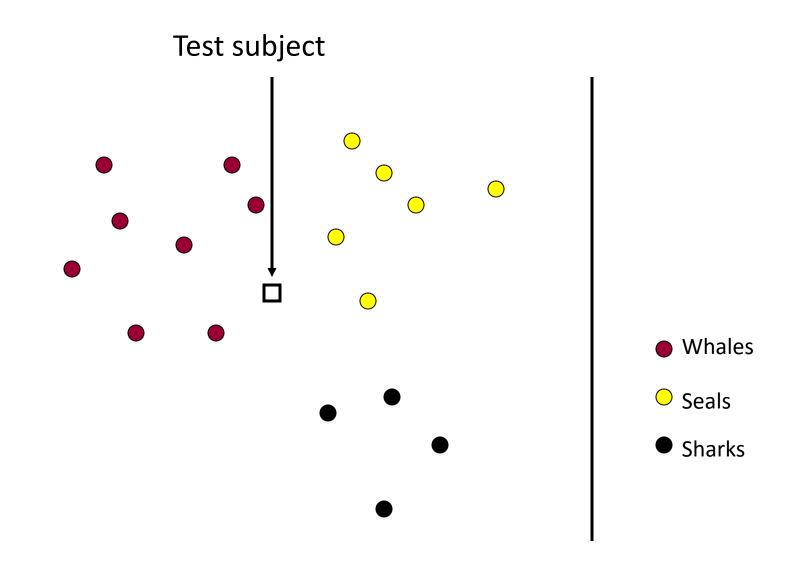


10-315 Introduction to ML

K-Nearest Neighbor

Instructor: Pat Virtue

Nearest Neighbor Classifier



Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, \mathbf{x}^{(n)}\}_{n=1}^{N}, y \in \{1, ..., C\}, \mathbf{x} \in \mathbb{R}^{M}$ and a test input \mathbf{x}_{test} , predict the class label, \hat{y}_{test} :

- 1) Find the closest point in the training data to \mathbf{x}_{test} $n = \operatorname*{argmin}_{n} d(\mathbf{x}_{test}, \mathbf{x}^{(n)})$
- 2) Return the class label of that closest point $\hat{y}_{test} = y^{(n)}$

Need distance function! What should $d(\mathbf{x}, \mathbf{z})$ be?

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Fisher Iris Dataset

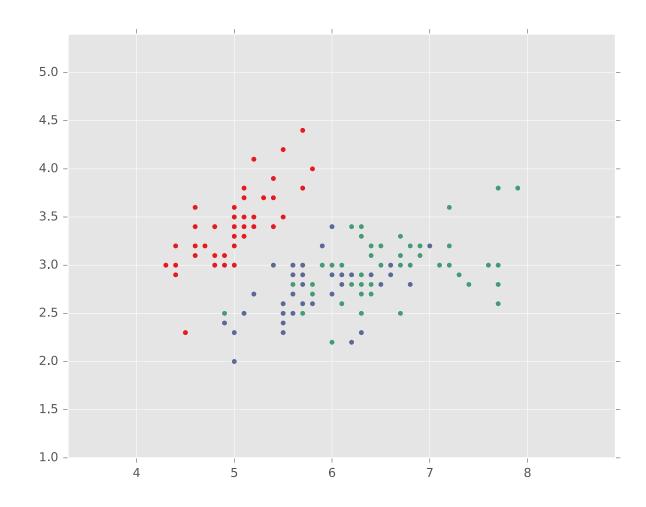
Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width
0	4.3	3.0
0	4.9	3.6
0	5.3	3.7
1	4.9	2.4
1	5.7	2.8
1	6.3	3.3
1	6.7	3.0

