
10-315
Introduction to ML

LLMs:
Word Embeddings &
Attention

Instructor: Pat Virtue

Building up to Large Language Models

N-gram LMs

Word Embedding LMs

▪ Vector representation of vocab tokens

▪ Sampling next token

▪ Learning better vectors

Transformer LMs

▪ Increasing context size

▪ Attention

▪ Tranformer blocks

More Transformers

Word Embedding LMs

Word Embedding Language Models

Vector representation of vocab tokens

▪ Set of vectors for both previous and next token

Sampling next token

▪ Cosine similarity

▪ Softmax

▪ Sample from categorical distribution

Learning better vectors

▪ Cross-entropy loss

▪ SGD: looping through pairs of tokens in our corpus

Word (Token) Embeddings
The beginning and the end of LLM networks

Current text

Many layers of
transformer/attention blocks

Word
Embedding

Output
Embedding

Tokenizer

Input tokens

Similarity scores
for each token

in vocab

Tokenizer

Next text

Softmax

Sampling

Probabilty
of each token

in vocab

Next token

Embedded
vector

representation

Embedded
vector

representation

Large Language
Model

 e.g GPT, Llama, etc

Current text

Word
Embedding

Output
Embedding

Tokenizer

Input tokens

Similarity scores
for each token

in vocab

Tokenizer

Next text

Softmax

Sampling

Probabilty
of each token

in vocab

Next token

Embedded
vector

representation

Really Small
Language

Model

Simple Word Embedding LM
Building a language model with just word embedding layers ☺

Simple Word Embedding LM
Setup

Tokenizer

Simple Word Embedding LM
Vector representation for each token in vocabulary (initially random)

Two sets of vectors in ℝ𝑀 (we'll use 𝑀 = 2 for better visualization)

𝑉: to represent previous tokens

𝑈: to represent next tokens

Simple Word Embedding LM
Vector representation for each token in vocabulary (initially random)

𝑉: Previous 𝑈: Next

Simple Word Embedding LM
After training our LM, we'll learn more organized vectors (details later)

Simple Word Embedding LM
We can use either of these models to generate text, staring with "the dog"

Random vectors Trained vectors

the dog cat ate ran zoo zoo
zoo dog dog cat cat ate ran .
ate . ate ate ! the ate

the dog ate . the dog ! the
zoo . the dog ran the zoo .
the dog ate the dog !

Generated tokens from random and trained models

Outline: Word Embedding LM

Vector representation of vocab tokens

▪ Set of vectors for both previous and next token

Sampling next token

▪ Cosine similarity

▪ Softmax

▪ Sample from categorical distribution

Learning better vectors

▪ Cross-entropy loss

▪ SGD: looping through pairs of tokens in our corpus

Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to
generate a the next token after the previous token 'the'.

𝑉: previous tokens

𝑈: next tokens

Which token should be our
next token?

Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to
generate a the next token after the previous token 'the'.

𝑉: previous tokens

𝑈: next tokens

Which token should be our
next token?
1. Lookup the index 𝑖 for the

vocab token 'the'
2. Access the 𝑖-th row of 𝑉, 𝐯
3. Compare 𝐯 to all vectors

in 𝑈

(Unnormalized) Cosine Similarity Metric
We’ve been using Euclidean distance

▪ 𝑑 𝐮, 𝐯 = 𝐮 − 𝐯 2

Cosine similarity

▪ Two vectors are similar if their dot product is
positive and big

▪ 𝑓 𝐮, 𝐯 = 𝐮𝑇𝐯

▪ (Why cosine?)

▪ Two vectors are similar if the angle between
them is small (small angle → large cos 𝜃)

▪ 𝑓 𝐮, 𝐯 = 𝐮𝑇𝐯

cos 𝜃 =
𝐮𝑇𝐯

𝐮 2 𝐯 2

(Unnormalized) Cosine Similarity Metric

https://www.desmos.com/calculator/82m4zkjlkc

Cosine similarity Desmos demo

https://www.desmos.com/calculator/82m4zkjlkc

𝑓 𝐮, 𝐯 = 𝐮𝑇𝐯

https://www.desmos.com/calculator/82m4zkjlkc

Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to
generate a the next token after the previous token 'the'.

𝑉: previous tokens

𝑈: next tokens

1. Compute similarity scores
𝐬 = 𝑈𝐯

Sampling from Word Embeddings
Suppose we have a trained set of embedded vectors and we want to
generate a the next token after the previous token 'the'.

