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10-315
Introduction to ML

Decision Trees

Instructor: Pat Virtue




Outline: Decision Trees

Motivation

Pre-reading Content

» Example decision trees for classification tasks
= Majority vote and classification error rate

= Decision stumps

Decision Boundaries

Building Decision Trees

= Splitting criteria: Entropy and Mutual Information

= Stopping criteria




Decision Trees

Why are we talking about decision trees?

Explainability

= Decision trees can be incredibly useful as they can more easily be
interpreted and altered by humans than other ML algorithms

Basis of very powerful set of techniques: Random Forests

= Random forests train many simple decision trees (ML topic: ensemble
learning)

= While powerful, random forests unfortunately have poor explainablility



Pre-reading Content



Problem Formulation

X = [xz] — [x11x2)x3]T

Medical Prediction

x, € {Vertex, Breech, Abn}

m
X9 (S {Y, N}

Natural Vertex
X3 (S {Y, N}
C-section Breech N N
Natural Vertex Y Y .
y € {Csection, Natural}
C-section Vertex N Y
Natural Abnormal N N

y = h(x)



Decision Tree

Fetal
Position

Breech

Fetal - , - ,
Distress -section -section
No
Previous :
C-section C-section

Medical Prediction

Vertex Abnormal

(Oversimplified example)




ML Task: Classification

Predict species label from first two input measurements
h(x) » ¥

AN Y=0
s] O Y=l
COEAES
] Length Width
:Q*' A 0 4.3 3.0
0 4.9 3.6
. A A 0 5.3 3.7
A 1 4.9 2.4
f‘m 1 5.7 2.8
5 6 7 g 9 10 1 6.3 3.3

Images and full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



o Sepal Sepal Petal Petal
D eclsion Tre es Length Width Length Width

0

A few tools 0
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
Majority vote: 1 5.7 2.8 4.1 1.3
= argmaxﬂ 1 6.3 3.3 4.7 1.6
c N 2 5.9 3.0 5.1 1.8

Classification error rate:
1 . (1
ErrorRate = Nzi I(y® = 9®)

What fraction did we predict incorrectly
Expected value

E[f(X)] = Yrex f() P(X =x) orE[f(X)] = [, f(x) p(x) dx



Decision Stumps

Split data based on a single attribute Dataset:
Majority vote at leaves Output Y, Attributes A, B, C

EEENENKN
- 1 0 0

1 o 1

1 0 o)
+ 0) (0] 1
+ 1 1 0]
+ 1 1 1
+ 1 1 0]

Slide credit: CMU MLD Matt Gormley



Decision Stumps

Split data based on a single attribute Dataset:
Majority vote at leaves Output Y, Attributes A, B, C
Y A8 C
3-, 5+ - 1 0 0
1 0) 1
A=0 A=1 1 o
+ 0) 0) 1
0-, 1+ 3-, 4+ . ) ] o
y =+ 5} =+ + 1 1 1
Error: (0 + 3)/8 N 1 1 o
=3/8

Slide credit: CMU MLD Matt Gormley



Poll (not used)

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

EEENENKN
- 1 0 0

3-, 5+

1 (0] 1

A=0 A=1 R I

+ 0 0 1

0-, 1+  3-, 4+ £ 11 o0

y=+ y=+ + 1 1 1

Error: (0 + 3 )/ 8 N : : 5
=3/8

Slide credit: CMU MLD Matt Gormley



Poll (not used)

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

Answer: B EEESENKS
- 1 0] o

3-, 5+

(&) S N

B=0 B=1 - 1 C

+ (0] 0] 1

3-, 1+ 0, 4+ £ 110

y=— y=+ + 1 1 1

Error (1 + 0 )/ 8 N : : 5
=1/8

Slide credit: CMU MLD Matt Gormley



Poll (not used)

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

Answer: B EEESENKS
- 1 0] o

3-, 5+

1 (0] 1

C=0 c=1 R I

+ 0 0 1

2-, 2+ 1-, 3+ + 1 1 e

y=+/- y=+ n 1 1 1

Error: ( 2 + 1)/8 N : : 5
=3/8

Slide credit: CMU MLD Matt Gormley



Decision Boundaries

Decision boundaries are the locations in the input space that separate
regions where input points X are classified as different classes.
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Building a Decision Tree

Function BuildTree (D, Attributes)
# D: dataset at current node

# Attributes : current set of attributes

# TODO BRase Case

else
# Internal node
X <& bestAttribute (D, Attributes)
LeftNode = BuildTree (D (X=1), Attributes \ {X})
RightNode = BuildTree (D (X=0), Attributes \ {X})
end

end



Poll 1

Which of the following trees would be learned by the

decision tree learning algorithm using “error rate” as
the splitting criterion?

