

10-315 Introduction to ML

Model Selection

Instructor: Pat Virtue

Reminder: Decision Tree Worksheet

Consider input features $x \in \mathbb{R}^2$.

Draw a reasonable decision tree.

Poll 2

Decision tree generalization

Which of the following generalize best to unseen examples?

- A. Small tree with low training accuracy
- B. Large tree with low training accuracy
- C. Small tree with high training accuracy
- D. Large tree with high training accuracy

Underfitting and Overfitting

Underfitting occurs when model:

- is too simple
- can't capture the actual pattern of interest in the training dataset
- has too much inductive bias

Overfitting occurs when model:

- is too complex
- fits noise or "outliers" in the training dataset as opposed to the actual pattern of interest
- doesn't have enough inductive bias pushing it to generalize

Underfitting and Overfitting: Classification

Underfitting

Overfitting

Underfitting and Overfitting: Regression

Underfitting and Overfitting: Regression

Reminder: Decision Trees

When do we stop (base case)?

When leaves are "pure", i.e., output values are all the same

Likely to overfit

Limit

- Tree depth
- Total number of leaves
- Splitting criteria threshold, e.g. splitting criteria $\leftarrow \tau$
- Minimum number of datapoints in a leaf

But how do we choose all of those limits?!?

Answer: Model selection

Model selection is the process to choose the "best" among a set of (trained) models

Today

k-Nearest Neighbor

- 1-NN, k-NN (mostly notation)
- Practical details

Underfitting and Overfitting

- Decision Tree stopping criteria
- Classification and regression examples

Model Selection

- Define terms
- Stress importance
- Cross-validation techniques

WARNING:

- In some sense, our discussion of model selection is premature.
- The models we have considered thus far are fairly simple.
- The models and the many decisions available to the data scientist wielding them will grow to be much more complex than what we've seen so far.

Statistics

- Def: a model defines the data generation process (i.e. a set or family of parametric probability distributions)
- Def: model parameters are the values that give rise to a particular probability distribution in the model family
- Def: learning (aka. estimation) is the process of finding the parameters that best fit the data
- Def: hyperparameters are the parameters of a prior distribution over parameters

Machine Learning

- Def: (loosely) a model defines the hypothesis space over which learning performs its search
- Def: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- Def: the learning algorithm defines the datadriven search over the hypothesis space (i.e. search for good parameters)
- Def: hyperparameters are the tunable aspects of the model, that the learning algorithm does not select

Example: Decision Tree

- model = set of all possible trees, possibly restricted by some hyperparameters (e.g. max depth)
- parameters = structure of a specific decision tree
- learning algorithm = ID3, CART, etc.
- hyperparameters = max-depth, threshold for splitting criterion, etc.

Machine Learning

- Def: (loosely) a model defines the hypothesis space over which learning performs its search
- Def: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- Def: the learning algorithm defines the datadriven search over the hypothesis space (i.e. search for good parameters)
- Def: hyperparameters are the tunable aspects of the model, that the learning algorithm does not select

Example: k-Nearest Neighbors

- model = set of all possible nearest neighbors classifiers
- parameters = none (KNN is an instance-based or non-parametric method)
- learning algorithm = for naïve setting, just storing the data
- hyperparameters = k, the number of neighbors to consider

Machine Learning

- Def: (loosely) a model defines the hypothesis space over which learning performs its search
- Def: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- Def: the learning algorithm defines the datadriven search over the hypothesis space (i.e. search for good parameters)
- Def: hyperparameters are the tunable aspects of the model, that the learning algorithm does not select

picking the best

parameters how do we

pick the best

hyperparameters?

Statistics

- Def: a model defines the data generation process (i.e. a set or family If "learning" is all about
 - probability distributions)
- Def: model parameters are give rise to a particular pro distribution in the model fa
- Def: learning (aka. estimation) is the process of finding the parameter at best fit the data
- Def: hyperparameters are the parameters of a prior distribution over parameters

Machine Learning

- Def: (loosely) a model defines the hypothesis
 - which learning performs its

parameters are the numeric ructure selected by the learning hat give rise to a hypothesis

- per the rearrying algorithm defines the datadriven seard ver the hypothesis space (i.e. search for god varameters)
- Def: hyperparameters are the tunable aspects of the model, that the learning algorithm does not select

- Two very similar definitions:
 - Def: model selection is the process by which we choose the "best" model from among a set of candidates
 - Def: hyperparameter optimization is the process by which we choose the "best" hyperparameters from among a set of candidates (could be called a special case of model selection)
- Both assume access to a function capable of measuring the quality of a model
- **Both** are typically done "outside" the main training algorithm --- typically training is treated as a black box

Special Cases of k-NN

k=1: Nearest Neighbor

k=N: Majority Vote

Example of Hyperparameter Optimization

Fisher Iris Data: varying the value of k

Gaussian Data: varying the value of k

Why do we need cross-validation?

- Choose hyperparameters
- Choose technique
- Help make any choices beyond our parameters

But now, we have another choice to make!

How do we split training and validation?

Trade-offs

- More held-out data, better meaning behind validation numbers
- More held-out data, less data to train on!

K-fold cross-validation

Create K-fold partition of the dataset.

Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error

	Total number of examples ►	training	validation
Run 1			
Run 2			
Run K		Slide	e credit: CMU MLD Aarti Singh

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=N partitions Equivalently, train on N-1 samples and validate on only one sample per run for N runs

	Total number of examples	☐ training ——▶	validation
Run 1			
Run 2			
	<u>:</u>		
Run K		Sli	de credit: CMU MLD Aarti Singh

Random subsampling

Randomly subsample a fixed fraction αN (0< α <1) of the dataset for validation.

Compute validation error with remaining data as training data.

Repeat K times

Poll 3

Say you are choosing amongst 7 discrete values of a decision tree *mutual information threshold*, and you want to do K=5-fold cross-validation.

How many times do I have to train my model?

- A. 1
- B. 5
- C. 7
- D. 12
- E. 35
- F. 5⁷

Experimental Design

	Input	Output	Notes
Training	training datasethyperparameters	best model parameters	We pick the best model parameters by learning on the training dataset for a fixed set of hyperparameters
Hyperparameter Optimization	training datasetvalidation dataset	best hyperparameters	We pick the best hyperparameters by learning on the training data and evaluating error on the validation error
Testing	test datasethypothesis (i.e. fixed model parameters)	• test error	We evaluate a hypothesis corresponding to a decision rule with fixed model parameters on a test dataset to obtain test error