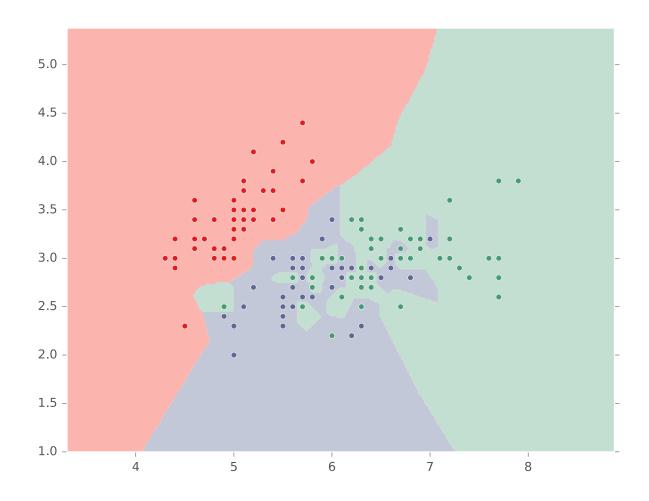
Deleted two of the four features, so that input space is 2D

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

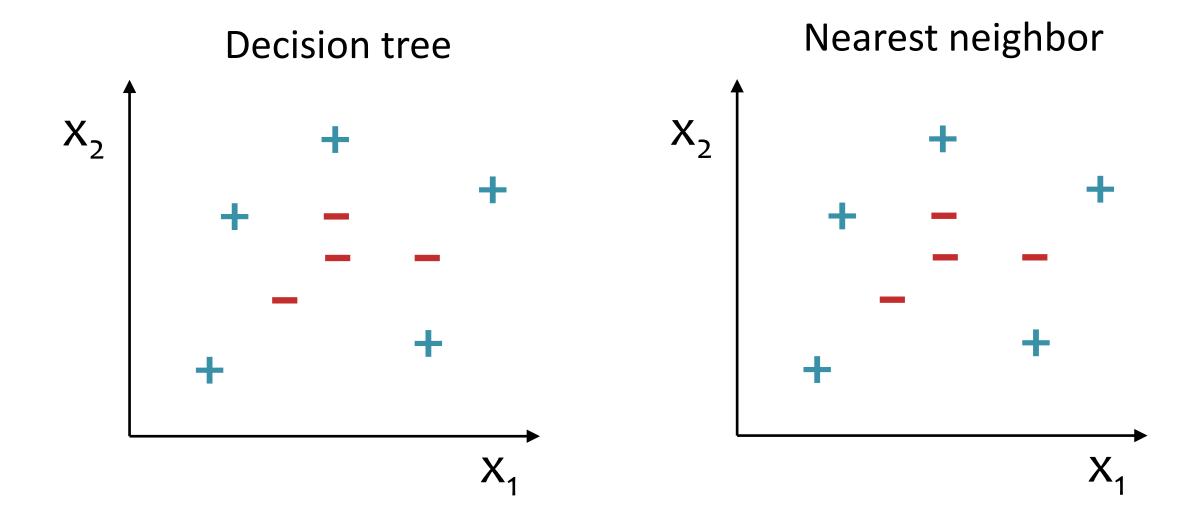
Nearest Neighbor on Fisher Iris Data



Nearest Neighbor on Fisher Iris Data

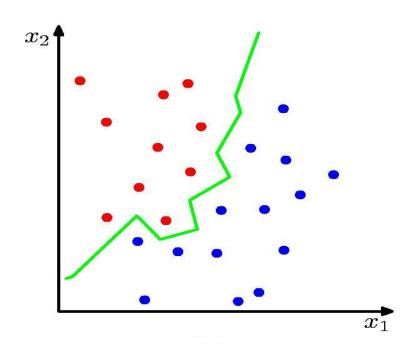


Recitation: Decision Boundaries

