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Introduction to ML

LLMs:
Word Embeddings & 
Attention

Instructor: Pat Virtue



Building up to Large Language Models

N-gram LMs

Word Embedding LMs

▪ Vector representation of vocab tokens

▪ Sampling next token

▪ Learning better vectors

Transformer LMs

▪ Increasing context size

▪ Attention

▪ Tranformer blocks

More Transformers



Word Embedding LMs



Word Embedding Language Models

Vector representation of vocab tokens

▪ Set of vectors for both previous and next token

Sampling next token

▪ Cosine similarity

▪ Softmax

▪ Sample from categorical distribution

Learning better vectors

▪ Cross-entropy loss

▪ SGD: looping through pairs of tokens in our corpus



Word (Token) Embeddings
The beginning and the end of LLM networks
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Simple Word Embedding LM
Building a language model with just word embedding layers ☺



Simple Word Embedding LM
Setup

Tokenizer



Simple Word Embedding LM
Vector representation for each token in vocabulary (initially random)

Two sets of vectors in ℝ𝑀 (we'll use 𝑀 = 2 for better visualization)

𝑉: to represent previous tokens

𝑈: to represent next tokens



Simple Word Embedding LM
Vector representation for each token in vocabulary (initially random)

𝑉: Previous 𝑈: Next



Simple Word Embedding LM
After training our LM, we'll learn more organized vectors (details later)



Simple Word Embedding LM
We can use either of these models to generate text, staring with "the dog"

Random vectors Trained vectors

the dog cat ate ran zoo zoo 
zoo dog dog cat cat ate ran . 
ate . ate ate ! the ate

the dog ate . the dog ! the 
zoo . the dog ran the zoo . 
the dog ate the dog !

Generated tokens from random and trained models



Outline: Word Embedding LM

Vector representation of vocab tokens

▪ Set of vectors for both previous and next token

Sampling next token

▪ Cosine similarity

▪ Softmax

▪ Sample from categorical distribution

Learning better vectors

▪ Cross-entropy loss

▪ SGD: looping through pairs of tokens in our corpus



Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to 
generate a the next token after the previous token 'the'.

𝑉: previous tokens

𝑈: next tokens

Which token should be our 
next token?



Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to 
generate a the next token after the previous token 'the'.

𝑉: previous tokens

𝑈: next tokens

Which token should be our 
next token?
1. Lookup the index 𝑖 for the 

vocab token 'the'
2. Access the 𝑖-th row of 𝑉, 𝐯
3. Compare 𝐯 to all vectors 

in 𝑈



(Unnormalized) Cosine Similarity Metric
We’ve been using Euclidean distance

▪ 𝑑 𝐮, 𝐯 = 𝐮 − 𝐯 2

Cosine similarity

▪ Two vectors are similar if their dot product is 
positive and big

▪ 𝑓 𝐮, 𝐯 = 𝐮𝑇𝐯 

▪ (Why cosine?)

▪ Two vectors are similar if the angle between 
them is small (small angle → large cos 𝜃)

▪ 𝑓 𝐮, 𝐯 = 𝐮𝑇𝐯 

cos 𝜃 =
𝐮𝑇𝐯

𝐮 2 𝐯 2



(Unnormalized) Cosine Similarity Metric

https://www.desmos.com/calculator/82m4zkjlkc

Cosine similarity Desmos demo

https://www.desmos.com/calculator/82m4zkjlkc

𝑓 𝐮, 𝐯 = 𝐮𝑇𝐯 

https://www.desmos.com/calculator/82m4zkjlkc


Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to 
generate a the next token after the previous token 'the'.

𝑉: previous tokens

𝑈: next tokens

1. Compute similarity scores 
𝐬 = 𝑈𝐯



Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to 
generate a the next token after the previous token 'the'.

𝑉: previous tokens

𝑈: next tokens

1. Compute similarity scores 
𝐬 = 𝑈𝐯

2. Convert to probabilities 
ො𝐲 = 𝑔𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐬

3. Sample from Categorical 
distribution defined by ො𝐲

4. LOOP: next token → prev
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Simple Word Embedding LM
Building a language model with just word embedding layers ☺



PyTorch for Word Embedding LM
Two matrices of features vectors:

𝑊1: for context

𝑊2: for next token

Using PyTorch

WordEmbedLM(

  (encode): Linear(in_features=vocab_size, out_features=2)

  (decode): Linear(in_features=2, out_features=vocab_size)

)

F.softmax(model.forward(x_onehot))



PyTorch for Word Embedding LM
Two matrices of features vectors:

𝑊1: for context

𝑊2: for next token

Using PyTorch

WordEmbedLM(

  (encode): Linear(in_features=vocab_size, out_features=2)

  (decode): Linear(in_features=2, out_features=vocab_size)

)

F.softmax(model.forward(x_onehot))

torch.nn.Embedding(num_embeddings, embedding_dim)

x_index



Learning Better Vectors
Classic ML recipe:

1. Training data

2. Hypothesis function

3. Formulate objective

 Loss:

 Objective: 
1

N
σ𝑖

𝑁 𝐽 𝑖 𝑈, 𝑉  𝐽 𝑖 𝑈, 𝑉  

4. SGD to find parameters that optimize the objective

ො𝐲 =  𝑔𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝐯)



Tranformer LMs



Transformer Language Models

Increasing context size

▪ Uniform average of context vectors

▪ Position encoding

Attention

▪ Weighted average of context vectors

▪ Query Keys Values 

▪ Expressive power of linear transforms

Transformer blocks



Increasing Context Size
What if we want to have more input tokens?

