

10-315 Introduction to ML

LLMs:
Word Embeddings &
Attention

Instructor: Pat Virtue

Building up to Large Language Models

N-gram LMs

Word Embedding LMs

- Vector representation of vocab tokens
- Sampling next token
- Learning better vectors

Transformer LMs

- Increasing context size
- Attention
- Tranformer blocks

More Transformers

Word Embedding LMs

Word Embedding Language Models

Vector representation of vocab tokens

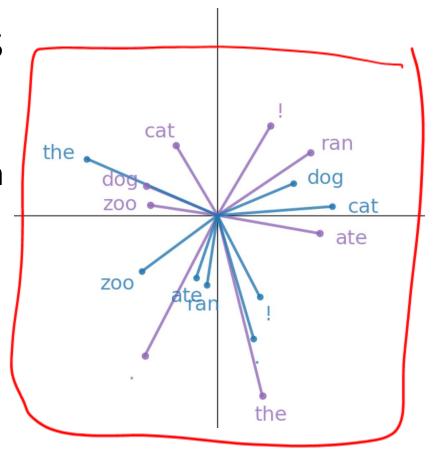
Set of vectors for both previous and next token

Sampling next token

- Cosine similarity
- Softmax
- Sample from categorical distribution

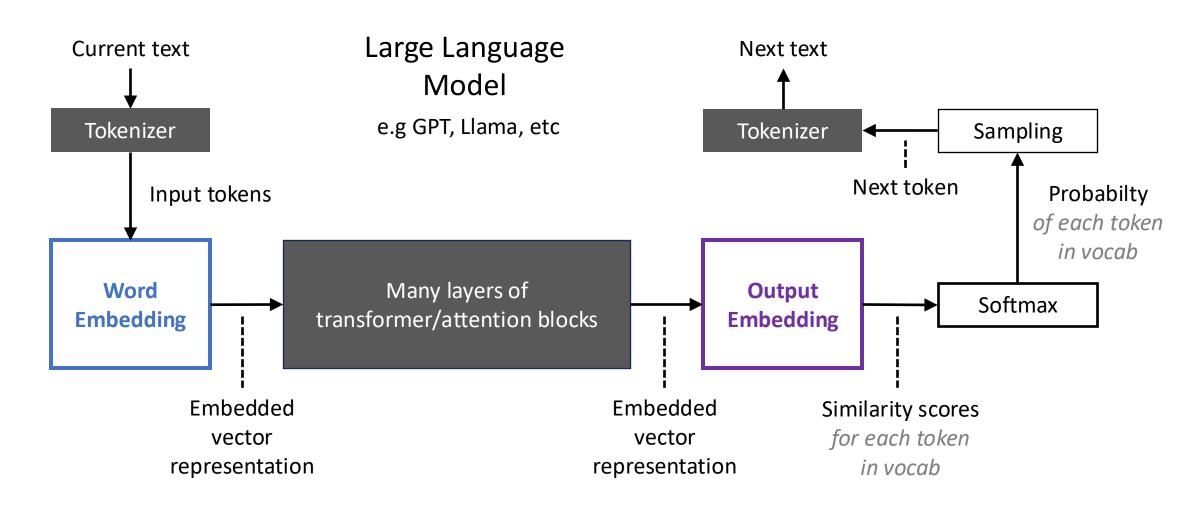
Learning better vectors

- Cross-entropy loss
- SGD: looping through pairs of tokens in our corpus

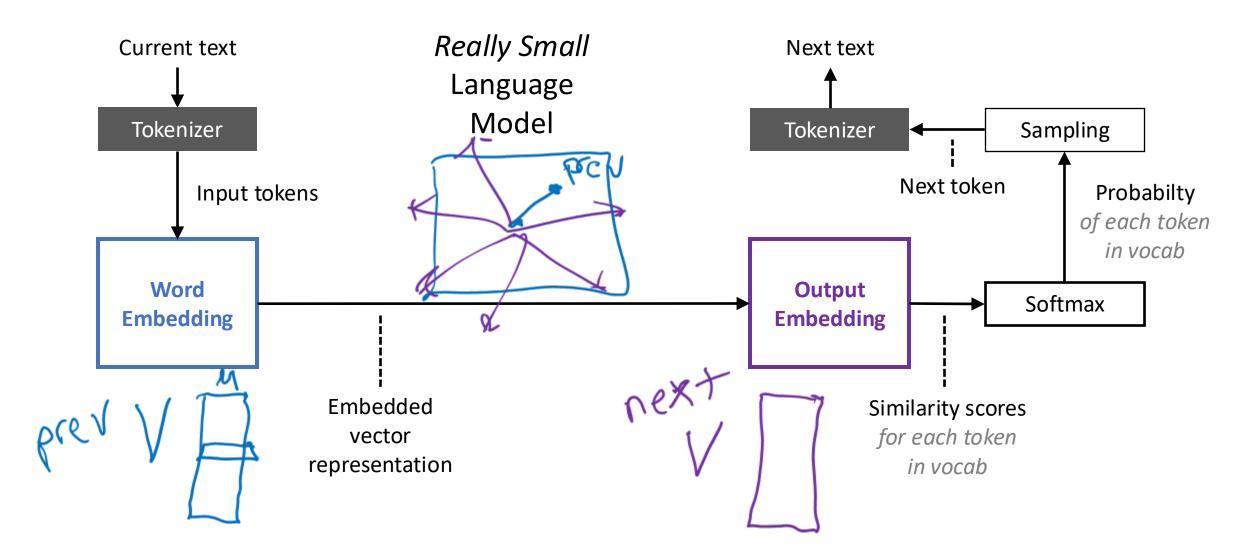


Word (Token) Embeddings

The beginning and the end of LLM networks



Building a language model with just word embedding layers ©



Setup

```
Corpus:
                                    (Simple) Tokenized Corpus:
                                                                            Vocabulary:
                    Tokenizer
                                   [ 'the', 'dog', 'ran', '.', 'the',
The dog ran.
                                                                            ['!',
The dog ate.
                                      'dog', 'ate', '.', 'the', 'dog',
                                                                              ١.',
                                      'ran', 'the', 'zoo', '.', 'the',
The dog ran the zoo.
                                                                              'ate',
                                      'cat', 'ate', 'the', 'dog', '!',
The cat ate the dog!
                                                                              'cat',
                                      'the', 'cat', 'ran', 'the',
The cat ran the zoo.
                                                                              'dog',
                                      'zoo', '.']
                                                                              'ran',
                                                                              'the',
                                                                              'zoo' ]
```

Vector representation for each token in vocabulary (initially random)

Two sets of vectors in \mathbb{R}^M (we'll use M=2 for better visualization)

