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1 Linear algebra

Most of the linear algebra listed here should be prerequisite material for you. The exceptions might

be vector and matrix norms and any notational changes.

1.1 Notation

Matrix notation: A ∈ RN×M :

A =


a1,1 a1,2 · · · a1,M
a2,1 a2,2 · · · a2,M
...

...
. . .

...

aN,1 aN,2 · · · aN,M


Summation notation:

Matrix multiplication with A ∈ RM×K , B ∈ RK×N , C ∈ RM×N . If C = AB, then Ci,j =∑K
k=1 ai,kbk,j . The number of columns in A must match the number of rows in B. C will have

the same number of rows as A and the same number of columns as B.

Vector notation: v ∈ RN , in this course, we’ll assume all vectors are column vectors unless specified

otherwise:

v =


v1
v2
...

vN



1.2 Linear systems of equations

Consider matrix A ∈ RN×M and vectors v ∈ RM and u ∈ RN . The following is a linear system of

equations with N equations and M unknowns, v1, . . . , vM :
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u = Av

u1 = a1,1v1 + a1,2v2 + · · ·+ a1,MvM

u2 = a2,1v1 + a2,2v2 + · · ·+ a2,MvM

...

u1 = aN,1v1 + aN,2v2 + · · ·+ aN,MvM

underdetermined: If there are fewer equations than variables, the system is underdetermined and

cannot have exactly 1 solution, it must have either infinitely many or no solutions.

overdetermined: A system with more equations than variables. An overdetermined system may

have 1 solution, 0 solutions, or infinitely many solutions.

inconsistent: when the system of equations does not have a solution.

consistent: when the system of equations has at least one solution.

1.3 Vectors

dot product: aTb = a1b1 + a2b2 + ... + aMbM for two vectors a,b ∈ RM . It is the sum of the

products of corresponding entries of the two vectors.

inner product (more general than dot product): is a way to multiply vectors, resulting in a scalar.

Let u,v,w be vectors and let α be a scalar. Then, the inner product satisfies the following properties:

\ ⟨u+ v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩ \ ⟨αv,w⟩ = α⟨v,w⟩ \ ⟨v,w⟩ = ⟨w,v⟩ \ ⟨v,v⟩ ≥ 0 and ⟨v,v⟩ = 0 if

and only if v = 0

outer product: Outer product of vectors u and v is Y = u⊗ v = uvT , and Yi,j = uivj .

magnitude: Magnitude (length) of vector u is |u| = ∥u∥2 =
(∑

i u
2
i

) 1
2 .

L2 norm: Also known as Euclidean norm ∥v∥2 =
(∑

i v
2
i

) 1
2 =

(
vTv

) 1
2

L1 norm: The sum of absolute values of the entries of the vector ∥v∥1 =
∑

i |vi|

L0 “norm”: Number of non-zero entries in a vector (not technically a norm) ∥v∥0 =
∑

i |vi|0,
where 00 is defined as being equal to zero.

p-norm: ∥v∥p = (
∑

i |vi|p)
1
p (Only a norm for p ≥ 1).

span: Set of all linear combinations of a set of vectors. For example, given a set of vectors S =

{v1,v2,v3},vi ∈ RM , span(S) = {α1v1 + α2v2 + α3v3 | αi ∈ R}. Span is an example of a vector

space.

vector space: Span of a set of vectors is an example of a vector space. Vector space is a more

general term for the result of combining a set of vectors with addition and scalar multiplication. For

example, if we changed span to include multiplication by complex scalars, that would be a different

vector space.
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linearly dependent: A vector, u, is linearly dependent with a set of vectors, S = {vk}Kk=1, if it

is possible to represent u as a linear combination of vectors in S. For example, if u = 3v1 − 3.5v3,

then u is linearly dependent with S.

A set of vectors in linearly dependent if any of the vectors in the set can be represented by a linear

combination of the remaining vectors in the set.

linearly independent: A vector, u is linearly independent from a set of vectors, S = {vk}Kk=1, if

it is not possible to represent u as a linear combination of vectors in S.

A set of vectors is linearly independent if no single vector in the set can be represented by a linear

combination of the remaining vectors in the set.

