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Test subject

Nearest Neighbor Classifier



Nearest Neighbor Classification

Given a training dataset 𝒟 = 𝑦 𝑛 , 𝐱 𝑛
𝑛=1

𝑁
,  𝑦 ∈ 1, … , 𝐶 , 𝐱 ∈ ℝ𝑀

and a test input 𝐱𝑡𝑒𝑠𝑡, predict the class label, ො𝑦𝑡𝑒𝑠𝑡:

1) Find the closest point in the training data to 𝐱𝑡𝑒𝑠𝑡

𝑛 = argmin
𝑛

𝑑(𝐱𝑡𝑒𝑠𝑡 , 𝐱(𝑛))

2) Return the class label of that closest point
ො𝑦𝑡𝑒𝑠𝑡 = 𝑦(𝑛)

Need distance function! What should 𝑑(𝐱, 𝒛) be?



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 
3 different species: Iris setosa (0), Iris virginica (1), Iris 
versicolor (2) collected by Anderson (1936)

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 
3 different species: Iris setosa (0), Iris virginica (1), Iris 
versicolor (2) collected by Anderson (1936)

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the 
four features, so that 

input space is 2D



Nearest Neighbor on Fisher Iris Data

6Slide credit: CMU MLD Matt Gormley



Nearest Neighbor on Fisher Iris Data

7Slide credit: CMU MLD Matt Gormley



Recitation: Decision Boundaries
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Nearest Neighbor Decision Boundary

Voronoi Diagram

1-nearest neighbor classifier decision boundary



Nearest Neighbor Classification
Consider input features 𝑥 ∈ ℝ2.
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Nearest Neighbor on Gaussian Data

13Slide credit: CMU MLD Matt Gormley



Nearest Neighbor on Gaussian Data

14Slide credit: CMU MLD Matt Gormley



kNN classifier (k=5)

Test subject
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Nearest Neighbor Classification

Given a training dataset 𝒟 = 𝑦 𝑛 , 𝒙 𝑛
𝑛=1

𝑁
,  𝑦 ∈ 1, … , 𝐶 , 𝒙 ∈ ℝ𝑀

and a test input 𝒙𝑡𝑒𝑠𝑡, predict the class label, ො𝑦𝑡𝑒𝑠𝑡:

1) Find the closest point in the training data to 𝒙𝑡𝑒𝑠𝑡

𝑛 = argmin
𝑛

𝑑(𝒙𝑡𝑒𝑠𝑡 , 𝒙(𝑛))

2) Return the class label of that closest point
ො𝑦𝑡𝑒𝑠𝑡 = 𝑦(𝑛)



k-Nearest Neighbor Classification

Given a training dataset 𝒟 = 𝑦 𝑛 , 𝒙 𝑛
𝑛=1

𝑁
,  𝑦 ∈ 1, … , 𝐶 , 𝒙 ∈ ℝ𝑀

and a test input 𝒙𝑡𝑒𝑠𝑡, predict the class label, ො𝑦𝑡𝑒𝑠𝑡:

1) Find the closest 𝑘 points in the training data to 𝒙𝑡𝑒𝑠𝑡
𝒩𝑘(𝒙𝑡𝑒𝑠𝑡 , 𝒟)

2) Return the class label of that closest point
ො𝑦𝑡𝑒𝑠𝑡 = argmax

𝑐
𝑝 𝑌 = 𝑐 𝒙𝑡𝑒𝑠𝑡 , 𝒟, 𝑘

 = argmax
𝑐

1

𝑘
෍

𝑖 ∈ 𝒩𝑘(𝒙𝑡𝑒𝑠𝑡,𝒟) 

𝕀 𝑦 𝑖 = 𝑐

         = argmax
𝑐

𝑘𝑐

𝑘
 , 

where 𝑘𝑐  is the number of the 𝑘-neighbors with class label c



What is the best k?

How do we choose a learner that is accurate and also generalizes to 
unseen data?

• Larger k → predicted label is more stable 
• Smaller k → predicted label is more affected by individual training 

points

But how to choose 𝑘?



k-NN on Fisher Iris Data

23

Special Case: Nearest Neighbor

Slide credit: CMU MLD Matt Gormley



k-NN on Fisher Iris Data

24Slide credit: CMU MLD Matt Gormley



k-NN on Fisher Iris Data

25Slide credit: CMU MLD Matt Gormley



k-NN on Fisher Iris Data

26Slide credit: CMU MLD Matt Gormley



k-NN on Fisher Iris Data

27Slide credit: CMU MLD Matt Gormley



k-NN on Fisher Iris Data

28Slide credit: CMU MLD Matt Gormley



k-NN on Fisher Iris Data

29

Special Case: Majority Vote

Slide credit: CMU MLD Matt Gormley



K-NN Details



Poll 1: Two questions (train) and (predict)
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

A. O(1)

B. O(log N)

C. O(log M)

D. O(log NM)

E. O(N)

F. O(M)

G. O(NM)

H. O(N^2)

I. O(N^2M)



k-NN: Details

Computational Efficiency:
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

32Slide credit: CMU MLD Matt Gormley

Task Naive

Train O(1)

Predict 
(one test example)

O(MN)

In practice:

• k-d trees

• stochastic approximations 
(very fast, and empirically 
often as good)



k-NN: Details

The inductive bias of a machine learning algorithm is the principal by 
which it generalizes to unseen examples

Inductive Bias:
1. Close points should have similar labels
2. All dimensions are created equally!

33Slide credit: CMU MLD Matt Gormley



k-NN: Details

Inductive Bias:
1. Close points should have similar labels
2. All dimensions are created equally!
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Example: two features for k-NN
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big problem: 
feature scale 

could 
dramatically 

influence 
classification 

results
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