V: for context

U: for next token



Increasing Context Size
What if we want to have more input tokens?

Uniform average over T input context tokens

v1 v2 v3 v4

the dog ate the

context

𝐯′ = ෍

𝑡=1

𝑇
1

𝑇
𝐯𝑡



Position Encoding
What about position within the input context??

v1 v2 v3 v4

the dog ate the



Position Encoding
What about position within the input context??

Rotary Position Encoding (RoPE) Desmos Demo

https://www.desmos.com/calculator/88combmfxv

2D version:
Given a fixed base rotation angle 𝜃1,

an embedded vector 𝐱 at integer position, 
𝑖𝑝𝑜𝑠, will be rotated by angle 𝜃 = 𝑖𝑝𝑜𝑠𝜃1:

𝐱′ = Rotate 𝐱, 𝜃 =
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

𝐱 

https://www.desmos.com/calculator/88combmfxv


Attention



Learn to pay attention!
We can do better than uniform combination of input

v1 v2 v3 v4

a1 a2 a3 a4

v1 v2 v3 v4

Context: v'

I will not eat

Context: v'

𝐯′ = ෍

𝑡=1

𝑇
1

𝑇
𝐯𝑡

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡



GPT Skeleton
Better 

embedding 𝐯′

Embedded context tokens

GPT
(Layers of 
Attention 

Blocks)

v1 v2 v3 v4



GPT Skeleton
Combined 
Context: 𝐯′

Embedded context tokens

GPT
(Layers of 
Attention 

Blocks)

𝑛𝑒𝑥𝑡_𝑖𝑑𝑥 =  argmax
𝑗

 ෝ𝒚

ො𝐲 =  𝑔𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝐯′)
v1 v2 v3 v4



MinGPT  Femto

Combined 
Context: 𝐯′

GPT 𝑛𝑒𝑥𝑡_𝑖𝑑𝑥 =  argmax
𝑗

 ෝ𝒚

ො𝐲 =  𝑔𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝐯′)

2-D embedded 
space

1 attention layer

1 attention head 
(think channel)

v1 v2 v3 v4



MinGPT  Femto

Combined 
Context: 𝐯′

GPT

2-D embedded space

1 attention layer

1 attention head 
(think channel)

v1 v2 v3 v4



MinGPT  Pico

Combined 
Context: 𝐯′

GPT

2-D embedded space

3 attention layer

3 attention heads 
(think channels)

v1 v2 v3 v4



MinGPT Pico: Output embedded space - 3 heads



MinGPT Pico: Attention Weights – 3 layers, 3 heads



Learn to pay attention!
We can do better than uniform combination of input

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

v1 v2 v3 v4

context
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Learn to pay attention!
If only we had a way to measure vector similarity

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

context

Cosine similarity matrix!
𝑆 = 𝑉𝑉𝑇

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡

a1 a2 a3 a4

I will not eat
1 2 3 4

1

2

3

4

Je

na

pa

mange



Learn to pay attention!
If only we had a way to measure vector similarity

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

context

Cosine similarity matrix!
𝑆 = 𝑉𝑉𝑇

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡

a1 a2 a3 a4

I will not eat
1 2 3 4

1

2

3

4

softmax



Learn to pay attention!
We can do better than uniform combination of input

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

v1 v2 v3 v4

context

I will not eat

context

𝐯 = ෍

𝑡=1

𝑇
1

𝑇
𝐯𝑡

I will not eat

𝐯 = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡

a1 a2 a3 a4

softmax



Learn to pay attention!
But...there is an issue with just doing 𝑉𝑉𝑇  

We're really just comparing input to input
→ Symmetric with strong diagonal 
             𝑆 = 𝑉𝑉𝑇 

I will not
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1 2 3

4
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4
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contex
t
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I will not eat

x1 x2 x3 x4

eat
4

𝑉 = 𝑋𝑊𝑉



Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to 
represent the output

𝑄 = 𝑋𝑊𝑄

I will not eat

I will not
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Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to 
represent the output

(And also 𝐤𝑡 for the input)

𝑄 = 𝑋𝑊𝑄
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eat
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𝐾 = 𝑋𝑊𝐾



Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to 
represent the output

(And also 𝐤𝑡 for the input)

Attention:

Query, Key, Value

𝑄 = 𝑋𝑊𝑄 𝑆 = 𝑄𝐾𝑇/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

𝐾 = 𝑋𝑊𝐾
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