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Introduction to ML

Clustering:
K-means

Instructor: Pat Virtue



Learning Paradigms
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Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar datapoints.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space 
(e.g., for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide credit: CMU MLD Nina Balcan
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Cluster news articles or web pages or search results by topic.

Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression profile.

• Cluster users of social networks by interest (community detection).
Facebook network Twitter Network

Slide credit: CMU MLD Nina Balcan

http://images.google.com/imgres?imgurl=http://www.ebgm.jussieu.fr/~debrevern/PBs/images/protein_04.jpg&imgrefurl=http://www.ebgm.jussieu.fr/~debrevern/PBs/coding.html&h=496&w=709&sz=50&hl=en&start=8&tbnid=RCESdcwRtVouHM:&tbnh=98&tbnw=140&prev=/images?q=protein&gbv=2&hl=en


Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide credit: CMU MLD Nina Balcan



Clustering Applications
Jigsaw puzzles!
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https://chrisharrison.net/index.php/Research/ListenLearner

https://chrisharrison.net/index.php/Research/ListenLearner
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Partitioning Algorithms

• Partitioning method: Construct a partition of N objects into a set of K 
clusters

• Given: a set of objects and the number K

• Find: a partition of K clusters that optimizes the chosen partitioning 
criterion

– Globally optimal: exhaustively enumerate all partitions

– Effective heuristic method: K-means algorithm

Slide credit: CMU MLD Aarti Singh
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K-Means
Algorithm

Input – Data, 𝒙(𝑖), Desired number of clusters, K

Initialize – the K cluster centers (randomly if necessary)

Iterate – 

1. Assign points to the nearest cluster centers

2. Re-estimate the K cluster centers (aka the centroid or mean), by 
assuming the memberships found above are correct.

Termination – 
 If none of the objects changed membership in the last iteration, exit. 

Otherwise go to 1.

Slide credit: CMU MLD Aarti Singh
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K-means Clustering: Assign points

Slide credit: CMU MLD Eric Xing
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K-means Clustering: Update centers

Slide credit: CMU MLD Eric Xing
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K-means Clustering: Assign points

Slide credit: CMU MLD Eric Xing
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K-means Clustering: Update centers

Slide credit: CMU MLD Eric Xing
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K-means Clustering: Assign points

Slide credit: CMU MLD Eric Xing



K-means Optimization
Optimization recipe

1. Formulate objective

2. Minimize objective

Slide credit: CMU MLD Matt Gormley



K-means Optimization
Question: Which of these partitions is “better”?

19Slide credit: CMU MLD Matt Gormley



K-means Optimization

Input: 𝐾,     𝒙(1), … , 𝒙 𝑁 ,  𝒙 𝑖 ∈ ℝ𝑀  Num clusters, unlabeled data

Output:       𝑧(1), … , 𝑧 𝑁 ,  𝑧 𝑖 ∈ 1 … 𝐾  Cluster assignments per point

Output: 𝝁1, … , 𝝁𝐾 ,  𝝁𝑘 ∈ ℝ𝑀   Cluster centers

Slide credit: CMU MLD Matt Gormley



K-means Optimization
Computational complexity

𝝁1, … , 𝝁𝐾 , 𝒛 = argmin
𝝁1,…,𝝁𝐾, 𝒛

෍

𝑖=1

𝑁

𝒙(𝑖) − 𝝁𝑧(𝑖)
2

2

Slide credit: CMU MLD Matt Gormley



K-means Optimization
Alternating minimization

a)                 𝒛 = argmin
𝒛

σ𝑖=1
𝑁 𝒙(𝑖) − 𝝁𝑧(𝑖)

2

2

b)  𝝁1, … , 𝝁𝐾 = argmin
𝝁1,…,𝝁𝐾

σ𝑖=1
𝑁 𝒙(𝑖) − 𝝁𝑧(𝑖)

2

2



Alternating minimization
Coordinate descent

Two different approaches
min
𝜃1,𝜃2

 𝐽 𝜃1, 𝜃2

1. Step based on derivative for one parameter

a.  𝜃1 ← 𝜃1 − 𝜂 𝜕𝐽/𝜕𝜃1

b.  𝜃2 ← 𝜃2 − 𝜂 𝜕𝐽/𝜕𝜃2

2. Find minimum for one parameter

a.  𝜃1 ← argmin 
𝜃1 

J(𝜃1, 𝜃2)

b.  𝜃2 ← argmin 
𝜃2 

J(𝜃1, 𝜃2)



Alternating minimization
Block coordinate descent

Two different approaches
min
𝜶,𝜷

 𝐽 𝜶, 𝜷

1. Step based on gradient for one set of parameters (step size 𝜂)

a.  𝜶 ← 𝜶 − 𝜂∇𝜶𝐽

b.  𝜷 ← 𝜷 − 𝜂∇𝜷𝐽

2. Find minimum for one set of parameter (no hyperparameters!)

a.  𝜶 ← argmin J(𝜶, 𝜷)
𝜶

b.  𝜷 ← argmin J(𝜶, 𝜷)
𝜷
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Issues: Seed Choice

• Results are quite sensitive to seed selection.

Slide credit: CMU MLD Aarti Singh
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K-means always converges, but it may converge at a local optimum 

that is different from the global optimum, and in fact could be 

arbitrarily worse in terms of its objective.

Issues: Seed Choice

Slide credit: CMU MLD Nina Balcan
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Issues: Seed Choice

• Results can vary based on random seed selection.

• Some seeds can result in poor convergence rate, or 
convergence to sub-optimal clustering.

– Try out multiple starting points (very important!!!)

– k-means ++ algorithm of Arthur and Vassilvitskii 

    key idea: choose centers that are far apart

  (probability of picking a point as cluster center         
   distance from nearest center picked so far)

Slide credit: CMU MLD Aarti Singh



Other Issues

• Number of clusters K
– Objective function

– Look for “Knee” in objective function

– Can you pick K by minimizing the objective over K? 
32

Slide credit: CMU MLD Aarti Singh



(One) bad case for K-means

•     Clusters may overlap

•     Some clusters may be “wider” than others

•     Clusters may not be linearly separable

Slide credit: CMU MLD Aarti Singh



Additional Slides
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Clustering Algorithms
Hierarchical algorithms

▪ Bottom-up: Agglomerative Clustering
▪ Top-down: Divisive

Partition algorithms
▪ K means clustering
▪ Mixture-Model based clustering

 

Slide credit: CMU MLD Aarti Singh and Eric Xing
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Hierarchical Clustering

Bottom-Up Agglomerative Clustering
Starts with each object in a separate cluster, and repeat:

▪ Joins the most similar pair of clusters, 

▪ Update the similarity of the new cluster to others

until there is only one cluster.

Greedy – less accurate but simple to implement

Top-Down divisive 
Starts with all the data in a single cluster, and repeat:

▪ Split each cluster into two using a partition algorithm

Until each object is a separate cluster.

More accurate but complex to implement

Slide credit: CMU MLD Aarti Singh and Eric Xing
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