V: to represent previous tokens

U: to represent next tokens

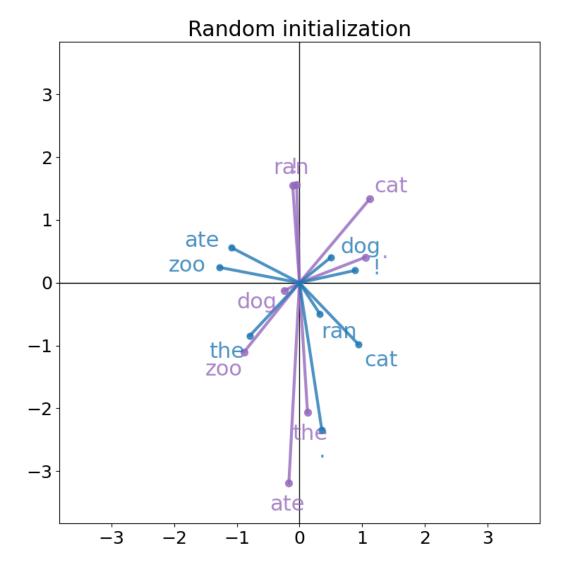
```
V:
!: 0.884, 0.196
.: 0.358, -2.343
ate: -1.085, 0.560
cat: 0.939, -0.978
dog: 0.503, 0.406
ran: 0.323, -0.493
the: -0.792, -0.842
zoo: -1.280, 0.246
```

```
U:
!: -0.044, 1.568
.: 1.051, 0.406
ate: -0.169, -3.190
cat: 1.120, 1.333
dog: -0.243, -0.130
ran: -0.109, 1.556
the: 0.129, -2.067
zoo: -0.885, -1.105
```

Vector representation for each token in vocabulary (initially random)

V: Previous

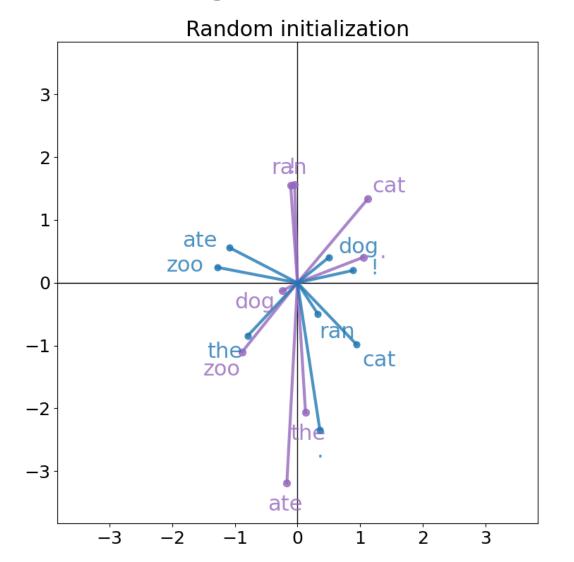
0.884, 0.196 0.358, -2.343-1.085, 0.560 ate: 0.939, -0.978cat: 0.503, 0.406 dog: 0.323, -0.493ran: -0.792, -0.842the: -1.280, 0.246 Z00:

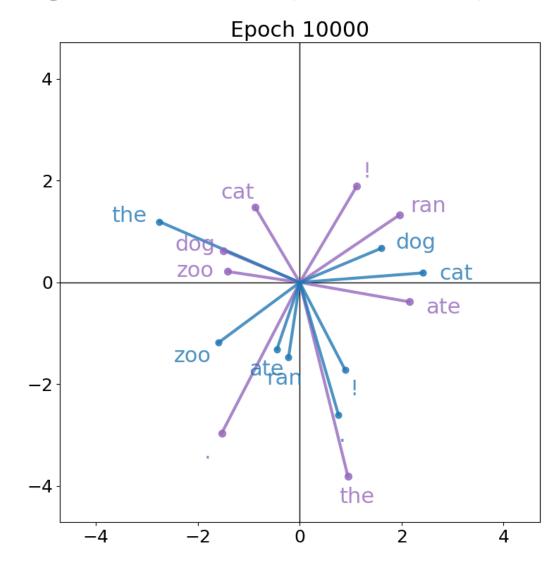


U: Next

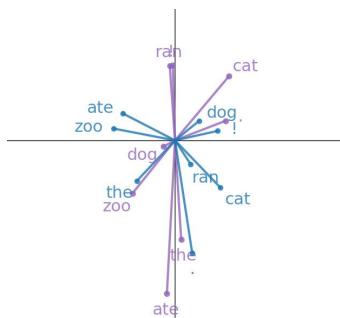
```
-0.044,
                1.568
       1.051,
                0.406
               -3.190
      -0.169,
ate:
cat:
     1.120,
                1.333
dog:
      -0.243, -0.130
      -0.109,
                1.556
ran:
     0.129,
               -2.067
the:
      -0.885,
               -1.105
Z00:
```

After training our LM, we'll learn more organized vectors (details later)

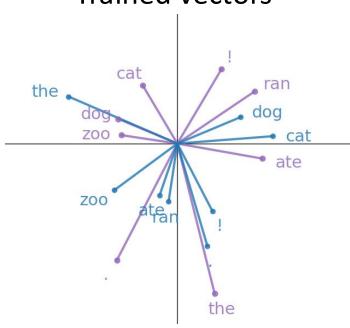




We can use either of these models to generate text, staring with "the dog"



Trained vectors



Generated tokens from random and trained models

the dog cat ate ran zoo zoo
zoo dog dog cat cat ate ran .
ate . ate ate ! the ate

the dog ate . the dog ! the
zoo . the dog ran the zoo .
the dog ate the dog !

Outline: Word Embedding LM

Vector representation of vocab tokens

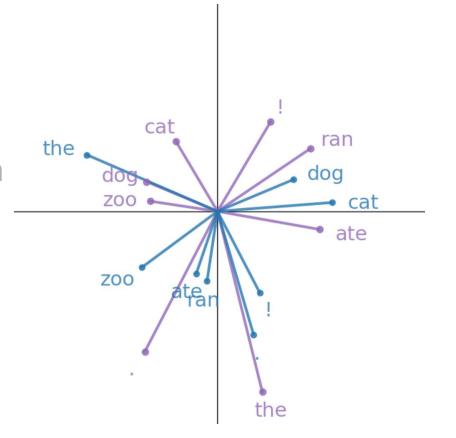
Set of vectors for both previous and next token