1.4 Matrices

identity matrix: A matrix with all ones on the diagonal and zeros elsewhere. Represented as I, or

more specifically IN , where the N indicates that it is an N ×N identity matrix. I3 =

1 0 0

0 1 0

0 0 1


matrix inverse: The inverse of matrix A ∈ RN×N is denoted A−1. A−1 is also an N ×N matrix.

The inverse of a square, N × N matrix will exist if the matrix is full rank, i.e., the column rank

and row rank is N . If the inverse of a square matrix exists then A−1A = AA−1 = I, where I is the

N ×N identity matrix.

column rank of a matrix: the maximal number of linearly independent vectors among the column

vectors in a given matrix. This is also the dimensionality of the vector space spanned by the column

vectors of the matrix.

row rank of a matrix: the maximal number of linearly independent vectors among the row vectors

in a given matrix. This is also the dimensionality of the vector space spanned by the row vectors of

the matrix.

rank: the row rank and column rank of a matrix are always equal, so there are often just referred

to as matrix “rank”.

full rank: A matrix is full rank is the rank is equal to the minimum of its number of rows and

number of columns. If a matrix is square and full rank then the inverse of that matrix exists.

singular matrix: A square matrix is singular if it is not full rank and thus it’s inverse doesn’t exist.

Frobenius norm of a matrix: Basically the L2 norm if we were to flatten the matrix into a vector.

For matrix A ∈ RN×M ,

∥A∥F =

 N∑
i=1

M∑
j=1

ai,j
2

 1
2

∥A∥2F =

N∑
i=1

M∑
j=1

ai,j
2
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2 Multivariate calculus

While you may not have explicitly learned multivariate calculus, if very much just builds on top

of normal (scalar) calculus. In multivariate calculus, we are just shifting to working with functions

that have multiple inputs variables and potentially multiple outputs.

2.1 Partial derivatives

A partial derivative is when we take the derivative of a function f with respect to one of its many

input variables. Notation-wise, you’ll see it written as ∂
∂z f(x, z) or

∂f
∂z . (It could also be written as

fz(x, z), but we won’t use that in this course.)

When we take the partial derivative with respect to one variable, we just hold all other variables

constant.

For example:

f(x, z) = 2x3z5 (1)

∂f

∂x
= 6x2z5 (2)

∂f

∂z
= 10x3z4 (3)

(4)

You can think of linear algebra as having many individual variables. Take, for example, the L2 norm

squared of x ∈ R3:

f(x) = ∥x∥2 = xTx =
∑
i

xi
2 = x1

2 + x2
2 + x3

2 (5)

f(x1, x2, x3) = ∥x∥2 = xTx =
∑
i

xi
2 = x1

2 + x2
2 + x3

2 (6)

∂f

∂x1
= 2x1 (7)

∂f

∂x2
= 2x2 (8)

∂f

∂x3
= 2x3 (9)

(10)

2.2 Gradients

Given a scalar function with vector input, f : RM → R, f(x) = f(x1, ..., xM ), the gradient is a

column vector where the i-th entry is the partial derivative of the function with respect to the i-th

input entry in the input vector.

∇xf(x) =


∂f
∂x1
∂f
∂x2

...
∂f

∂xM


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We call this the gradient of f with respect to x. The x in the subscript is redundant if x is the only

argument to f and would typically be dropped, ∇f(x).

Using the same example from above, the L2 norm squared of x ∈ R3:

f(x) = ∥x∥2 =

x1
2

x2
2

x3
2

 (11)

∂f

∂x1
= 2x1 (12)

∂f

∂x2
= 2x2 (13)

∂f

∂x3
= 2x3 (14)

∇f(x) =


∂f
∂x1
∂f
∂x2
∂f
∂x3

 =

2x1

2x2

2x3

 = 2x (15)

3 Optimization notation

We can formalize an optimization problem with the following form:

y∗ = min.
x∈X

f(x)

where

• f : Rk → R is known as the objective function that we are trying to minimize

• X ⊂ Rk is the set of feasible inputs that we are trying to minimize f over

• y∗ is the smallest value of f(x) for all possible values x ∈ X (which is why we have a min in

the formulation)

