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1 MLE and MAP Summary

Here’s a quick preview of our trick coin example, where we start with a prior belief about our param-

eter, p(ϕ), and see how the posterior, p(ϕ | D) changes as we start to collect data and incorporate

the likelihood, p(D | ϕ):

To get a better understanding of how the prior, posterior, and data interact, experiment with

different possible combinations of coin flip data with this handy visualization.
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https://docs.google.com/spreadsheets/d/1YO2rcNndm4uri3FGluJ0J8J3h2T_4mnsG5bNnYEiY9M/edit?gid=627891884#gid=627891884


Overview highlighting the differences and similarities between MLE and MAP estimation in one

table:

Maximum likelihood estimation Maximum a posteriori estimation
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Recipe for 
optimization

1. Formulate the likelihood, 

𝑝(𝒟 ∣ 𝜃)

2. Set objective 𝐽(𝜃) equal to negative log 

of the likelihood,

J 𝜃 = − log 𝑝 𝒟 𝜃

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivative equal to zero and solve 

for 𝜃

b. Use (stochastic) gradient descent to 

step towards better 𝜃

1. Formulate the likelihood times the prior,

𝑝 𝒟 𝜃  𝑝(𝜃)

2. Set objective 𝐽(𝜃) equal to negative log 

of the likelihood times the prior,

J 𝜃 = − log 𝑝 𝒟 𝜃 𝑝(𝜃)

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivative equal to zero and solve 

for 𝜃

b. Use (stochastic) gradient descent to 

step towards better 𝜃

Data and model 
assumptions

▪ With no prior model assumptions, we 

have no information about our 

parameters before collecting data

▪ With a small amount of data, we are at 

greater risk of overfitting

▪ As the number of data points increases, 

MLE is sufficient, as we can rely solely 

on the data to estimate our parameters

▪ Even with no data, we can have an initial 

estimate for our parameters, however, 

we must use our knowledge to formulate 

a prior (additional modeling 

assumptions)

▪ If our prior model assumptions are 

reasonably accurate, we only need a 

small amount of data to compute a good 

estimate of our parameters

▪ As the number of data points increases, 

the MAP estimate and the MLE estimate 

converge to the same value
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2 Bayes Rule

2.1 Bayes rule: General version

Bayes rule is a super powerful theorem that allows us to convert the conditional probability p(b | a)
into p(a | b) as long as we also know p(b):

p(a | b) = p(b | a) p(a)
p(b)

It can be useful to write Bayes rule without the denominator, p(b) using the “proportional to”

notation, ∝:

p(a | b) ∝ p(b | a) p(a)

The stems from the following set of probability rules:

• Product rule: p(b | a) p(a) = p(a, b)

• Marginalization: If we can model the joint distribution p(a, b), then we can compute p(b) =∑
a p(a, b) (if a is discrete) or

∫
a
p(a, b) (if a is continuous)

• Normalization: If we can model the numerator of Bayes rule, p(b | a)p(a), we can compute

the left-hand side, by normalizing the values of the numerator over all possible values of a.

Specifically, combining the product rule and marginalization and assuming a is discrete, we

can compute Z = p(b) =
∑

a p(b | a) p(a), and then write Bayes rule as p(a | b) = 1
Z p(b | a)p(a)

• If we know that b is a fixed value, then we can treat Z = p(b) as a constant and write Bayes

rule as p(a | b) ∝ p(b | a) p(a).

2.2 Bayes rule: Data and parameters
With the dataset D = {y(i)}Ni=1 and generic model parameter(s) θ, we write Bayes rule as follows:

p(θ | D) =
p(D | θ) p(θ)

p(D)

where:

• p(D | θ) is the likelihood,

• p(θ) is the prior on the parameters, and

• p(θ | D) is the posterior

Normalization: When trying to find the optimal value for our parameters, we treat D and p(D) as

constant and write Bayes rule as:

p(θ | D) ∝ p(D | θ) p(θ)
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3 Bernoulli MAP example: Trick coin

Suppose we wander into a joke shop where there is a container full of coins with a sign that says,

“NEW: Randomly-weighted Trick Coins!” Statistical curiosity drives us to purchase one coin.

Before flipping the coin, we don’t know what to expect. Will the coin always come up heads? Always

tails? Did we just pay money for a fair coin? Or is weighted in an interesting way such that comes

up heads with some other probability.