Sampling next token

- Cosine similarity
- Softmax
- Sample from categorical distribution

Learning better vectors

- Cross-entropy loss
- SGD: looping through pairs of tokens in our corpus



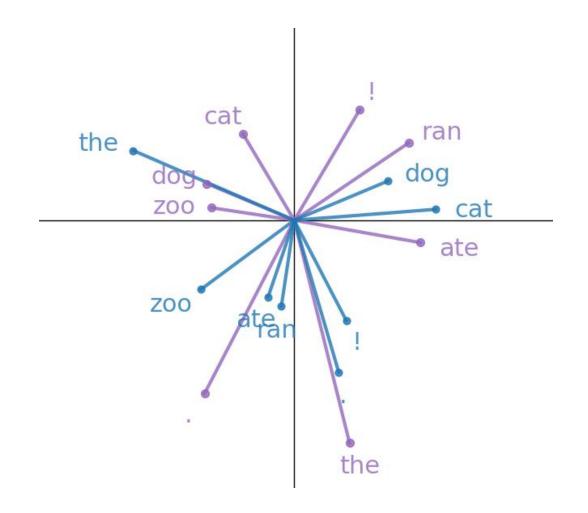
Sampling from Word Embeddings

Suppose we have a trained set of embedded vectors and we want to generate a the next token after the previous token 'the'.

V: previous tokens

U: next tokens

Which token should be our next token?



Sampling from Word Embeddings

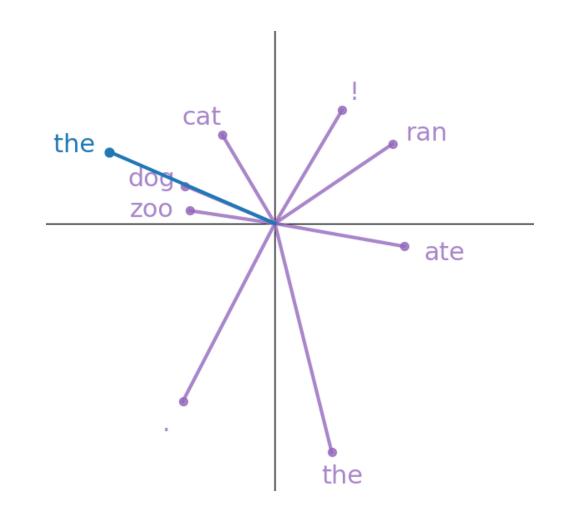
Suppose we have a trained set of embedded vectors and we want to generate a the next token after the previous token 'the'.

V: previous tokens

U: next tokens

Which token should be our next token?

- 1. Lookup the index *i* for the vocab token 'the'
- 2. Access the i-th row of V, \mathbf{v}
- 3. Compare v to all vectors in U



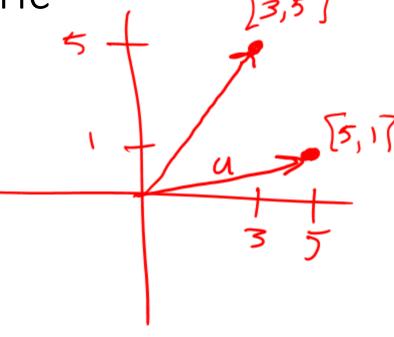
(Unnormalized) Cosine Similarity Metric

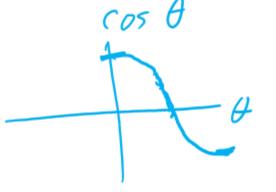
We've been using Euclidean distance

 $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|_2$

Cosine similarity

- Two vectors are similar if their dot product is positive and big
- $f(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v}$
- (Why cosine?)
 - Two vectors are similar if the angle between them is small (small angle \rightarrow large $\cos \theta$)
 - $f(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| ||\mathbf{v}$



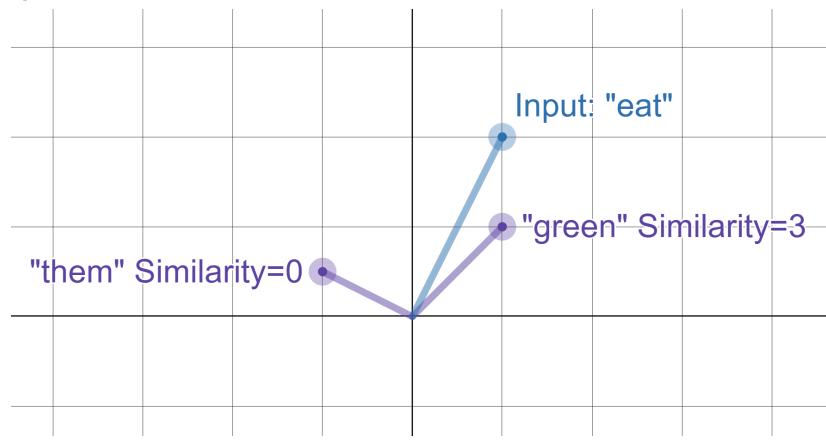


(Unnormalized) Cosine Similarity Metric

Cosine similarity Desmos demo

https://www.desmos.com/calculator/82m4zkjlkc

$$f(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v}$$



Sampling from Word Embeddings

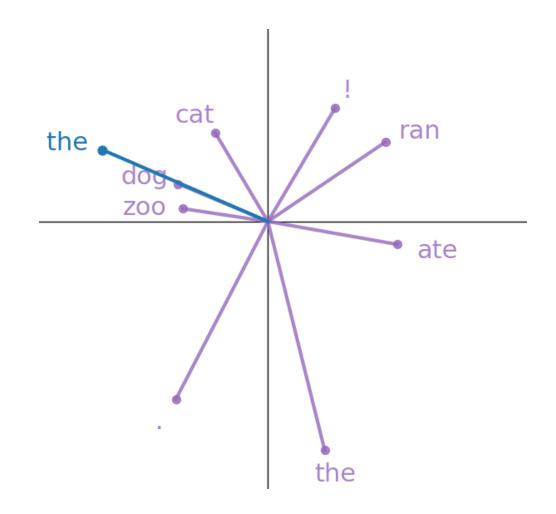
Suppose we have a trained set of embedded vectors and we want to generate a the next token after the previous token 'the'.

V: previous tokens

U: next tokens

1. Compute similarity scores

$$s = Uv$$



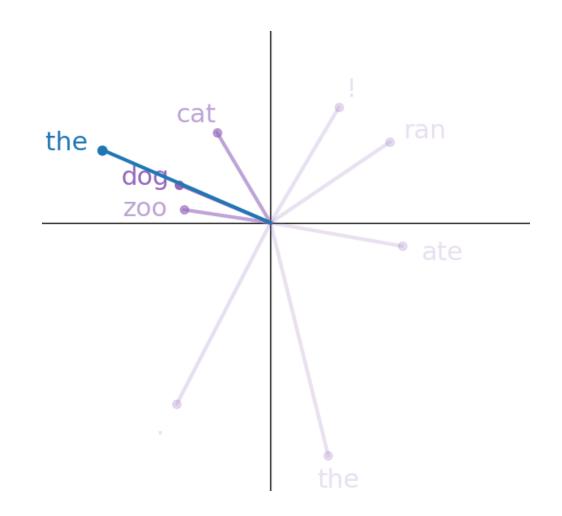
Sampling from Word Embeddings

Suppose we have a trained set of embedded vectors and we want to generate a the next token after the previous token 'the'.