For all possible values x in the set X and return the x corresponding to the output of f(x) that

has the smallest value (i.e. return the argument, not the value of the function):

x∗ = argmin.
x∈X

f(x)

For example, suppose that we wanted to minimize the objective function f(x) = 3(x− 5)2 − 200:

y∗ = min
x∈R

3(x− 5)2 − 200 (16)

= −200 (17)

x∗ = argmin
x∈R

3(x− 5)2 − 200 (18)

= 5 (19)

(20)

Plot for the above example:
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# Plot for above example

def f(x):

return 3*(x-5)**2 - 200

x_grid = np.linspace(-10, 10, 100)

y_grid = f(x_grid)

plt.plot(x_grid, y_grid, '-');

4 Probability

4.1 Vocabulary

outcome: a specific result, i.e., heads, tails.

sample space: the set of all possible outcomes of the random experiment, Ω is the non-empty,

finite set. In the case of flipping a single coin, we let Ω = { heads, tails }

events: a set of outcomes, which describe which outcomes correspond to the “event” happening. If

you throw the die twice, then your event could be, for example, {2, 3}

random variables: A random variable is a function X : Ω → R, which is just a labeling of the

elements in Ω, the sample space, with some real numbers. This is a desirable transformation because

then we can take the expectation of the random variable and other interesting concepts. i

distributions: Probability distributions may be associated with a random variable as a means

to define the relationship between the range of a random variable and probability or probability

density. Discrete random variables have discrete probability distributions that can be defined by

a probability mass function. Likewise, continuous random variables have continuous probability

distributions that can be defined by a probability density function.

probability mass function: Let X : Ω → R, be a random variable. The probability mass function

(pmf) of X is a function pX : R → [0, 1] such that for any x ∈ R, pX(x) = P [X = x]. The pmf must

sum to 1,
∑

x∈range(X) pX(x) = 1.

probability density function: The probability density function (pdf) of a continuous random

variable X over some interval of values, S is an integrable function f(x) satisfying the following:

1. f(x) is positive everywhere in the interval of the domain, ie, f(x) > 0 for all x ∈ S

2. The area under the curve f(x) in the interval is 1, ie,
∫
S
f(x)dx = 1

3. If f(x) is the pdf of x, then the probability that x belongs to some interval A is given by the

integral of f(x) over that interval, that is, P (X ∈ A) =
∫
A
f(x)dx
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parameters: Variables that when set, define a specific probability distribution. E.g., the parameters

of the normal distribution are the mean and standard deviation, µ and σ, respectively.

4.2 Notation

Ω: Ω is typically used to represent the sample space, the set of all possible outcomes.

Capital letter, e.g A, B, X, Y : Capital letters (in probability) are usually events or random variables.

4.2.1 Probability (of an event)

P (A) or Pr(A) or P(A) or P{A}: The probability of event A occuring

P (X = x): The probability of random variable X taking on value x. Note that while extremely

common, this is a notational shortcut. More formally, it would be written as P({ω ∈ Ω : X(ω) = x}),
the “probability of the set of outcomes where the random variable X maps the outcome to the value

x”.

P (X = 1): The probability of random variable X taking on the specific value 1 (using the same

notational shortcut as P (X = x) described above.

P (X = heads): Likely an abuse of notation for a discrete random variable that maps the outcome

”heads” one-to-one to a value. For example, if X(heads) = 1 and nothing else maps to 1, this

shorthand notation could be more precisely written as P (X = 1). Writing just P (heads) would

have been correct from a notation standpoint, but it probably loses the connection to a specific

random variable X.

P (A∩B) or P (A,B): The probability of both A and B, jointly. We tend to use the comma notation

for the joint probabilities.

P (A | B): Conditional probability of A given B. The conditional probability symbol has operator

precedence, so P (A,B | C,D) is the probability of A and B given both C and D. (Other groupings

don’t really make sense.)

A ⊥⊥ B: A and B are independent

A ⊥⊥ B | C: A and B are independent given C. (Note the precedence of the conditional symbol.

One might initially try to read this as A ⊥⊥ (B | C), but that doesn’t quite make sense.)

4.2.2 Distributions

p(x) or pX(x): probability mass function for discrete random variable X. We almost always drop

the X subscript, relying on context to understand the implied random variable.

f(x) or fX(x): probability density function for continuous random variable X. Also, often dropping

the X subscript.