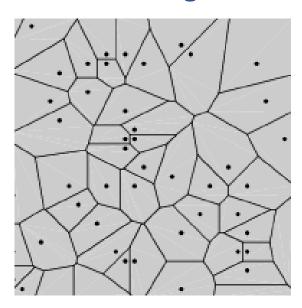


Nearest Neighbor Decision Boundary

1-nearest neighbor classifier decision boundary

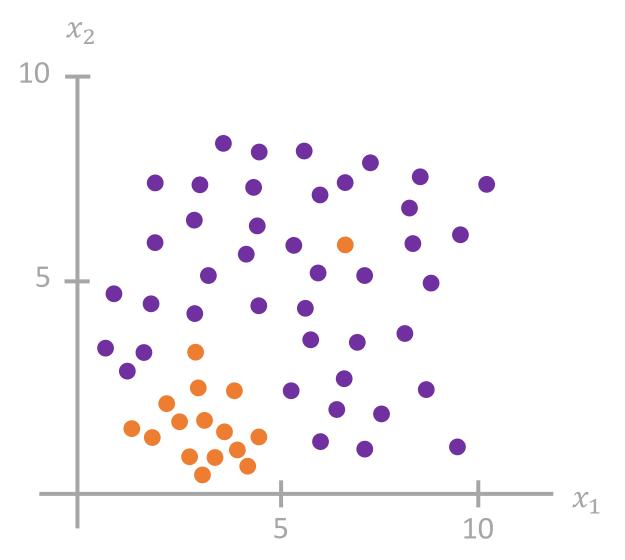


Voronoi Diagram

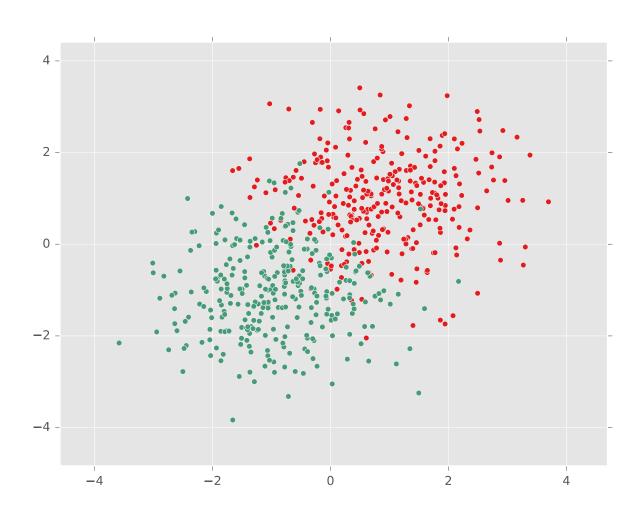


Nearest Neighbor Classification

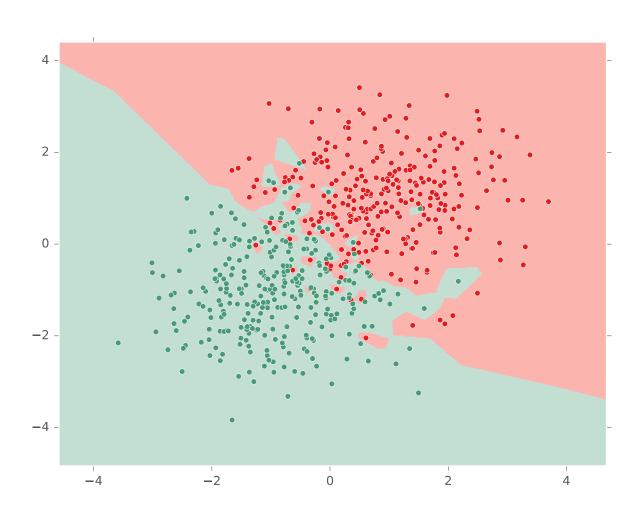
Consider input features $x \in \mathbb{R}^2$.