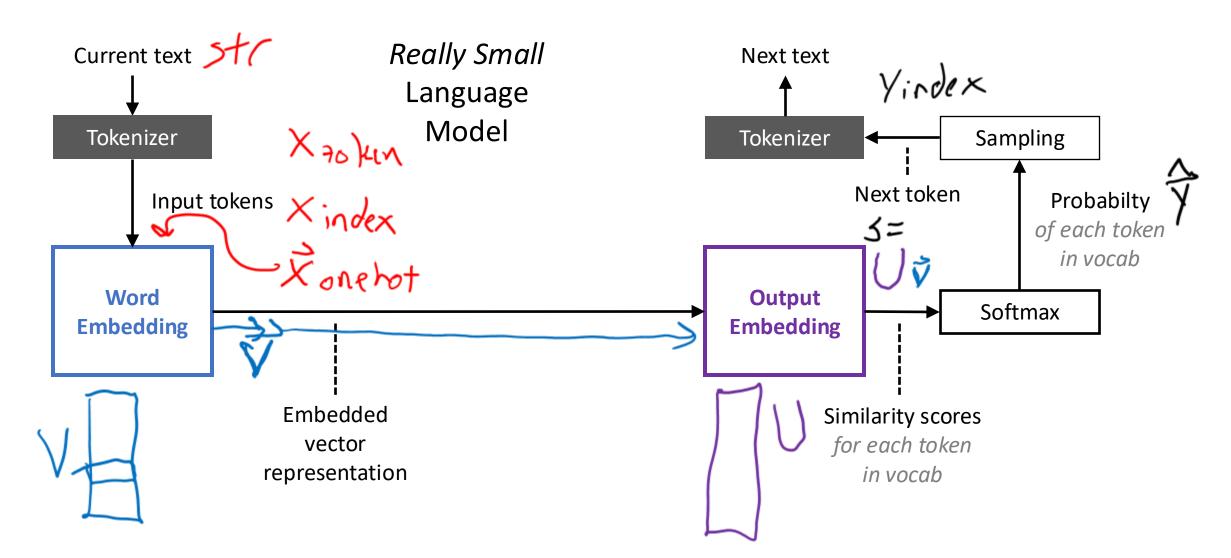
V: previous tokens

U: next tokens

- 1. Compute similarity scores $\mathbf{s} = U\mathbf{v}$
- 2. Convert to probabilities $\hat{\mathbf{y}} = g_{softmax}(\mathbf{s})$
- 3. Sample from Categorical distribution defined by $\hat{\mathbf{y}}$
- 4. LOOP: next token → prev



Building a language model with just word embedding layers ©

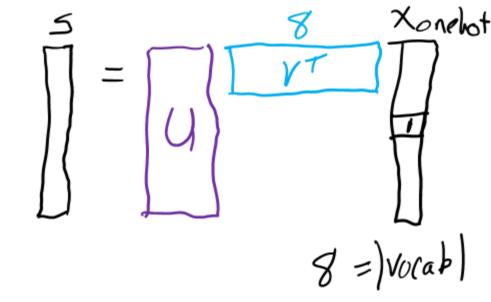


PyTorch for Word Embedding LM

Two matrices of features vectors:

 W_1 : for context \sim

 W_2 : for next token \longleftarrow



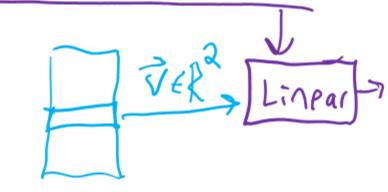
Using PyTorch

WordEmbedLM(

(encode): Linear(in_features=vocab_size, out_features=2)

(decode): Linear(in_features=2, out_features=vocab_size)

F.softmax(model.forward(x_onehot))



PyTorch for Word Embedding LM

Two matrices of features vectors:

```
W_1: for context
W_2: for next token
                      torch.nn.Embedding(num embeddings, embedding dim)
Using PyTorch
WordEmbedLM(
  (encode): Linear(in features=vocab size, out_features=2)
  (decode): Linear(in_features=2, out_features=vocab_size)
                                x index
F.softmax(model.forward(x_onehot))
```

Learning Better Vectors

Classic ML recipe:

1. Training data

2. Hypothesis function

$$\hat{\mathbf{y}} = g_{softmax}(U\mathbf{v}) \in \bigvee \leftarrow X_{str}$$

3. Formulate objective

Objective:
$$\frac{1}{N}\sum_{i}^{N}J^{(i)}(U,V)$$

SGD to find parameters that optimize the objective

(Simple) Tokenized Corpus: ['the', 'dog', 'ran', '.', 'the', 'dog', 'ate', '.', 'the', 'dog', 'ran', 'the', 'zoo', '.', 'the', 'cat', 'ate', 'the', 'dog', '!', 'the', 'cat', 'ran', 'the', 'zoo', '.']

Tranformer LMs

Transformer Language Models

Increasing context size

- Uniform average of context vectors
- Position encoding

Attention

- Weighted average of context vectors
- Query Keys Values
- Expressive power of linear transforms

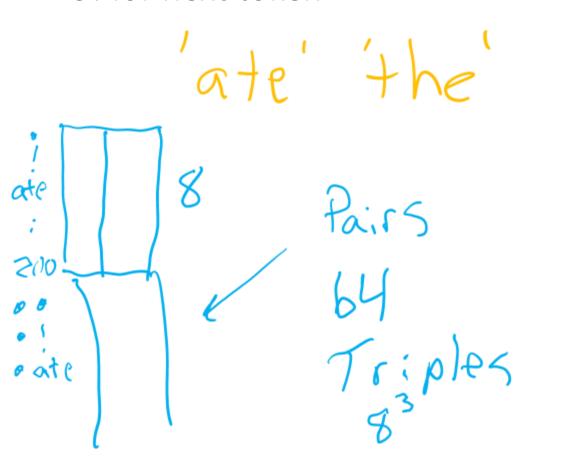
Transformer blocks

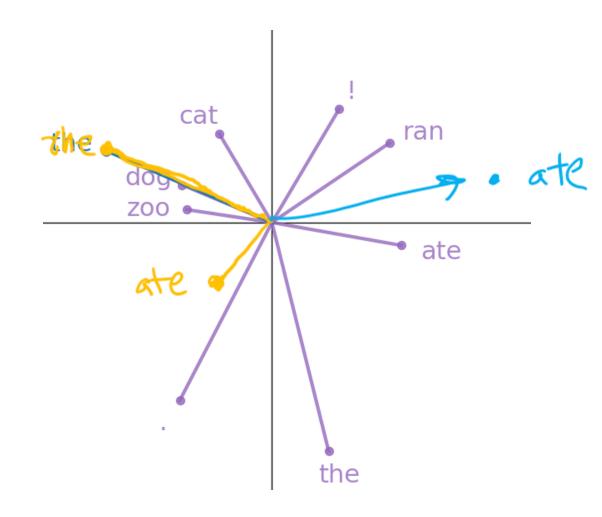
Increasing Context Size

What if we want to have more input tokens?

