10-315
Introduction to ML

Model Selection

Instructor: Pat Virtue




Reminder: Decision Tree Worksheet

Consider input features x € R?.
Draw a reasonable decision tree.
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Poll 2

Decision tree generalization
Which of the following generalize best to unseen examples?
A. Small tree with low training accuracy

Large tree with low training accuracy

B
C. Small tree with high training accuracy
D. Large tree with high training accuracy



Underfitting and Overfitting

Underfitting occurs when model:
" is too simple

" can’t capture the actual pattern of

interest in the training dataset

= has too much inductive bias

Overfitting occurs when model:

" is too complex

= fits noise or “outliers” in the
training dataset as opposed to the

actual pattern of interest

" doesn’t have enough inductive bias

pushing it to generalize



Underfitting and Overfitting: Classification

Underfitting Overfitting
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Underfitting and Overfitting: Regression

Underfitting Overfitting
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Underfitting and Overfitting: Regression

Underfitting Overfitting
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Reminder: Decision Trees

When do we stop (base case)?

When leaves are “pure”, i.e., output values are all the same
= Likely to overfit

Limit

" Tree depth

" Total number of leaves

= Splitting criteria threshold, e.g. splitting criteria<=1
" Minimum number of datapoints in a leaf



But how do we choose all of those [imits?!?

Answer: Model selection

Model selection is the process to choose the “best” among a
set of (trained) models



Today

k-Nearest Neighbor
= 1-NN, k-NN (mostly notation)
" Practical details

Underfitting and Overfitting
= Decision Tree stopping criteria
= (lassification and regression examples

Model Selection

= Define terms

= Stress importance

" Cross-validation techniques



Model Selection



Model Selection

WARNING:

* |In some sense, our discussion of model selection is
premature.

* The models we have considered thus far are fairly simple.

* The models and the many decisions available to the data
scientist wielding them will grow to be much more complex
than what we’ve seen so far.



Model Selection

Statistics

Def: a model defines the data generation
process (i.e. a set or family of parametric
probability distributions)

Def: model parameters are the values that
give rise to a particular probability
distribution in the model family

Def: learning (aka. estimation) is the process
of finding the parameters that best fit the
data

Def: hyperparameters are the parameters of
a prior distribution over parameters

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Example: Decision Tree

model = set of all possible trees, possibly
restricted by some hyperparameters (e.g.
max depth)

parameters = structure of a specific decision
tree

learning algorithm = ID3, CART, etc.

hyperparameters = max-depth, threshold for
splitting criterion, etc.

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Example: k-Nearest Neighbors

model = set of all possible nearest neighbors
classifiers

parameters = none
(KNN is an instance-based or non-parametric
method)

learning algorithm = for naive setting, just
storing the data

hyperparameters = k, the number of
neighbors to consider

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Statistics Machine Learning

* Def: a model defines the data generation * Def: (loosely) a model defines the hypothesis
process (l.e. a set or.famlly If “learning” is all about hich learning performs its
probability distributions) .

picking the best

* Def: model parameters are] parameters how do we |parameters are the numeric
give rise to a particular pro pick the best ructure selected by the learning
distribution in the model fa - at give rise to a hypothesis

hyperparameters?

* Def: learning (aka. estimati : ing algorithm defines the data-
of finding the paramet at best fit the driven sear& \er the hypothesis space (i.e.
data search for go rameters)

* Def: hyperparameters are the parameters of * Def: hyperparameters are the tunable
a prior distribution over parameters aspects of the model, that the learning
algorithm does not select



Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose the “best”

model from among a set of candidates
— Def: hyperparameter optimization is the process by which we choose
the “best” hyperparameters from among a set of candidates (could be

called a special case of model selection)

* Both assume access to a function capable of measuring the
quality of a model

* Both are typically done “outside” the main training algorithm -
typically training is treated as a black box



Special Cases of k-NN

k=1: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)
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Slide credit: CMU MLD Matt Gormley

k=N: Majority Vote

3-Class classification (k = 150, weights = 'uniform’)
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Classification with KNN (k = 1, weights = 'uniform') Classification with KNN (k = 144, weights = 'uniform')

k-NN: Choosing k-

vvvvvvvvv
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Train / Test Errors with k-NN
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 Classification with KNN (k = 1, weights = 'uniform’)
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Classification with KNN (k = 81, weights = 'uniform’)
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Cross-validation

Why do we need cross-validation?

" Choose hyperparameters

" Choose technique

* Help make any choices beyond our parameters

But now, we have another choice to make!
" How do we split training and validation?

Trade-offs
=" More held-out data, better meaning behind validation numbers
= More held-out data, less data to train on!



Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.
Do K runs: train using K-1 partitions and calculate validation error

on remaining partition (rotating validation partition on each run).
Report average validation error

Total number of examples I:I training I:Ivalidation

Run 1

Run 2

Run K




Cross-validation

Leave-one-out (LOQO) cross-validation

Special case of K-fold with K=N partitions
Equivalently, train on N-1 samples and validate on only one
sample per run for N runs

I:I training I:Ivalidation
Total number of examples

¢ >

Run 1

Run 2

Run K




Cross-validation

Random subsampling

Randomly subsample a fixed fraction aN (0< a <1) of the dataset

for validation.

Compute validation error with remaining data as training data.

Repeat K times
Report average valid

ation error

Total number of examples

I:I training I:Ivalidation

>

Run 1

Run 2

Run K




Poll 3

Say you are choosing amongst 7 discrete values of a decision tree
mutual information threshold, and you want to do K=5-fold cross-
validation.

How many times do | have to train my model?



Experimental Design

Input Output Notes

Training training dataset * best model parameters We pick the best model

hyperparameters parameters by learning on
the training dataset for a

fixed set of hyperparameters

Hyperparameter training dataset * best hyperparameters We pick the best

Optimization validation dataset DT U LT
on the training data and

evaluating error on the
validation error

Testing test dataset e testerror We evaluate a hypothesis
hypothesis (i.e. fixed corresponding to a decision

rule with fixed model
model paramEters) parameters on a test dataset

to obtain test error

Slide credit: CMU MLD Matt Gormley
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