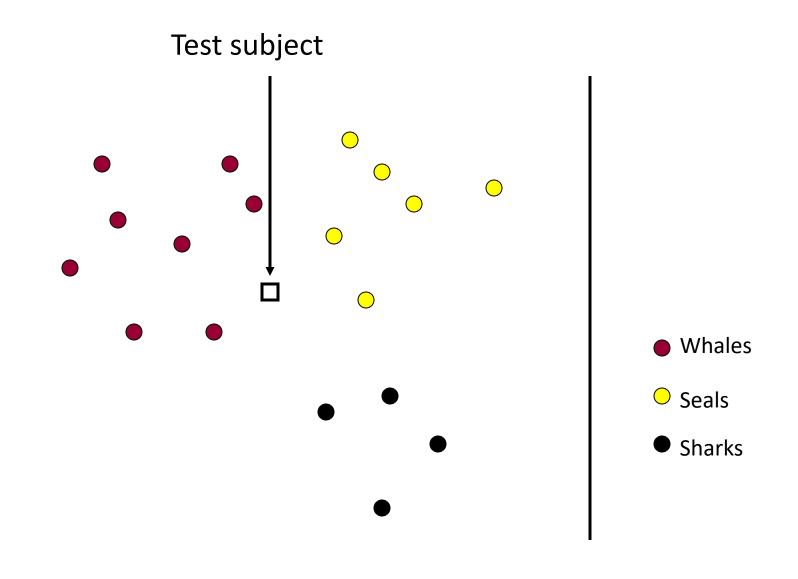
Nearest Neighbor on Gaussian Data



Nearest Neighbor on Gaussian Data



kNN classifier (k=5)



Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, x^{(n)}\}_{n=1}^{N}, y \in \{1, ..., C\}, x \in \mathbb{R}^{M}$ and a test input x_{test} , predict the class label, \hat{y}_{test} :

- 1) Find the closest point in the training data to x_{test} $n = \operatorname*{argmin}_{n} d(x_{test}, x^{(n)})$
- 2) Return the class label of that closest point $\hat{y}_{tost} = y^{(n)}$

k-Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, x^{(n)}\}_{n=1}^{N}, y \in \{1, ..., C\}, x \in \mathbb{R}^{M}$ and a test input x_{test} , predict the class label, \hat{y}_{test} :

- 1) Find the closest k points in the training data to x_{test} . $\mathcal{N}_k(x_{test}, \mathcal{D})$
- 2) Return the class label of that closest point

$$\hat{y}_{test} = \underset{c}{\operatorname{argmax}} p(Y = c \mid x_{test}, \mathcal{D}, k)$$

$$= \underset{c}{\operatorname{argmax}} \frac{1}{k} \sum_{i \in \mathcal{N}_k(x_{test}, \mathcal{D})} \mathbb{I}(y^{(i)} = c)$$

$$= \underset{c}{\operatorname{argmax}} \frac{k_c}{k},$$

where k_c is the number of the k-neighbors with class label c

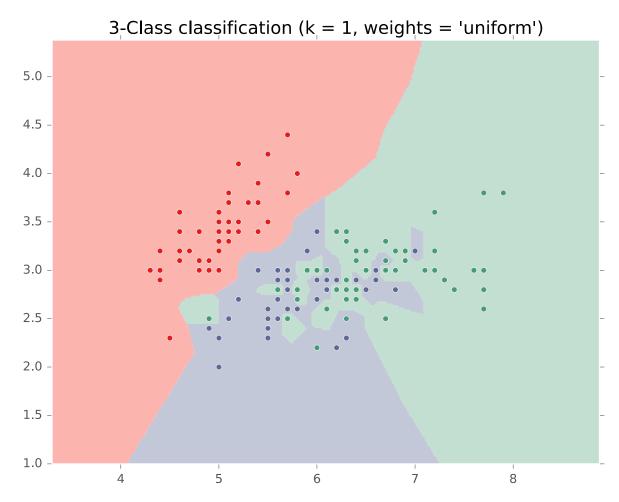
What is the best k?