(Assume ties are broken a

phabetically.)

Dataset:

Output Y, Features x4, xg, X
+ 0 0 0

+ 0] 0] 1

0 1 0
+ ) 1 1
1 0 0
1 0 1
1 1 0




Poll 1

Dataset:
Which of the following trees would be learned by the output ¥, Features x,, x5, xc
decision tree learning algorithm using “error rate” as - - - -
A C
the splitting criterion? . .
+

(Assume ties are broken alphabetically.) NERERE

) A . o0 1 o
BN
B B + 0] 1 1
AN N
+ C _ C - 1 0] 0]
o/\1 o/\1
j/\jr /E_ -1 0 1
- 1 1 0]

Slide credit: CMU MLD Matt Gormley



Poll 2

How many errors do each of the two decision
stumps make on the training set?

Slide credit: CMU MLD Matt Gormley



Building a Decision Tree

Function BuildTree (D, Attributes)
# D: dataset at current node

# Attributes : current set of attributes

# TODO BRase Case

else
# Internal node
X <& bestAttribute (D, Attributes)
LeftNode = BuildTree (D (X=1), Attributes \ {X})
RightNode = BuildTree (D (X=0), Attributes \ {X})
end

end



Entropy

Surprisal

Claude Shannon (1916 — 2001),
most of the work was done in
Bell [abs



Entropy

» Quantifies the amount of uncertainty associated
with a specific probability distribution

" The higher the entropy, the less confident we are in
the outcome

= Definition

HOO = ) p(X = x)log,

p(X =x)

HOO = = ) p(X = ) logy p(X = x)

Claude Shannon (1916 — 2001),
most of the work was done in
Bell [abs



Conditional Entropy

Entropy Definition

H(Y) = ¥, p(Y = y)log, —

p(Y=y)

HY)=-Y,p(Y =y)log,p(Y =)

Conditional Entropy

Entropy after splitting on a
particular feature

" Must consider expected
value over both branches!



Conditional Entropy

Entropy Definition

H(Y) = ¥, p(Y = y)log, —

p(Y=y)

HY)=-Y,p(Y =y)log,p(Y =)

Conditional Entropy

Entropy after splitting on a
particular feature

" Must consider expected
value over both branches!

Mutual Information: I(Y; X) = H(Y) — H(Y | X)



Mutual Information Notation

We use mutual information in the context of before and after a split,

regardless of where that split is in the tree.
I(V;X)=HY)—-H{Y | X)
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Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — Z P(Y =y)log, P(Y = y)

yey
Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=x)logge P(Y =y | X =1x)
yey
Conditional Entropy: H(Y | X) = Y P(X =x)H(Y | X = 1)
zeX

Mutual Information: I(Y; X) = H(Y) — H(Y |X)

 For adecision tree, we can use
mutual information of the output
class Y and some attribute X on

which to split as a splitting criterion

* Given a dataset D of training
examples, we can estimate the
required probabilities as...

P(Y =y) = Ny—y/N
P(X =z)=Nx_,/N
P(Y = y|X — 37) — NY:y,X::ﬂ/NXZ:E

where Ny_, is the number of examples
for whichY = yand so on.



Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)
yey

{

Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=x)log, P(Y =y | X =x)
yeY
Conditional Entropy: H(Y | X) = Y P(X =xz)H(Y | X = 1)
reX
Mutual Information: I(Y; X) = H(Y) — H(Y |X)

ey

* Entropy measures the expected # of bits to code one random draw from X.

* For a decision tree, we want to reduce the entropy of the random variable we
are trying to predict!

Conditional entropy is the expected value of specific conditional entropy
EpxolH(Y | X = X)

Informally, we say that mutual information is a measure of the following:
If we know X, how much does this reduce our uncertainty about Y?




Splitting with Mutual Information

Which attribute {A, B} would mutual
information select for the next split?