V: for context

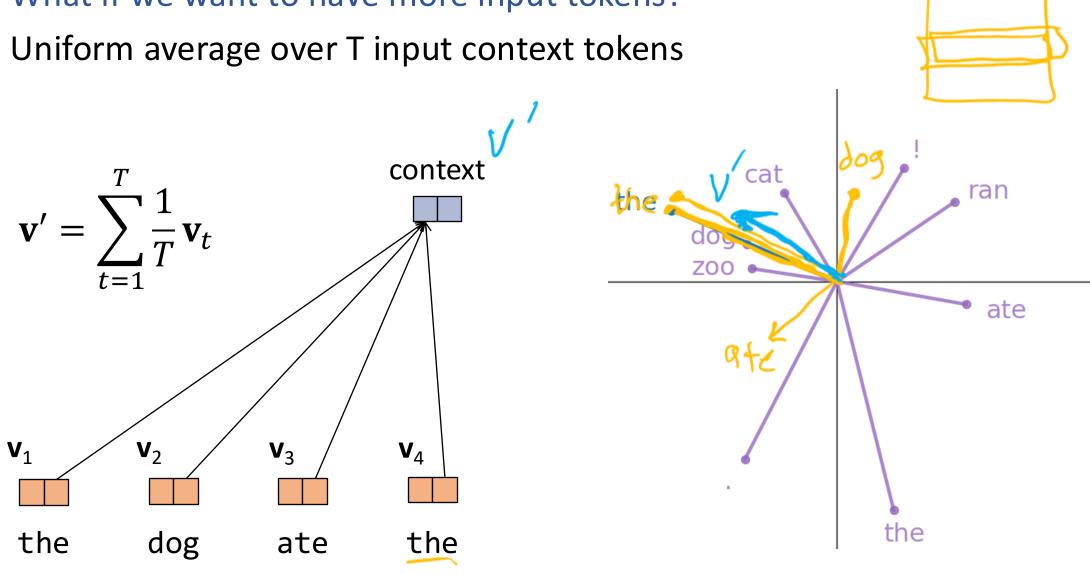
U: for next token





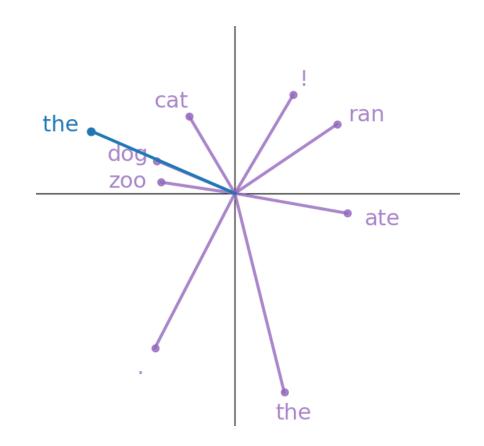
Increasing Context Size

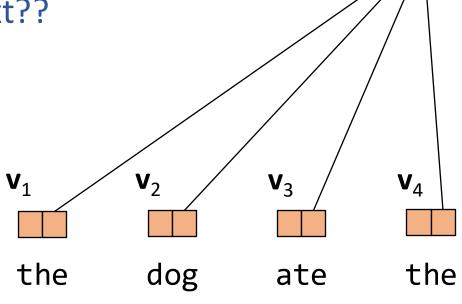
What if we want to have more input tokens?



Position Encoding

What about position within the input context??





Position Encoding

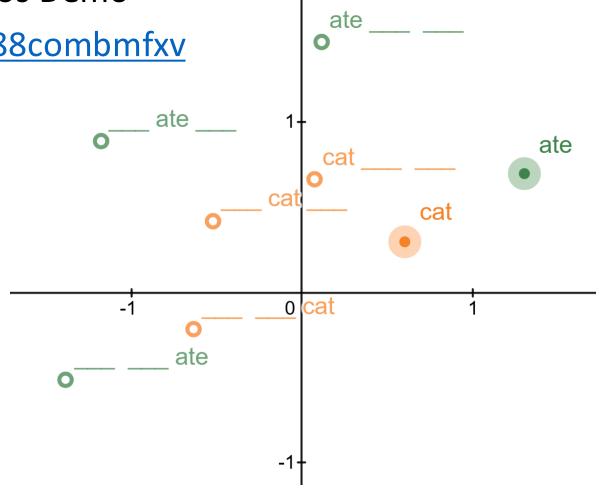
What about position within the input context??

Rotary Position Encoding (RoPE) Desmos Demo https://www.desmos.com/calculator/88combmfxv

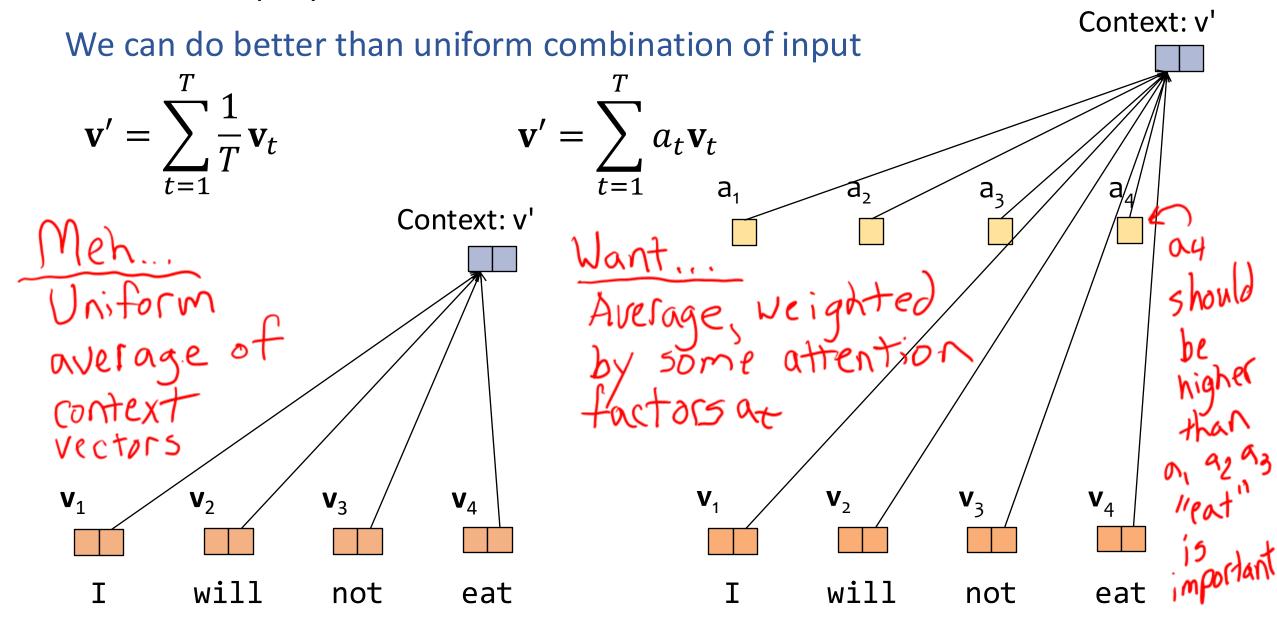
2D version:

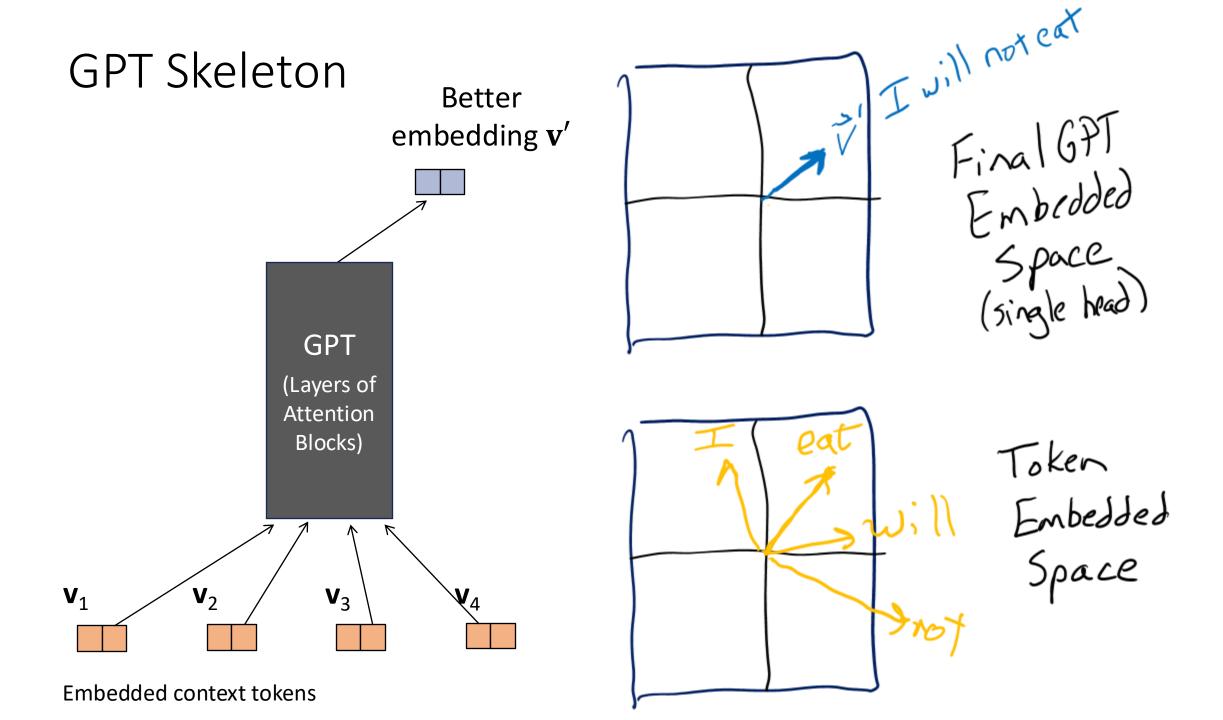
Given a fixed base rotation angle θ_1 , an embedded vector ${\bf x}$ at integer position, i_{pos} , will be rotated by angle $\theta=i_{pos}\theta_1$:

$$\mathbf{x}' = \text{Rotate}(\mathbf{x}, \theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mathbf{x}$$

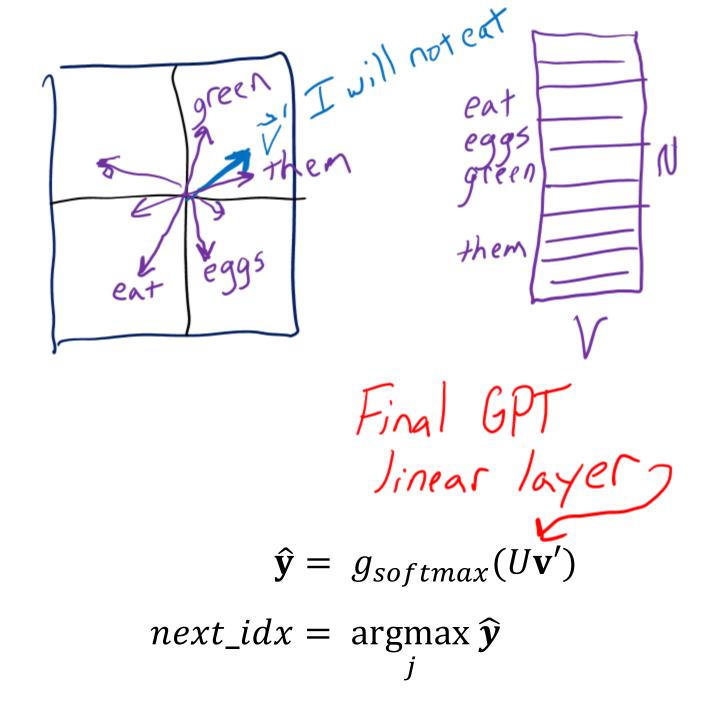


Attention





GPT Skeleton Juli not ext Context: v' Combined **GPT** (Layers of Attention Blocks) \mathbf{V}_1 \mathbf{V}_2 **V**₃



