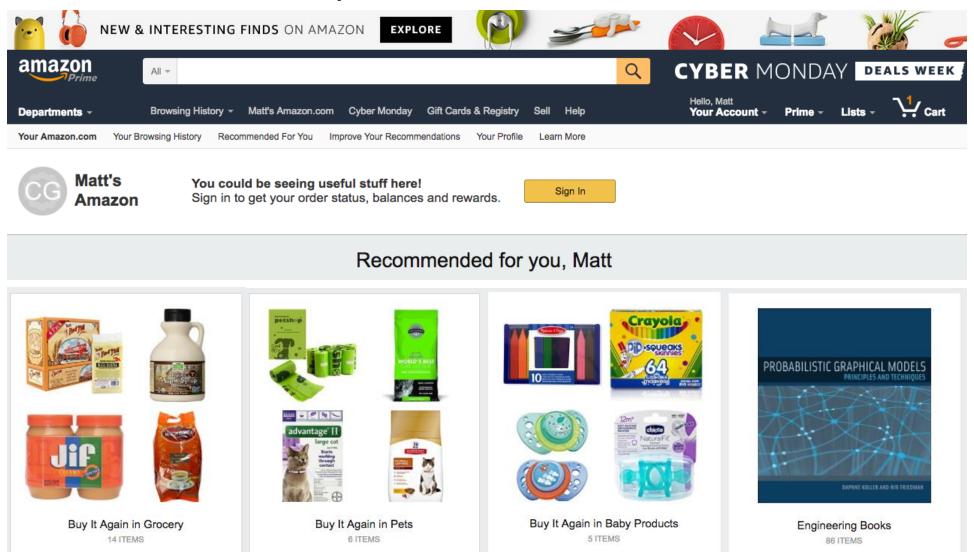


Recommender Systems



Recommender Systems

ML System Design: Movie Recommendation

Task

Experience

$$\{(i,j,r)\}_{i=1}^{N}$$

Performance measure

e measure
$$\hat{r} = (r - \hat{r})^2$$

Recommender Systems



ML System Design: Movie Recommendation Model $\hat{\Gamma}_{ij} = h(i,j) = \hat{u}_i \hat{\tau}_{ij}$ $J(U,V) = \sum_{ij} (\hat{A} \Gamma_{ij} - \hat{u}_i)$

ML System Design: Movie Recommendation

Model

Recommender Systems

R

Setup:

- Items: movies, songs, products, etc. (often many thousands)
- Users: watchers, listeners, purchasers, etc. (often many millions)
- Feedback:5-star ratings, not-clicking 'next', purchases, etc.

Challenge:

 Users only rate a small number of items (the user/item rating data is sparse)

	1	2	3	
	Doctor Strange	Star Trek: Beyond	Zootopia	
Alita	1	7	5	
BB-8	3	4	?	
C-3P0	3	5	2	

$$R_{2,1} = 3$$

Different Approaches

Item-based (Content filtering)

- Features about each item
- Given an item, other "close" items have similar values
- e.g. Pandora.com, music genome project

Different Approaches

Item-based (Content filtering)

- Features about each item
- Given an item, other "close" items have similar values
- e.g. Pandora.com, music genome project

User-based

- Features about each user
- Given a user, other "close" users have similar preferences
- Market segmentation

Learning user-item relationship

- Can be done without features on either user or item
- Collaborative filtering techniques

Collaborative Filtering

Collaborative Filtering

Everyday Examples of Collaborative Filtering...

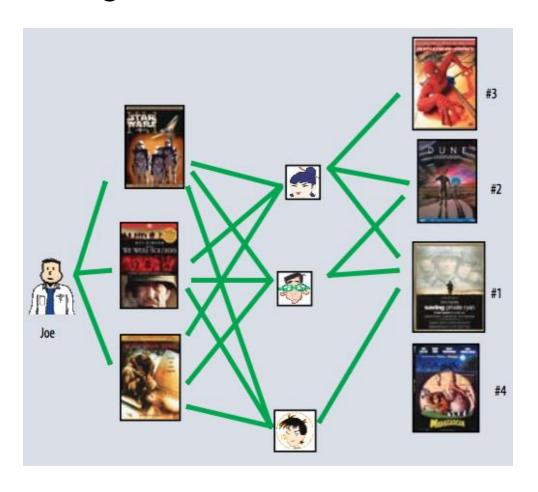
- Bestseller lists
- Top 40 music lists
- The "recent returns" shelf at the library
- Unmarked but well-used paths thru the woods
- The printer room at work
- "Read any good books lately?"
- **-** ...

