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Introduction to ML

Recommender Systems

Instructor: Pat Virtue
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Slide credit: CMU MLD Matt Gormley



Recommender Systems
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ML System Design: Movie Recommendation

Task

Experience

Performance measure

5



Recommender Systems
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Problem Setup
• 500,000 users
• 20,000 movies
• 100 million ratings
• Goal: To obtain lower root mean squared error (RMSE) 

than Netflix’s existing system on 3 million held out ratings 
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ML System Design: Movie Recommendation

Model



ML System Design: Movie Recommendation

Model



Recommender Systems

Setup:

▪ Items: 
movies, songs, products, etc.
(often many thousands)

▪ Users: 
watchers, listeners, purchasers, etc.
(often many millions)

▪ Feedback: 
5-star ratings, not-clicking ‘next’, purchases, 
etc.

Challenge:

▪ Users only rate a small number of items 
(the user/item rating data is sparse)

9

D
o

ct
o

r 
St

ra
n

ge

St
ar

 T
re

k:
 

B
e

yo
n

d

Zo
o

to
p

ia

Alita 1 5

BB-8 3 4

C-3P0 3 5 2

Slide credit: CMU MLD Matt Gormley



Different Approaches
Item-based (Content filtering)

▪ Features about each item

▪ Given an item, other “close” items have similar values

▪ e.g. Pandora.com, music genome project



Different Approaches
Item-based (Content filtering)

▪ Features about each item

▪ Given an item, other “close” items have similar values

▪ e.g. Pandora.com, music genome project

User-based

▪ Features about each user

▪ Given a user, other “close” users have similar preferences

▪ Market segmentation

Learning user-item relationship

▪ Can be done without features on either user or item

▪ Collaborative filtering techniques



Collaborative Filtering
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Collaborative Filtering

Everyday Examples of Collaborative Filtering...

▪ Bestseller lists

▪ Top 40 music lists

▪ The “recent returns” shelf at the library

▪ Unmarked but well-used paths thru the woods

▪ The printer room at work

▪ “Read any good books lately?”

▪ …

Common insight: personal tastes are correlated

▪ If Alita and BB-8 both like X and Alita likes Y then BB-8 is more likely to like Y

▪ especially (perhaps) if BB-8 knows Alita

Slide from William Cohen



Two Types of Collaborative Filtering

1. Neighborhood Methods 2. Latent Factor Methods
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Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
1. Neighborhood Methods
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In the figure, assume that a 
green line indicates the movie 
was watched

Algorithm:

1. Find neighbors based on 
similarity of movie 
preferences

2. Recommend movies that 
those neighbors watched

Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
2. Latent Factor Methods
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Figures from Koren et al. (2009)

• Assume that both 
movies and users can 
be mapped to the same 
feature space

• Recommend a movie 
based on its proximity 
to the user in the 
feature (latent) space

• Example algorithm: 
Latent factor method



Collaborative Filtering:
Latent Factor (Matrix Factorization) Method



Background: Learn a Feature Space
Autoencoders

Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.



Background: Learn a Feature Space

Word2vec:
Feature space for words

CLIP:

Common feature space for text and images



Recommender System: Latent Factor Model
Learning to map items and 
users to the same lower 
dimensional space



Recommender System: Latent Factor Model
Optimization: Objective function using only the labels we have

𝐽 𝑈, 𝑉 = σ𝑖,𝑗,𝑟 ∈ 𝒟 𝑟 − 𝐮 𝑖 𝑇
𝐯(𝑗)
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 Notation alert!

▪ Let 𝐮 𝑖  be the transpose of the 𝑖-the row of 𝑈

▪ Let 𝐯 𝑗  be the transpose of the 𝑗-the row of 𝑉



Latent Factor (Matrix Factorization) Method
SGD Optimization



Recommender System: Matrix Factorization
Optimization: Objective function using only the labels we have

𝐽 𝑈, 𝑉 = σ𝑖,𝑗,𝑟 ∈ 𝒟 𝑟 − 𝐮 𝑖 𝑇
𝐯(𝑗)

2

 

SGD objective function: Just one tuple in 𝒟: 𝑟𝑖𝑗, 𝑖, 𝑗

𝐽 𝐮 𝑖 , 𝐯(𝑗) =
1

2
𝑟𝑖𝑗 − 𝐮 𝑖 𝑇

𝐯(𝑗)
2

 

SGD gradient steps
𝜕𝐽

𝜕𝒖 𝑗 = − 𝑟𝑖𝑗 − 𝐮 𝑖 𝑇
𝐯(𝑗) 𝐯(𝑗) 

𝜕𝐽

𝜕𝐯 𝑗 = − 𝑟𝑖𝑗 − 𝐮 𝑖 𝑇
𝐯 𝑗 𝐮 𝑗  

Notation alert!

▪ Let 𝐮 𝑖  be the transpose 
of the 𝑖-the row of 𝑈

▪ Let 𝐯 𝑗  be the transpose 
of the 𝑗-the row of 𝑉



Latent Factor Method
Inference



Inference for Recommender Systems
First solve:

min
𝑈,𝑉

𝐽 𝑈, 𝑉    𝐽 𝑈, 𝑉 = σ𝑖,𝑗,𝑟 ∈ 𝒟 𝑟 − 𝐮 𝑖 𝑇
𝐯(𝑗)
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What then?

D
o

ct
o

r 
S

tr
an

g
e

S
ta

r 
T

re
k

: 
B

e
yo

n
d

Z
o

o
to

p
ia

Alita 1 5

BB-8 3 4

C-3P0 3 5 2

𝑈 𝑉



Inference for Recommender Systems
Recommendations



Latent Factor Method
Practical Considerations



Latent Factor Regularization
Add regularization to avoid overfitting

min
𝑈,𝑉

 𝐽 𝑈, 𝑉        

𝐽 𝑈, 𝑉 = σ𝑖,𝑗∈𝒮 𝑟𝑖𝑗 − 𝐮 𝑖 𝑇
𝐯(𝑗)

2

 



Bias in Recommender Systems
What high-level problems can occur from recommender systems?



Summary

Recommender systems solve many real-world (*large-scale) problems

Collaborative filtering using a latent factor model can be done without any features 
about the users or items other than their past ratings

Solving for latent factors is just another example of a common recipe:
1. define a model

2. define an objective function

3. optimize

Optimization

▪ Use SGD

▪ Add regularization to avoid overfitting
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