F (x) or FX(x): cumulative distribution function for random variable X.

Note: In the rest of this section (and throughout the course), we’ll just use p to indicate either a

pmf or a pdf.
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P (X): If X is a random variable, this is a bit of an abuse of notation, likely meant to mean

P (X = x)∀x ∈ range(X), which of course is just the pmf or pdf, p(x).

p(x = 1) or P (x = 1): A fairly common abuse of notation in machine learning. It could be written

slightly more precisely as pX(1), p(1), or P (X = 1) (which is already shorthand notation). Writing

p(x = 1) can be a convenient way of writing p(x) when x = 1. Another example used quite often is

p(x | y = 1), which could be written more precisely as pX,Y (x | 1).

p(x; θ) or p(x | θ) or p(x) or pθ(x): (marginal) distribution (pmf/pdf) defined by parameter(s) θ.

The | is required when we are considering the variable that is conditioned upon to also be a random

variable value (Bayesian reasoning), e.g., if we also have prior distribution over θ, p(θ). The colon

notation represents a Frequentist’s view of probability (as opposed to Bayesian). The colon and |
are often used interchangeably when we don’t explicitly model distributions for the given variable.

p(x, y) or pX,Y (x, y): pmf/pdf of joint distribution related to both random variables X and Y .

p(x | y) or pX|Y (x | y): pmf/pdf of the conditional distribution of random variable X conditioned on

the random variable Y taking on value y. Note that it’s easy to confuse y as needing to be a known

value; however, y is also an input to this pmf/pdf, which allows us to compute the mass/density for

any combination of x and y.

X ∼ DistributionName(θ): Random variable X is modeled with a ‘enter distribution name‘ distri-

bution defined by parameter(s) θ.

x ∼ DistributionName(θ): The value x is sampled from (drawn from) a random variable with a

‘enter distribution name’ distribution defined by parameter(s) θ. There are a few distributions that

have a common symbol for their distribution, e.g., N for a Gaussian distribution.

x ∼ N (µ, σ): The value x is drawn from a Gaussian distribution with mean µ and standard deviation

σ.

4.2.3 Statistics

θ̂: The hat notation can be used to indicate a specific estimated value as opposed to a variable of

the same name. For example, let θ̂ be the estimate of the parameter that minimizes the function

J(θ).

D: Dataset notation: a dataset is typically represented by calligraphic uppercase letters, often D.

Technically, a dataset is a multiset rather than a set because we can have repeated entries. We

often index a dataset by labels in parenthesized superscripts D = {z(1), z(2), ..., z(n)}, where n = |D|,
the number of elements in the set. This will become helpful when we get into a set of training

examples, D = {(x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n))}. Note: These parenthesized superscripts are

not exponents! However, some people will not include these helpful parentheses, so you’ll have to

determine from context whether they are powers or not.

4.3 Notes

Note many of the rules in these notes are written for discrete probabilities. The associated rule can

be converted to continuous distributions with either no changes or simple changes, such as converting

the summation to an integral.

9

https://en.wikipedia.org/wiki/Probability_interpretations


4.3.1 Random Variables

In this class, we will be using random variable notation. A random variable is a mapping of events

to values, and then the associated pmf (or pdf) maps those values to probabilities (or densities).

For example, if Z takes on the value 1 when the roll of a six-sided fair dice is even, the probability

of rolling an even number will be denoted as the following:

P (Z = 1) =
1

2

4.3.2 Continuous vs discrete random variables

Discrete random variables can only take a countable number of values (e.g., values we can roll in a

dice) while continuous can take on infinitely many values. Our definitions for marginalization and

the law of total probability assumed Y was a discrete random variable. If Y is not:

P (A = a) =

∫
b

P (A = a,B = b) ∗ db

4.3.3 Basic Rules

Definition of Conditional Probability:

P (X | Y ) =
P (X,Y )

P (Y )

Chain Rule:

P (X,Y ) = P (X | Y )P (Y )

= P (Y | X)P (X)

P (X1, X2, X3) = P (X1, X2 | X3)P (X3)

= P (X1 | X2, X3)P (X2, X3)