Common insight: personal tastes are correlated

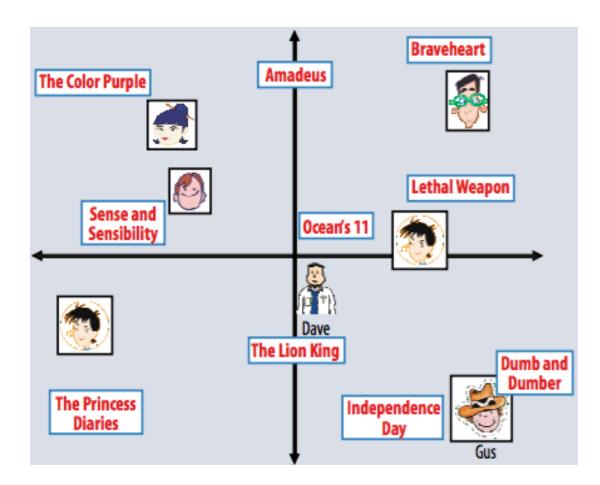
- If Alita and BB-8 both like X and Alita likes Y then BB-8 is more likely to like Y
- especially (perhaps) if BB-8 knows Alita

Two Types of Collaborative Filtering

1. Neighborhood Methods

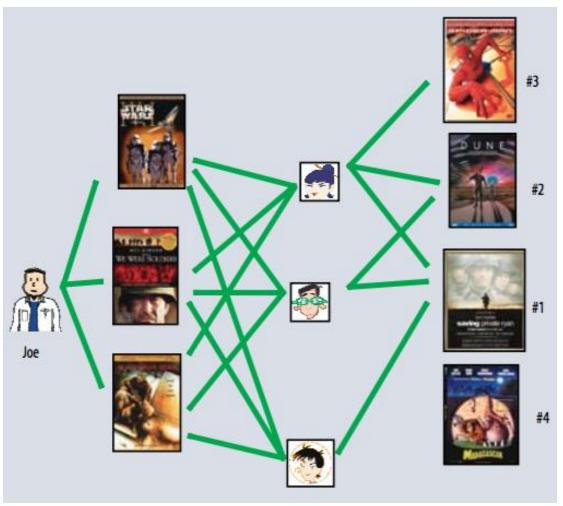


2. Latent Factor Methods



Two Types of Collaborative Filtering

1. Neighborhood Methods



In the figure, assume that a green line indicates the movie was watched

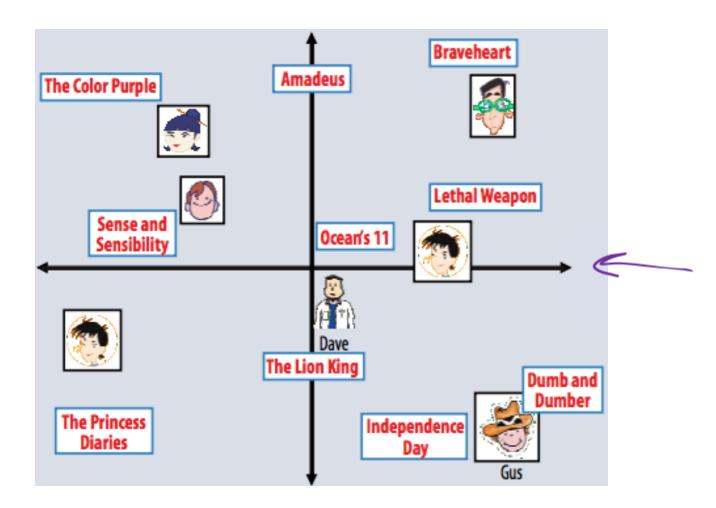
Algorithm:

- 1. Find neighbors based on similarity of movie preferences
- 2. Recommend movies that those neighbors watched

Two Types of Collaborative Filtering

- Assume that both movies and users can be mapped to the same feature space
- Recommend a movie based on its proximity to the user in the feature (latent) space
- Example algorithm: Latent factor method