Embedded context tokens

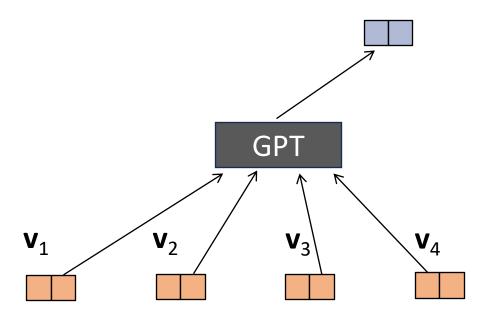
MinGPT Femto

2-D embedded space

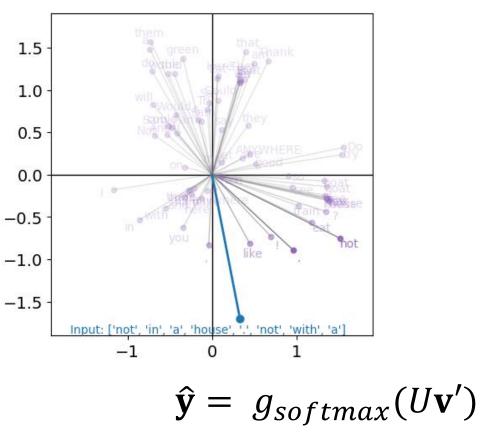
1 attention layer

1 attention head (think channel)

Combined Context: v'



Embedded words/tokens



$$\hat{\mathbf{y}} = g_{softmax}(U\mathbf{v}')$$

$$next_i dx = \underset{j}{\operatorname{argmax}} \hat{\mathbf{y}}$$

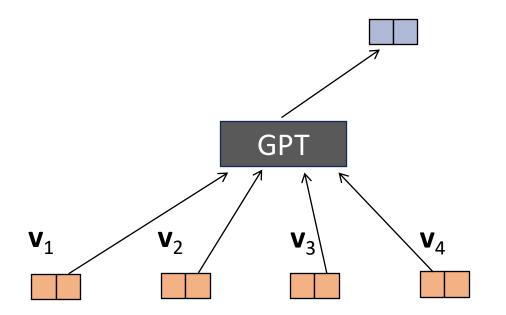
MinGPT Femto

2-D embedded space

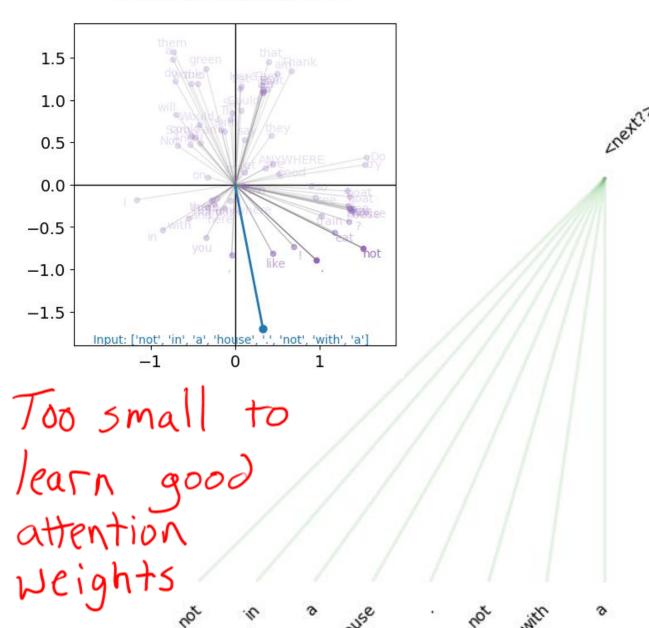
1 attention layer

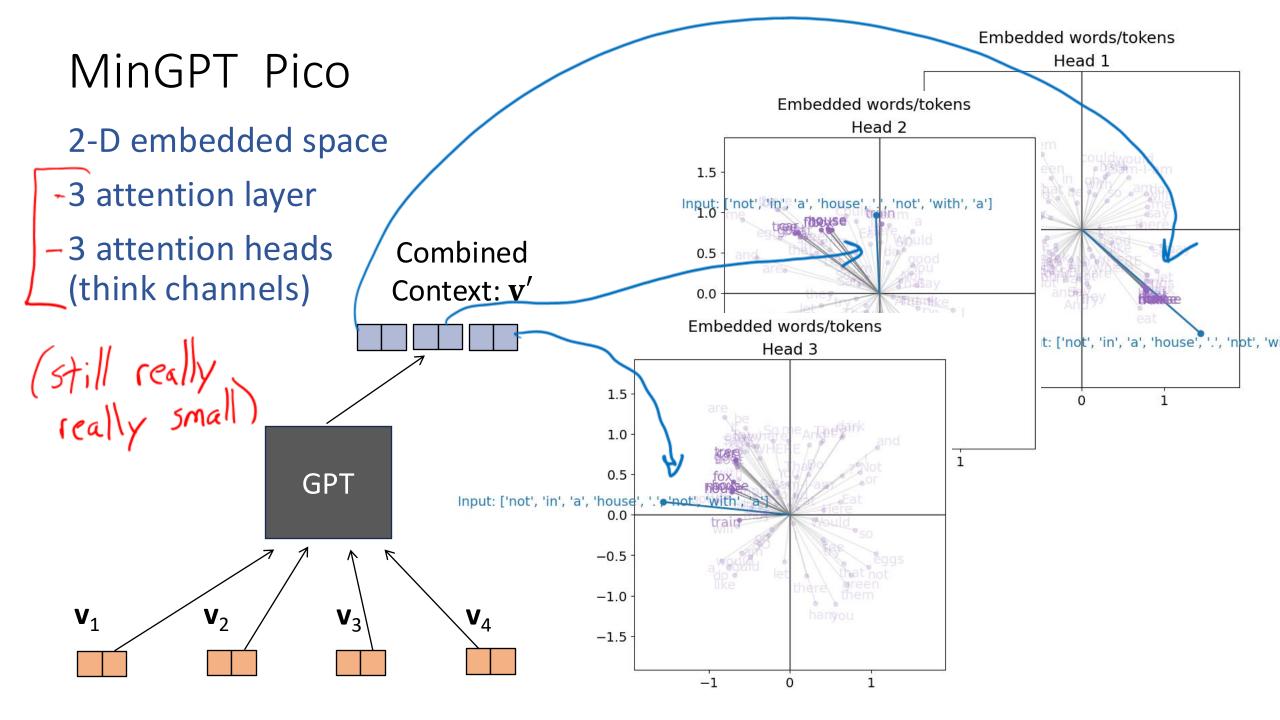
1 attention head (think channel)

Combined Context: **v**'