𝑉: previous tokens

𝑈: next tokens

1. Compute similarity scores
𝐬 = 𝑈𝐯

2. Convert to probabilities
ො𝐲 = 𝑔𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐬

3. Sample from Categorical
distribution defined by ො𝐲

4. LOOP: next token → prev

Current text

Word
Embedding

Output
Embedding

Tokenizer

Input tokens

Similarity scores
for each token

in vocab

Tokenizer

Next text

Softmax

Sampling

Probabilty
of each token

in vocab

Next token

Embedded
vector

representation

Really Small
Language

Model

Simple Word Embedding LM
Building a language model with just word embedding layers ☺

PyTorch for Word Embedding LM
Two matrices of features vectors:

𝑊1: for context

𝑊2: for next token

Using PyTorch

WordEmbedLM(

 (encode): Linear(in_features=vocab_size, out_features=2)

 (decode): Linear(in_features=2, out_features=vocab_size)

)

F.softmax(model.forward(x_onehot))

PyTorch for Word Embedding LM
Two matrices of features vectors:

𝑊1: for context

𝑊2: for next token

Using PyTorch

WordEmbedLM(

 (encode): Linear(in_features=vocab_size, out_features=2)

 (decode): Linear(in_features=2, out_features=vocab_size)

)

F.softmax(model.forward(x_onehot))

torch.nn.Embedding(num_embeddings, embedding_dim)

x_index

Learning Better Vectors
Classic ML recipe:

1. Training data

2. Hypothesis function

3. Formulate objective

 Loss:

 Objective:
1

N
σ𝑖

𝑁 𝐽 𝑖 𝑈, 𝑉 𝐽 𝑖 𝑈, 𝑉

4. SGD to find parameters that optimize the objective

ො𝐲 = 𝑔𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝐯)

Tranformer LMs

Transformer Language Models

Increasing context size

▪ Uniform average of context vectors

▪ Position encoding

Attention

▪ Weighted average of context vectors

▪ Query Keys Values

▪ Expressive power of linear transforms

Transformer blocks

Increasing Context Size
What if we want to have more input tokens?

V: for context

U: for next token

Increasing Context Size
What if we want to have more input tokens?

Uniform average over T input context tokens

v1 v2 v3 v4

the dog ate the

context

𝐯′ = ෍

𝑡=1

𝑇
1

𝑇
𝐯𝑡

Position Encoding
What about position within the input context??

v1 v2 v3 v4

the dog ate the

Position Encoding
What about position within the input context??

Rotary Position Encoding (RoPE) Desmos Demo

https://www.desmos.com/calculator/88combmfxv

2D version:
Given a fixed base rotation angle 𝜃1,

an embedded vector 𝐱 at integer position,
𝑖𝑝𝑜𝑠, will be rotated by angle 𝜃 = 𝑖𝑝𝑜𝑠𝜃1:

𝐱′ = Rotate 𝐱, 𝜃 =
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

𝐱

https://www.desmos.com/calculator/88combmfxv

Attention

Learn to pay attention!
We can do better than uniform combination of input

v1 v2 v3 v4

a1 a2 a3 a4

v1 v2 v3 v4

Context: v'

I will not eat

Context: v'

𝐯′ = ෍

𝑡=1

𝑇
1

𝑇
𝐯𝑡

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡

GPT Skeleton
Better

embedding 𝐯′

Embedded context tokens

GPT
(Layers of
Attention

Blocks)

v1 v2 v3 v4

GPT Skeleton
Combined
Context: 𝐯′

Embedded context tokens

GPT
(Layers of
Attention

Blocks)

𝑛𝑒𝑥𝑡_𝑖𝑑𝑥 = argmax
𝑗

 ෝ𝒚

ො𝐲 = 𝑔𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝐯′)
v1 v2 v3 v4

MinGPT Femto

Combined
Context: 𝐯′

GPT 𝑛𝑒𝑥𝑡_𝑖𝑑𝑥 = argmax
𝑗

 ෝ𝒚

ො𝐲 = 𝑔𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝐯′)

2-D embedded
space

1 attention layer

1 attention head
(think channel)

v1 v2 v3 v4

MinGPT Femto

Combined
Context: 𝐯′

GPT

2-D embedded space

1 attention layer

1 attention head
(think channel)

v1 v2 v3 v4

MinGPT Pico

Combined
Context: 𝐯′

GPT

2-D embedded space

3 attention layer

3 attention heads
(think channels)