Chain Rule (with more variables):

P (X1, X2, X3) = P (X1 | X2, X3)P (X2, X3)

= P (X1 | X2, X3)P (X2 | X3)P (X3)

P (X1, ..., XN ) =

N∏
n=1

P (Xn | X1, ..., Xn−1)
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The chain rule decomposition may be done in any order. For example:

P (X1, X2, X3) = P (X1)P (X2 | X1)P (X3 | X1, X2)

= P (X1)P (X3 | X1)P (X2 | X1, X3)

= P (X2)P (X1 | X2)P (X3 | X1, X2)

= P (X2)P (X3 | X2)P (X1 | X2, X3)

= P (X3)P (X1 | X3)P (X2 | X1, X3)

= P (X3)P (X2 | X3)P (X1 | X2, X3)

Bayes’ Law:

P (Y | X) =
P (X | Y )P (Y )

P (X)

Normalization:

P (Y | X) =
P (X,Y )

P (X)
=

P (X,Y )∑
y P (X,Y = y)

P (Y | X) ∝ P (X,Y )

P (Y | X) = αP (X,Y ) Note this difference between ∝ and α

α =
1

P (X)
=

1∑
y P (X,Y = y)

All of these basic probability rules hold when conditioning on a set of random variables or outcomes.

To make this work, the conditioned variables need to be included in each term in the rule. For

example, take Bayes’ law from above, but now conditioned upon variables A and B:

P (Y | X,A,B) =
P (X | Y,A,B)P (Y | A,B)

P (X | A,B)

4.3.4 Law of Total Probability (marginalization)

The law of total probability allows us to “sum out” variables from a joint distribution (sometimes

called marginalization). This is useful when we are given the joint probability distribution and

want to find the probability distribution over just a subset of the variables. Marginalization has the

following forms:

To sum out a single variable:

P (X) =
∑
y

P (X,Y = y)

To sum out multiple variables:

P (X) =
∑
z

∑
y

P (X,Y = y, Z = z)
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This also works for conditional distributions when summing out a variable that is not conditioned

upon, i.e. a variable to the left of the |:

P (A | C,D = d) =
∑
b

P (A,B = b | C,D = d)

This does NOT work when summing over a variable that is conditioned upon, i.e. a variable to the

right of the |:

P (A,B = b | C) ̸=
∑
d

P (A,B = b | C,D = d)

4.3.5 Independence

If two variables X and Y are independent (denoted X ⊥⊥ Y ), by definition the following are true:

• P (X,Y ) = P (X)P (Y )

• P (X) = P (X | Y )

• P (Y ) = P (Y | X)

If two variables X and Y are conditionally independent given Z (denoted X ⊥⊥ Y | Z), by

definition the following are true:

• P (X,Y | Z) = P (X | Z)P (Y | Z)

• P (X | Y,Z) = P (X | Z)

• P (Y | X,Z) = P (Y | Z)

4.3.6 Gaussian Distribution

Denoted as X ∼ N (µ, σ), the probability density function is given by:

p(x;µ, σ) =
1

σ
√
2π

exp(− 1

2σ2
(x− µ)2)

When X is a vector of K random variables, the associated multivariate Gaussian distribution has

pdf:

p(x;µ,Σ) = (2π)K/2 det (Σ)
1/2

exp

(
−1

2
(x− µ)Σ−1(x− µ)

)

4.3.7 Law of Total Expectation

For two given random variables X,Y :

E[X] = E[E[X | Y ]]

12



If Y is discrete, this becomes:

E[X] =
∑
y

E[X | Y = y]P (Y = y)

4.3.8 Variance

It’s a measure of spread for a distribution of a random variable that determines the degree to which

the values of a random variable differ from the expected value.

V ar(X) = E[X2]− (E[X])2

V ar(X) = σ2 where σ is the standard deviation of X

4.3.9 Independent and identically distributed (i.i.d.)

A collection of random variables is independent and identically distributed if each random variable

has the same probability distribution as the others and all are mutually independent i.e. each

variable has the same chance of occurring as the others, and none of them have an influence on one

another. This is a popular and important concept in statistics. A lot of the models and algorithms

assume this property about their data.
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