Just as we start to formulate our MLE experiment, out of the corner of our eye, we spot a piece

of paper sticking out of the trash bin next to the joke shop. The visible portion of the paper says,

“Invoice: Weighted Coins.” Pulling out the paper, we see the full contents of the receipt listing the

five different types of coins and the quantities purchased! We excitedly start scribbling some notes

on the invoice about the probability of selecting each type of coin from the store:

Now, before we starting flipping the coin at all, we already have some information about the Bernoulli

coin flip parameter, ϕ = P (Y = 1 | ϕ), the probability of the coin coming up heads. If we were

forced to guess what type of coin we have prior to flipping it, we’d probably choose, ϕ = 0.5 because

that has the highest probability based on our prior information from the invoice, i.e. p(ϕ = 0.5) =

80/200 = 0.4, which is greater than all other possible values of ϕ (other coin types).

We know that flipping coins helps us collect information about the likelihood, p(D | ϕ) =
∏N

i=1 p(y
(i) |

ϕ). Bayes rule allows us to combine the likelihood with the prior on the coin flip parameter:

p(ϕ | D) ∝ p(ϕ)

N∏
i=1

p(y(i) | ϕ)

As we flip more and more coins, the likelihood term contains more and more factors

D p(ϕ)
∏N

i=1 p(y
(i) | ϕ)

{} p(ϕ)

{H} p(ϕ) ϕ

{H,T} p(ϕ) ϕ(1− ϕ)

{H,T, T} p(ϕ) ϕ(1− ϕ)(1− ϕ)
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The detailed example below shows how the posterior distribution of p(ϕ | D) is initially equal to the

prior distribution and then changes as we collect more data and add more factors to the likelihood

term.

𝜙 𝑝 𝜙 𝒟) 𝑝(𝜙) 𝑝(𝒟 | 𝜙)

0.0 0.200000 0.20

0.2 0.250000 0.25

0.5 0.400000 0.40

0.8 0.050000 0.05

1.0 0.100000 0.10

𝒟:

𝜙 𝑝 𝜙 𝒟) 𝑝(𝜙) 𝑝(𝒟 | 𝜙)

0.0 0.000000 0.20 0.0 1.0 1.0 1.0 1.0

0.2 0.619780 0.25 0.2 0.8 0.8 0.8 0.8

0.5 0.378284 0.40 0.5 0.5 0.5 0.5 0.5

0.8 0.001937 0.05 0.8 0.2 0.2 0.2 0.2

1.0 0.000000 0.10 1.0 0.0 0.0 0.0 0.0

𝒟: H T T T T

𝜙 𝑝 𝜙 𝒟) 𝑝(𝜙) 𝑝(𝒟 | 𝜙)

0.0 0.000000 0.20 0.0

0.2 0.128205 0.25 0.2

0.5 0.512821 0.40 0.5

0.8 0.102564 0.05 0.8

1.0 0.256410 0.10 1.0

𝒟: H

𝑁 = 0:  𝒟 = {} 

𝑁 = 1:  𝒟 = {𝐻} 

𝑁 = 5:  𝒟 = {𝐻, 𝑇, 𝑇, 𝑇, 𝑇} 

Note that the tables above are missing the details on how to compute the posterior value for each

parameter value. While the prior value is simply multiplied times the product of all of the likelihood

factors, there is still a normalization step over the probabilities for all possible values of ϕ that

happens to get specific values for the posterior. Here is the derivation of Z for the specific N = 5

D = {H,T, T, T, T} example above:

p(ϕ | D) =
1

Z
p(ϕ)

N∏
i=1

p(y(i) | ϕ)

Z =
∑
ϕ

p(ϕ)

N∏
i=1

p(y(i) | ϕ) =
∑
ϕ

p(ϕ) ϕ(1− ϕ)(1− ϕ)(1− ϕ)(1− ϕ) =
∑
ϕ

p(ϕ) ϕ(1− ϕ)4

= 0.20 · 0.0 · 1.04 + 0.25 · 0.2 · 0.84 + 0.40 · 0.5 · 0.54 + 0.05 · 0.8 · 0.24 + 0.10 · 1.0 · 0.04

= 0.033044

p(ϕ = 0.2 | D) =
1

0.033044
0.25 · 0.2 · 0.84

= 0.619780
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4 Recipe for Maximum a posteriori (MAP) estimation

Because there are only five possible values of the parameter ϕ in our joke shop coin example, we can

compute the posterior value for all five parameter values and then save the parameter value ϕ̂MAP

that led to the highest posterior. This value is the maximum a posteriori estimate.

More generally, we would need to try an infinite set of possible parameter values, so instead we turn

to optimization techniques.