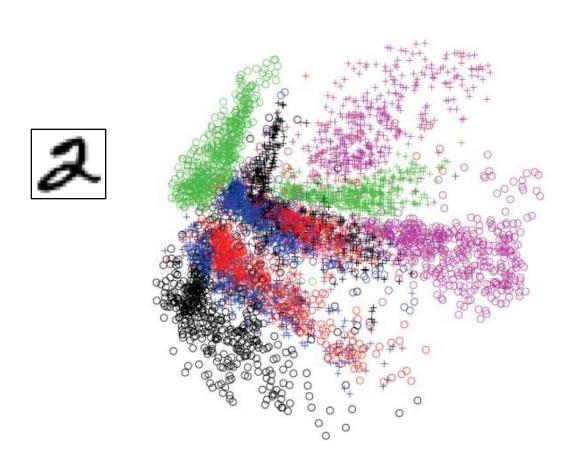
2. Latent Factor Methods



Collaborative Filtering: Latent Factor (Matrix Factorization) Method

Background: Learn a Feature Space

Autoencoders



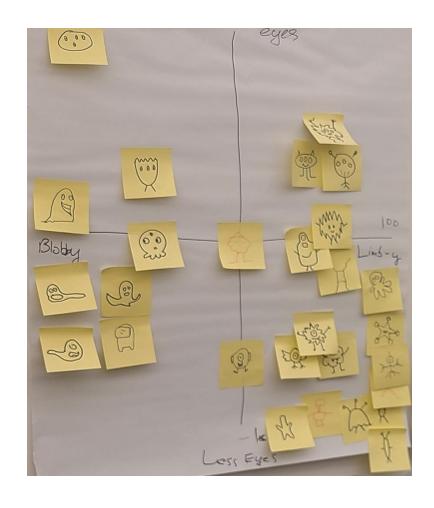
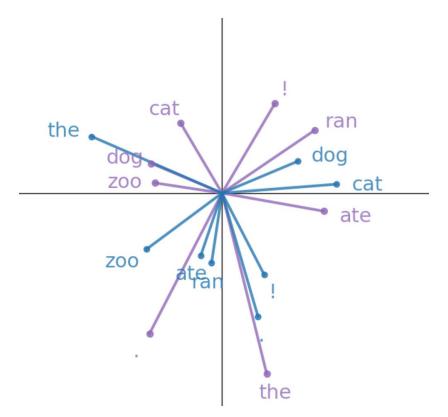


Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.

Background: Learn a Feature Space

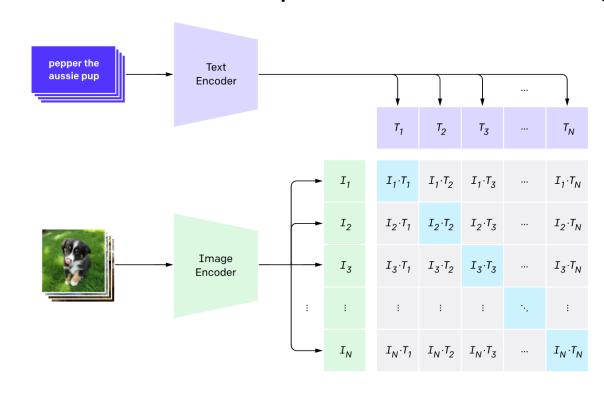
Word2vec:

Feature space for words



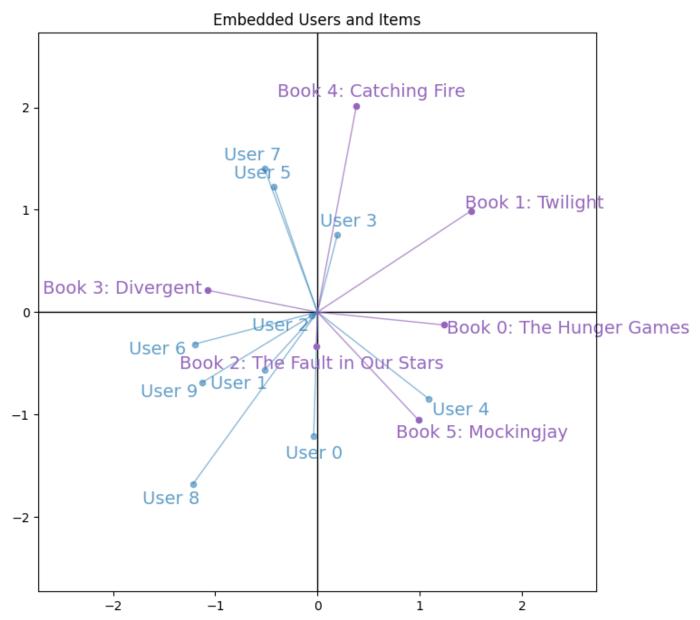
CLIP:

Common feature space for text and images



Recommender System: Latent Factor Model

Learning to map items and users to the same lower dimensional space



Recommender System: Latent Factor Model

Optimization: Objective function using only the labels we have

$$J(U,V) = \sum_{i,j,r \in \mathcal{D}} \left(r - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

Notation alert!

