suppose that we had f : R3 → R and g1, g2, g3 : R → R. Define h(x) =
f(g1(x), g2(x), g3(x)). Again, we can take a look at the computation graph with its derivatives
annotated.

11

We can see that this computation graph now has 3 paths from x to the output h(x). As a result,
the chain rule of this expression is going to look like this formulation

df

dx
=

df

dg1

dg1
dx

+
df

dg2

dg2
dx

+
df

dg3

dg3
dx

We can note that each term in the summation corresponds to the product of derivatives along a
single path along the computation graph where x influences/is a function of h(x).

Now, with this intuition, we can think of a formal generalization of the multivariate chain
rule. Formally, for some n ∈ N, if we have f : Rn → R and g1, g2, · · · , gn : R → R, the multivariate
chain rule states that

d

dx
(f(g1(x), g2(x), · · · , gn(x))) =

n∑
i=1

df

dgi

dgi
dx

Note that this version of the chain rule is simply a generalization of the single-variate one discussed
earlier. The one discussed earlier is a special case of the general rule where n = 1.

2.2.2 Vector Notation of Chain Rule

In the generalized notion of the chain rule above, for some n ∈ N, we defined f : Rn → R and
g1, g2, · · · , gn : R → R and considered f(g1(x), g2(x), · · · , gn(x)).

However, we can condense these definitions using our understanding of vectors. Define g : R → Rn

where

g(x) =


g1(x)
g2(x)
...

gn(x)


Using this definition, we can note that f(g1(x), g2(x), · · · , gn(x)) = f(g(x)). Now, when considering
our computation graph, we can see that we have simply condensed our computation graph with
multiple paths with single-variate functions to a single path with a multi-variate function (assume
that n = 3.

Both of these computation graphs represent the same computation (that means that they must have
the same derivative), but the right-most one uses vector notation. Recall that

d

dx
f(g(x)) =

d

dx
(f(g1(x), g2(x), g3(x))) =

df

dg1

dg1
dx

+
df

dg2

dg2
dx

+
df

dg3

dg3
dx

12

Suppose that we are working in denominator layout. As a result, using our knowledge of vector
derivatives, we know that

∂g

∂x
=

[
∂g1
∂x

∂g2
∂x

∂g3
∂x

] ∂f

∂g
=


∂f
∂g1

∂f
∂g2

∂f
∂g3


Now, we can make a very crucial connection between the two representations of the computation
graphs. Consider the right-most graph that is annotated with vector derivatives. Using our notion
of the chain rule, by multiplying the derivatives of the edges together, we get that

d

dx
f(g(x)) =

∂g

∂x

∂f

∂g

However, this is simply a dot product of two vectors! As a result, we can re-write this equation as

d

dx
f(g(x)) =

∂g

∂x

∂f

∂g
=

df

dg1

dg1
dx

+
df

dg2

dg2
dx

+
df

dg3

dg3
dx

=
d

dx
(f(g1(x), g2(x), g3(x)))

As a result, we have just proved that applying the chain rule on the vector representation of the
equation produces the same derivative as the original representation. This shouldn’t be surprising
because we know that the computation graphs represent the same computation. However, this is
powerful because we can represent the chain rule in terms of vectors!.

We now write the vector form of generalized chain rule. Given f : Rn → R and g : R → Rn,
the vector form of the chain rule states that

∂

∂x
(f(g(x))) =

∂g

∂x

∂f

∂g

Convince yourself that this representation is equivalent to our original definition of the generalized
chain rule. Additionally, now that we are working with vectors, the order of vector/matrix
multiplication matters. Make sure to know which form (numerator or denominator) you are
working in and that the shapes of the multiplications and additions are appropriate.

2.2.3 Chain Rule with Multiple Inputs

While we have covered all of the basic principles of the chain rule (multiplying the derivatives of
composed functions and summing multiple contributions of a variable to a single output), we can
still generalize the chain rule a little further to consider what happens when we are working with
vector inputs and vector outputs (however, these are simply repeated applications of the generalized
chain rule which we will show).

13

	Neural Networks
	Networks Diagrams for Linear and Logistic Regression
	Neuron
	Activation functions
	Three Neuron Neural Network
	Adding More Neurons
	Fully-connected networks
	Vocab
	Counting parameters

	Calculus Background
	Chain Rule
	Multivariate Chain Rule
	Adding More Functions
	Vector Notation of Chain Rule
	Chain Rule with Multiple Inputs