The general recipe for finding MAP estimate is extremely similar to the MLE recipe:

1. Formulate the likelihood times the prior, p(D | θ) p(θ)

2. Set objective J(θ) equal to the negative log of the likelihood times the prior:

J(θ) = − log (p(D | θ) p(θ))

3. Compute derivative of objective, ∂J/∂θ

4. Find θ̂ by either:

(a) Setting derivative equal to zero and solve for θ

(b) Using (stochastic) gradient descent to step towards better θ

5 Gaussian MAP example: Course hours

We started taking an advanced systems class at CMU. We’re part way through the semester and are

starting to wonder what the mean number of hours per week students are spending on this class.

Asking a few friends in the course, we collect a dataset of their hours per week:

D = {x(i)}4i=1 = {18, 20, 14, 10}

Not wanting to overfit our small dataset, we do a little digging in past course evaluation data and

find statistics saying that over the past several years the reported hours per week have a mean of

ν = 23.9 and a standard deviation of τ = 1.56. We use these statistics to create a Gaussian prior on

our mean parameter, µ ∼ N (ν = 23.9, τ = 1.56). (To avoid confusion, we chose different symbols

for this second set of mean and standard deviation.)

Note that we now have two different Gaussian distributions, one for our hours data, x ∼ N (µ, σ),

(with unknown parameters, µ and σ) and one for our mean parameter, µ ∼ N (ν = 23.9, τ = 1.56).

In this example problem, we are going focus on using MAP to estimate the mean for our data

distribution, µ. To do this, we’ll hold the standard deviation, σ constant. (The mean and standard

deviation parameters prior distribution, ν and τ , are already constants.)

5.1 Formulate the likelihood times the prior

p(µ | D) ∝ p(µ)

4∏
i=1

p(x(i) | µ) (1)

=
1√
2πτ2

e−
1

2τ2 (µ−ν)2
4∏

i=1

1√
2πσ2

e−
1

2σ2 (x(i)−µ)2 (2)
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5.2 Set the objective function to the negative log likelihood times the

prior

J(µ) = − log

(
p(µ)

4∏
i=1

p(x(i) | µ)

)
(3)

= − log

(
1√
2πτ2

e−
1

2τ2 (µ−ν)2
4∏

i=1

1√
2πσ2

e−
1

2σ2 (x(i)−µ)2

)
(4)

= − log

(
1√
2πτ2

)
+

1

2τ2
(µ− ν)2−N log

(
1√
2πσ2

)
+

4∑
i=1

1

2σ2
(x(i) − µ)2

(where N = 4, our number of datapoints)

5.3 Compute derivative of objective, ∂J/∂θ

Thankfully, the remaining log terms don’t contain µ, so they are dropped in the derivative.

∂J

∂µ
=

∂

∂µ

(
− log

(
1√
2πτ2

)
+

1

2τ2
(µ− ν)2− log

(
N√
2πσ2

)
+

4∑
i=1

1

2σ2
(x(i) − µ)2

)
(5)

=
1

τ2
(µ− ν)−

4∑
i=1

1

σ2
(x(i) − µ) (6)

5.4 Find θ̂ by setting derivative equal to zero and solve for θ

∂J

∂µ
= 0 (7)

0 =
1

τ2
(µ− ν)−

4∑
i=1

1

σ2
(x(i) − µ) (8)

0 =
1

τ2
µ− ν

τ2
+

N

σ2
µ− 1

σ2

4∑
i=1

x(i) (9)

1

τ2
µ+

N

σ2
µ =

ν

τ2
+

1

σ2

4∑
i=1

x(i) // Next, multiply both side by τ2σ2 (10)

σ2µ+Nτ2µ = σ2ν + τ2
4∑

i=1

x(i) (11)

(
σ2 +Nτ2

)
µ = σ2ν + τ2

4∑
i=1

x(i) (12)

µ̂MAP =
1

σ2 +Nτ2

(
σ2ν + τ2

4∑
i=1

x(i)

)
(13)

Ok, admittedly, this is a bit dissatisfying because 1) it looks complicated and 2) the MAP estimate

of µ is written in terms of the standard deviation, σ. But, this is cool, watch what happens if we

(rather naively) assume that the standard deviation for this semester’s data is the same as the prior

standard deviation, σ = τ :

µ̂ =
1

1 +N

(
ν +

4∑
i=1

x(i)

)
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This estimate is the same as if we treated the prior mean as just one other data point and included

it into our MLE mean!

µ̂ =
1

5
(23.9 + (18 + 20 + 14 + 10)) = 17.8 hours per week
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