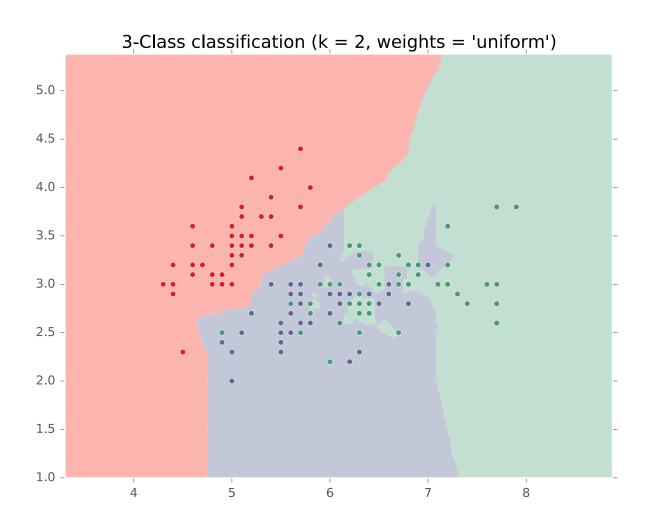
How do we choose a learner that is accurate and also generalizes to unseen data?

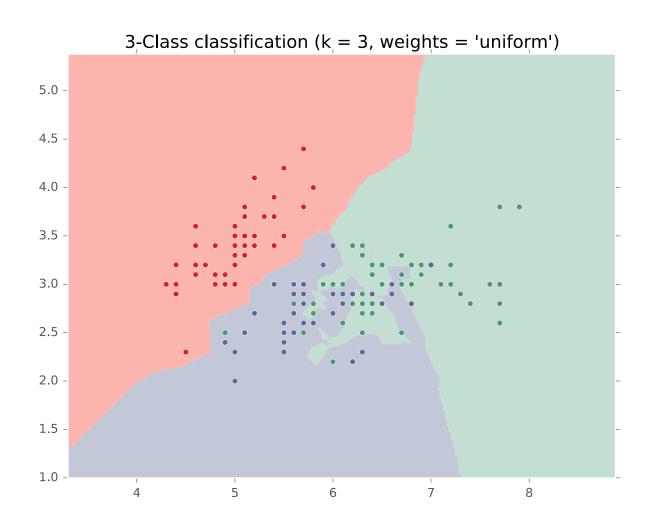
- Larger k → predicted label is more stable
- Smaller k → predicted label is more affected by individual training points

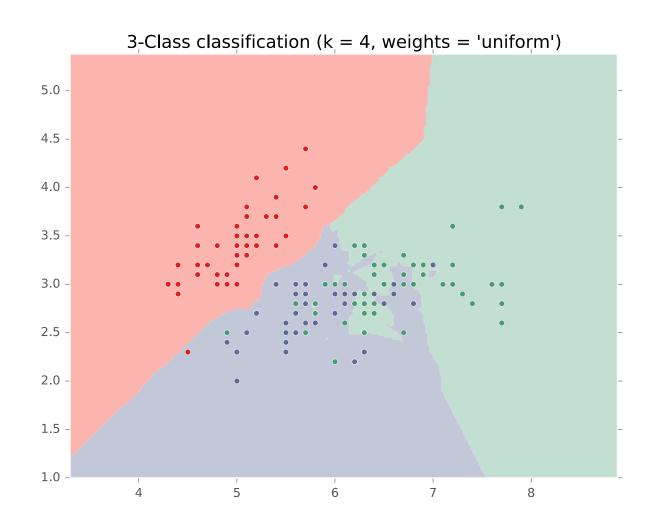
But how to choose *k*?