1) A

2) B

3) AorB (tie)
4) |don’t know




Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)

yey
Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=xz)logg PY =y | X =1x)
yey
“ Conditional Entropy: H(Y | X) = %P(X —2)H(Y | X =2)

_ 1 0 Mutual Information: I(Y; X) =H(Y) - H(Y |X)

1 0
+ 1 0
+ 1 0
+ 1 1
+ 1 1
+ 1 1

30



Decision Tree Learning Example

Entropy: H(Y) = — ) P(Y =y)log, P(Y =)
yey
Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=xz)logg PY =y | X =1x)
yey

n Conditional Entropy: H(Y | X) = Z P(X = :L‘)H(Y | X = 117)
xEX

0 Mutual Information: I(Y; X) =H(Y) - H(Y |X)
0 H(Y) = —Elog2§+§log2§]
0
H(Y | A=0)=undefined
0] [2-, 6+]
1 H(Y 1A=1)=—|2log,2+2log, | = H(Y) "
1 H(Y|A)=PA=0H(Y|IA=0)+P(A=1HY 1A=1) A=0 A=1
1 = H(Y)
I(Y;A)=H(Y)—-H(Y|A)=0 [0-, 0+] [2-, 6+4]

1 P(A=0)=0 P(A=1)=1
31



Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)
ycy

Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=xz)logg PY =y | X =1x)

- 1 o)
- 1 o)
+ 1 0)
+ 1 )
+ 1 1
+ 1 1
+ 1 1
+ 1 1

yey

Conditional Entropy: H(Y | X) = Y  P(X =2)H(Y | X = z)
rEX
Mutual Information: I(Y; X) =H(Y) - H(Y |X)

[2-, 6+]
B

B=V\I3=1

[2-, 2+] [0-, 4+]
P(B=0)=4/8 P(B=1)=4/8




Decision Tree Learning Example

Entropy: H(Y) = — ) P(Y =y)log, P(Y =)
yey
Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=xz)logg PY =y | X =1x)
yey

“ Conditional Entropy: H(Y | X) = Z P(X = :L‘)H(Y | X = 117)
xEX

0 Mutual Information: I(Y; X) =H(Y) - H(Y |X)
0 02 2 6 6

H(Y) = — lglogzg + glOgZ g]
0

2 2 2 2

; H(Y 1B =0) =~ |2log, 5 +log, 7| 2-, 6+)

H(Y|B=1)=—]|0log, 0+ 1log,1] =0 3
1
1 H(YIB)=P(B=0)H(YIB=0)+P(B=1DHY|B=1) g B=1

=2H(yIB=0)+2%.0
1 8 8
[2-, 2+] [0-, 4+]

1 I(Y;B)=H(Y)—H(Y|B)>0 P(B=0)=4/8 P(B=1)=4/8

[(Y; B) ends up being greater than I(Y; A) = 0, so we split on B 33



Building a Decision Tree
How do we choose the best feature?
A splitting criterion is a function that measures how good or useful splitting

on a particular feature is for a specified dataset

Insight: use the feature that optimizes the splitting criterion current decision

Potential splitting criteria:
" Training error rate (minimize)
" Gini impurity (minimize) = CART algorithm

* Mutual information (maximize) — ID3 algorithm




Are decision trees algorithms optimal?
Well, what do we mean by optimal?
Considering all possible decision trees (i.e., trees splitting on one feature per node),

will the ID3 algorithm (each split maximizes mutual information; stopping when

mutual information is zero)...
produce the smallest decision tree that has lowest classification training error?
No, they aren’t optimal

Decision trees are greedy algorithms, i.e., they make the best local decision without

considering longer term possibilities.

= Better trees are possible, but it takes too long to search all combinations



Recall: Building a Decision Tree

Function BuildTree (D, Attributes)
# D: dataset at current node

# Attributes : current set of attributes

# TODO BRase Case

else
# Internal node
X <& bestAttribute (D, Attributes)
LeftNode = BuildTree (D (X=1), Attributes \ {X})
RightNode = BuildTree (D (X=0), Attributes \ {X})

end

end



Stopping Criteria

When do we stop (base case)?

When leaves are “pure”, i.e., output values are all the same
= Likely to overfit

Limit

" Tree depth

" Total number of leaves

= Splitting criteria threshold, e.g. splitting criteria<=1
" Minimum number of datapoints in a leaf



Sopping Criteria

But how do we choose all of those limits?!?
Answer: Model selection

Model selection is the process to choose the “best” among
a set of (trained) models



Decision Trees: Pros & Cons

Pros

" Interpretable

" Efficient (computational cost and
storage)
= Can be used for classification and

regression tasks

=" Compatible with categorical and

real-valued features

Cons
" Greedy: each split only
considers the immediate impact
= Not guaranteed to find the
smallest (fewest number of
splits) tree that achieves a

training error rate of O.

= | iable to overfit!
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