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Recommender Systems

NETELIX

tflix Pri

Home Rules Leaderboard Update

Congratulations!

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going 1o enjoy a
movie based on their movie preferences.

On September 21, 2009 we awarded the
$1M Grand Prize to team "BellKor’s
Pragmatic Chaos™. Read about their
algorithm, checkout team scores on the
Leaderboard, and join the discussions on
the Forum.

We applaud all the contributors to this
quest, which improves our ability to
connect people to the movies they love.

FAQ | Forum | NetflixHome
© 1997-2009 Netfiix, Inc. All rights reserved.




ML System Design: Movie Recommendation
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Recommender Systems
NETFLIX

Home Rules Leaderboard Update

i

Slide credit: CMU MLD Matt Gormley
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ML System Design: Movie Recommendation
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Recommender Systems E)

Setup:

" [tems:

movies, songs, products, etc.
(often many thousands)

= Users:
watchers, listeners, purchasers, etc.
(often many millions)

= Feedback:

5-star ratings, not-clicking ‘next’, purchases,
etc.
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Challenge:

= Users only rate a small number of items
(the user/item rating data is sparse)

Slide credit: CMU MLD Matt Gormley ’



Different Approaches

ltem-based (Content filtering)
" Features about each item

= Given an item, other “close” items have similar values

= e.g. Pandora.com, music genome project



Different Approaches

ltem-based (Content filtering)

" Features about each item

= Given an item, other “close” items have similar values

= e.g. Ijind_ori._ggn_, music genome project

User-based

" Features about each user

" Given a user, other “close” users have similar preferences
" Market segmentation

Learning user-item relationship

= (Can be done without features on either user or item

= Collaborative filtering techniques <—



Collaborative Filtering



Collaborative Filtering

Everyday Examples of Collaborative Filtering...
= Bestseller lists

= Top 40 music lists

= The “recent returns” shelf at the library

= Unmarked but well-used paths thru the woods

= The printer room at work

= “Read any good books lately?”

Common insight: personal tastes are correlated
= |f Alita and BB-8 both like X and Alita likes Y then BB-8 is more likely to like Y
= especially (perhaps) if BB-8 knows Alita

Slide from William Cohen



Two Types of Collaborative Filtering

1. Neighborhood Methods 2. Latent Factor Methods
t Braveheart
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Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
1. Neighborhood Methods

In the figure, assume that a
green line indicates the movie
was watched

Algorithm:

1. Find neighbors based on
similarity of movie
preferences

. 2. Recommend movies that
those neighbors watched

A
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15
Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
2. Latent Factor Methods

 Assume that both t ——
movies and users can The Color Purple Amadeus a
be mapped to the same é\ @i

feature space

Lethal Weapon

e Recommend a movie
based on its proximity
to the user in the

Sense and
Sensibility

|ﬂ:earfs11 ;

feature (latent) space -~y
The Lion Ki
* Example algorithm: N
Latent factor method The Princess I independence] | ==
Day

Figures from Koren et al. (2009)



Collaborative Filtering:
Latent Factor (Matrix Factorization) Method




Background: Learn a Feature Space

Autoencoders

Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.



Background: Learn a Feature Space

Word2vec: CLIP:
Feature space for words Common feature space for text and images
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Recommender System: Latent Factor Model

Embedded Users and ltems

Learning to map items and
users to the same lower Book 4: Catching Fire
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Recommender System: Latent Factor Model

Optimization: Objective function using only the labels we have

~T . .\2
JW,V) = Eijren(r—u®@ v0)

Notation alert!
= Let u” be the transpose of the i-the row of U
= Let vU) be the transpose of the j-the row of V



Latent Factor (Matrix Factorization) Method
SGD Optimization



Recommender System: Matrix Factorization

Optimization: Objective function using only the labels we have

~T . .\2
JW,V) = Zi,j,rel)(r_u(l) V(]))

lon: Just one tuple in D:(rij, i,j)

SGD objective fu

SGD gradient steps Notation alert!
= Let u® be the transpose
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atent Factor Method

nference




Inference for Recommender Systems

First solve:
- Oy
r{}’l‘;l](U;V) JU,V) = Zi,j,rez)(r_“ \ )
What then?
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Inference for Recommender Systems

Recommendations

Embedded Users and ltems
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atent Factor Method
Practical Considerations




Latent Factor Regularization

Add regularization to avoid overfitting

min J (U,Vv)

, C (8
JW,V) = X jes (Tij - “(i)TV(j)) T %]} M(”Z—k A “ V})\Z



Bias in Recommender Systems

What high-level problems can occur from recommender systems?



Summary

Recommender systems solve many real-world (*large-scale) problems

Collaborative filtering using a latent factor model can be done without any features
about the users or items other than their past ratings

Solving for latent factors is just another example of a common recipe:
1. define a model
2. define an objective function
3. optimize

Optimization
= Use SGD

" Add regularization to avoid overfitting

30
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