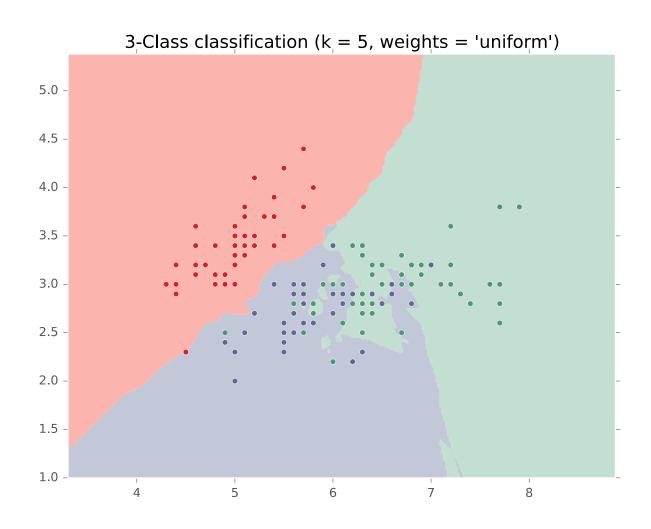
Special Case: Nearest Neighbor

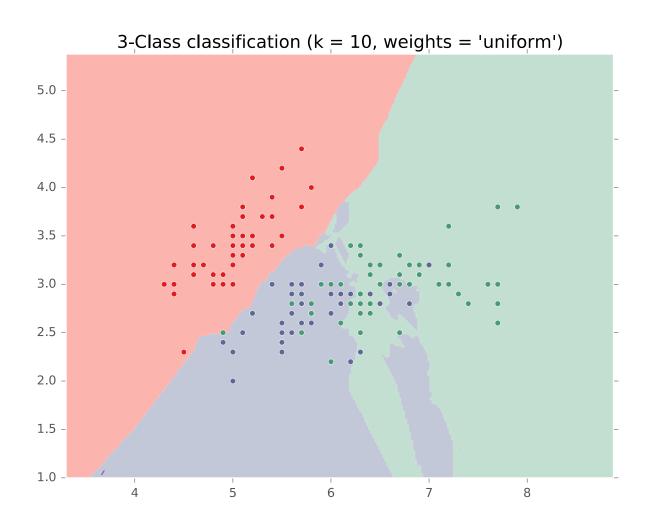




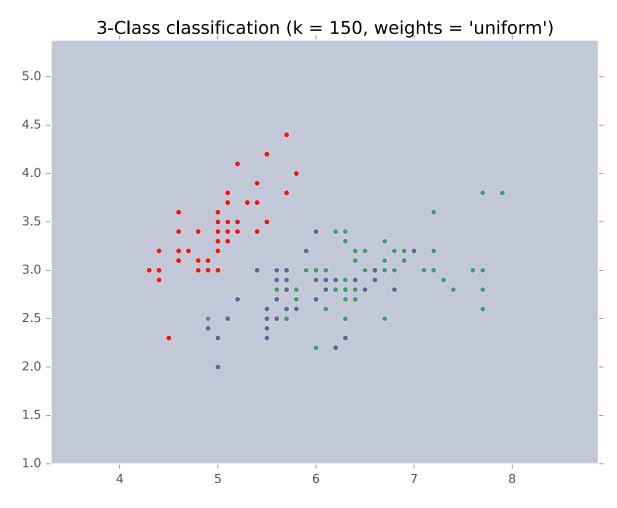








Special Case: Majority Vote



K-NN Details

Poll 1: Two questions (train) and (predict)

Suppose we have N training examples, and each one has M features Computational complexity for the special case where k=1:

- A. O(1)
- B. O(log N)
- C. O(log M)
- D. O(log NM)
- E. O(N)
- F. O(M)
- G. O(NM)
- $H. O(N^2)$
- I. O(N^2M)

k-NN: Details

Computational Efficiency:

Suppose we have N training examples, and each one has M features Computational complexity for the special case where k=1:

Task	Naive
Train	O(1)
Predict	O(MN)
(one test example)	

In practice:

- k-d trees
- stochastic approximations (very fast, and empirically often as good)

k-NN: Details

The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples

Inductive Bias:

- 1. Close points should have similar labels
- 2. All dimensions are created equally!

k-NN: Details

Inductive Bias:

- 1. Close points should have similar labels
- 2. All dimensions are created equally!