v1 v2 v3 v4

MinGPT Pico: Output embedded space - 3 heads

MinGPT Pico: Attention Weights – 3 layers, 3 heads

Learn to pay attention!
We can do better than uniform combination of input

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

v1 v2 v3 v4

context

I will not eat

context

𝐯′ = ෍

𝑡=1

𝑇
1

𝑇
𝐯𝑡

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡

a1 a2 a3 a4

Learn to pay attention!
If only we had a way to measure vector similarity

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

context

Cosine similarity matrix!
𝑆 = 𝑉𝑉𝑇

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡

a1 a2 a3 a4

I will not eat
1 2 3 4

1

2

3

4

Je

na

pa

mange

Learn to pay attention!
If only we had a way to measure vector similarity

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

context

Cosine similarity matrix!
𝑆 = 𝑉𝑉𝑇

I will not eat

𝐯′ = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡

a1 a2 a3 a4

I will not eat
1 2 3 4

1

2

3

4

softmax

Learn to pay attention!
We can do better than uniform combination of input

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

v1 v2 v3 v4

context

I will not eat

context

𝐯 = ෍

𝑡=1

𝑇
1

𝑇
𝐯𝑡

I will not eat

𝐯 = ෍

𝑡=1

𝑇

𝑎𝑡𝐯𝑡

a1 a2 a3 a4

softmax

Learn to pay attention!
But...there is an issue with just doing 𝑉𝑉𝑇 

We're really just comparing input to input
→ Symmetric with strong diagonal 
 𝑆 = 𝑉𝑉𝑇

I will not

eat
1 2 3

4
1

2

3

4

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

contex
t

a1 a2 a3 a4

softmax

I will not eat

x1 x2 x3 x4

eat
4

𝑉 = 𝑋𝑊𝑉

Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to
represent the output

𝑄 = 𝑋𝑊𝑄

I will not eat

I will not

eat
1 2 3

4
1

2

3

4

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

contex
t

a1 a2 a3 a4

softmax

x1 x2 x3 x4

𝑆 = 𝑄𝑉𝑇

𝑉 = 𝑋𝑊𝑉

eat
4

Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to
represent the output

(And also 𝐤𝑡 for the input)

𝑄 = 𝑋𝑊𝑄

I will not eat

I will not

eat
1 2 3

4
1

2

3

4

v1 v2 v3 v4

s4,1 s4,2 s4,3 s4,4

contex
t

a1 a2 a3 a4

softmax

x1 x2 x3 x4

𝑆 = 𝑄𝐾𝑇/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

eat
4

𝐾 = 𝑋𝑊𝐾

Learn to pay attention!
Instead learn a query vectors 𝐪𝑡 to
represent the output

(And also 𝐤𝑡 for the input)

Attention:

Query, Key, Value

𝑄 = 𝑋𝑊𝑄 𝑆 = 𝑄𝐾𝑇/ 𝑑𝑘

𝑉 = 𝑋𝑊𝑉

𝐾 = 𝑋𝑊𝐾

	Slide 1: 10-315 Introduction to ML LLMs: Word Embeddings & Attention
	Slide 2: Building up to Large Language Models
	Slide 3: Word Embedding LMs
	Slide 4: Word Embedding Language Models
	Slide 5: Word (Token) Embeddings
	Slide 6: Simple Word Embedding LM
	Slide 7: Simple Word Embedding LM
	Slide 8: Simple Word Embedding LM
	Slide 9: Simple Word Embedding LM
	Slide 10: Simple Word Embedding LM
	Slide 11: Simple Word Embedding LM
	Slide 12: Outline: Word Embedding LM
	Slide 13: Sampling from Word Embeddings
	Slide 15: Sampling from Word Embeddings
	Slide 16: (Unnormalized) Cosine Similarity Metric
	Slide 17: (Unnormalized) Cosine Similarity Metric
	Slide 18: Sampling from Word Embeddings
	Slide 19: Sampling from Word Embeddings
	Slide 20: Simple Word Embedding LM
	Slide 21: PyTorch for Word Embedding LM
	Slide 22: PyTorch for Word Embedding LM
	Slide 23: Learning Better Vectors
	Slide 24: Tranformer LMs
	Slide 25: Transformer Language Models
	Slide 26: Increasing Context Size
	Slide 27: Increasing Context Size
	Slide 28: Position Encoding
	Slide 29: Position Encoding
	Slide 30: Attention
	Slide 31: Learn to pay attention!
	Slide 32: GPT Skeleton
	Slide 33: GPT Skeleton
	Slide 34: MinGPT Femto
	Slide 35: MinGPT Femto
	Slide 36: MinGPT Pico
	Slide 37: MinGPT Pico: Output embedded space - 3 heads
	Slide 38: MinGPT Pico: Attention Weights – 3 layers, 3 heads
	Slide 39: Learn to pay attention!
	Slide 40: Learn to pay attention!
	Slide 41: Learn to pay attention!
	Slide 42: Learn to pay attention!
	Slide 43: Learn to pay attention!
	Slide 44: Learn to pay attention!
	Slide 45: Learn to pay attention!
	Slide 46: Learn to pay attention!