- Let $\mathbf{u}^{(i)}$ be the transpose of the *i*-the row of U
- Let $\mathbf{v}^{(j)}$ be the transpose of the j-the row of V

Latent Factor (Matrix Factorization) Method SGD Optimization

Recommender System: Matrix Factorization

Optimization: Objective function using only the labels we have

$$J(U,V) = \sum_{i,j,r \in \mathcal{D}} \left(r - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

SGD objective function: Just one tuple in
$$\mathcal{D}$$
: (r_{ij}, i, j)

$$J(\mathbf{u}^{(i)}, \mathbf{v}^{(j)}) = \frac{1}{2} (r_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)})^2$$

SGD gradient steps

$$\frac{\partial J}{\partial \boldsymbol{u}^{(j)}} = -\left(r_{ij} - \mathbf{u}^{(i)T}\mathbf{v}^{(j)}\right)\mathbf{v}^{(j)}$$

$$\frac{\partial J}{\partial \mathbf{v}^{(j)}} = -\left(r_{ij} - \mathbf{u}^{(i)}^T \mathbf{v}^{(j)}\right) \mathbf{u}^{(j)}$$

Notation alert!

- Let $\mathbf{u}^{(i)}$ be the transpose of the i-the row of U
- Let $\mathbf{v}^{(j)}$ be the transpose of the *j*-the row of *V*

Latent Factor Method Inference

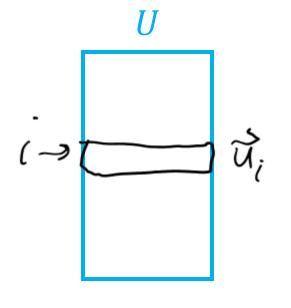
Inference for Recommender Systems

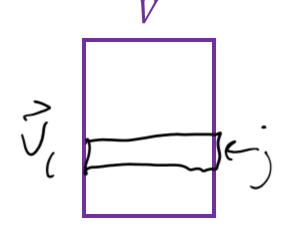
First solve:

$$\min_{U,V} J(U,V)$$

$$J(U,V) = \sum_{i,j,r \in \mathcal{D}} \left(r - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

What then?

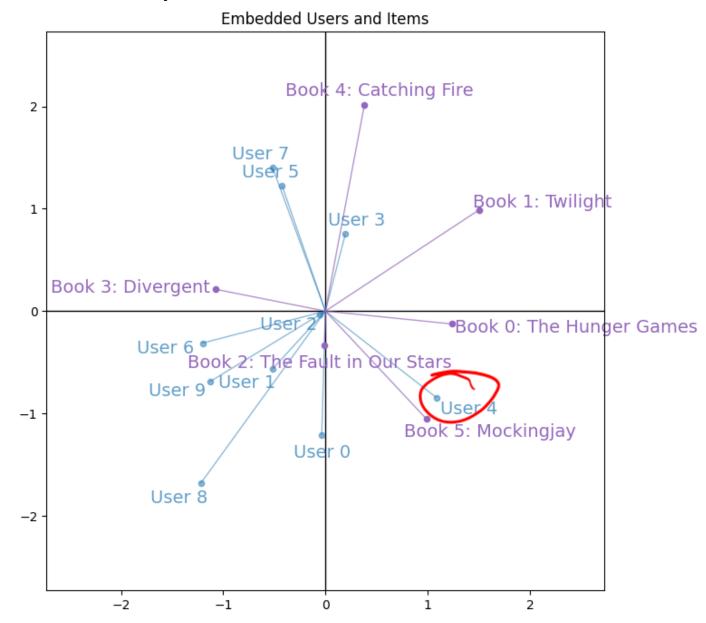




	Doctor Strange	Star Trek: Beyond	Zootopia	
Alita	1		5	
BB-8	3	4	(Ĉ)	<u> </u>
C-3Po	3	5	2	

Inference for Recommender Systems

Recommendations



Latent Factor Method Practical Considerations

Latent Factor Regularization

Add regularization to avoid overfitting

$$\min_{U,V} J(U,V)$$

$$J(U,V) = \sum_{i,j\in\mathcal{S}} \left(r_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2 + \lambda \| u_i \|_2^2 + \lambda \| V_j \|_2^2$$

Bias in Recommender Systems

What high-level problems can occur from recommender systems?

Summary

Recommender systems solve many real-world (*large-scale) problems

Collaborative filtering using a latent factor model can be done without any features about the users or items other than their past ratings

Solving for latent factors is just another example of a common recipe:

- 1. define a model
- 2. define an objective function
- 3. optimize

Optimization

- Use SGD
- Add regularization to avoid overfitting