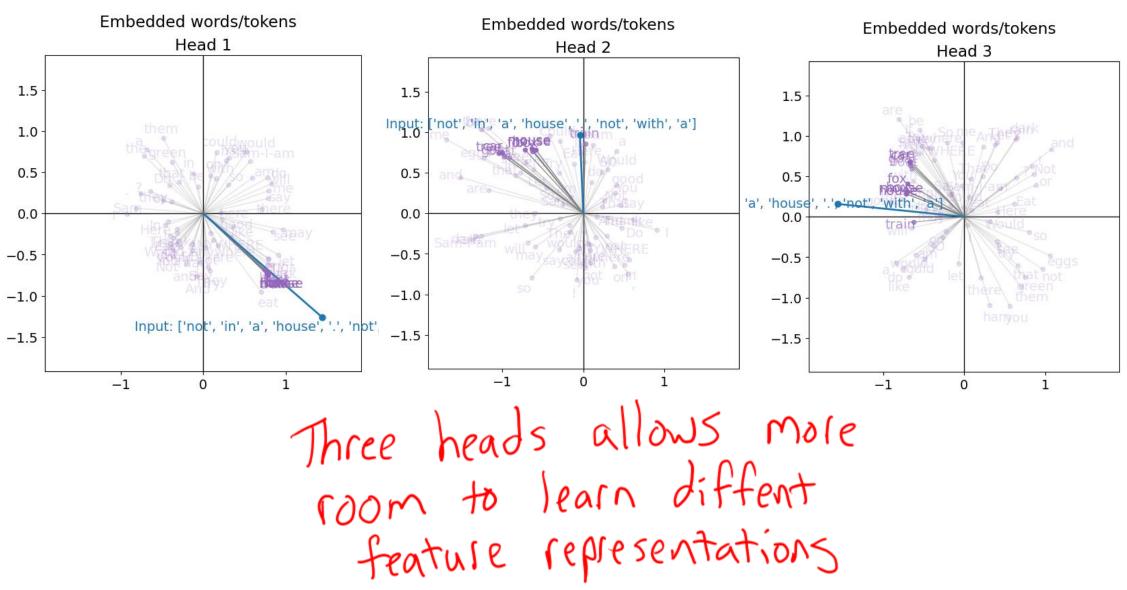


Embedded words/tokens

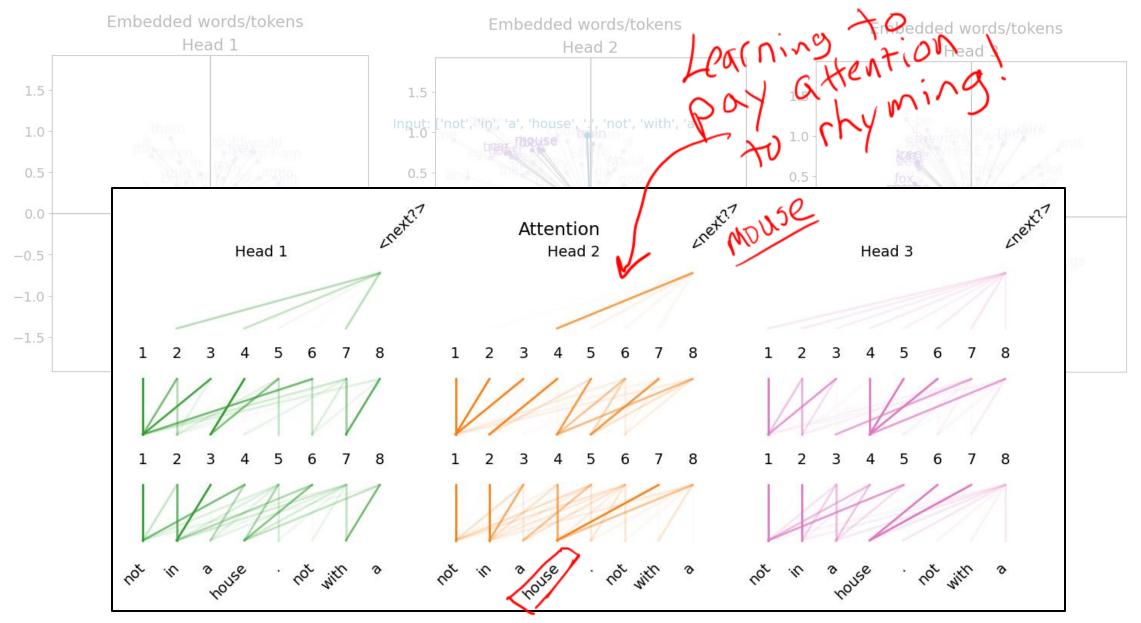


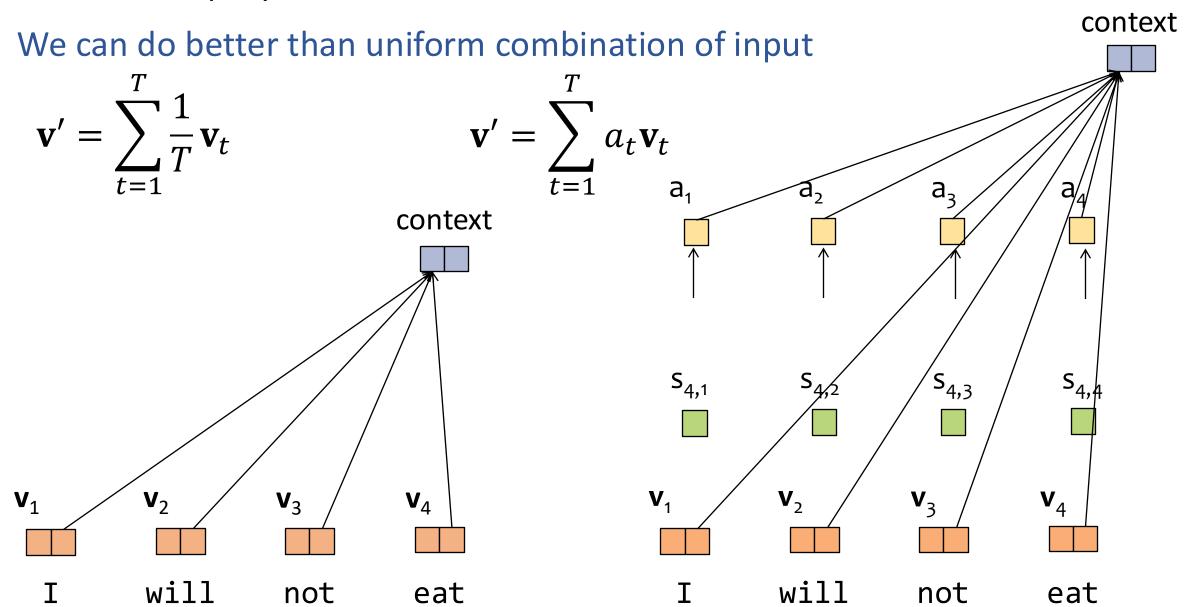


MinGPT Pico: Output embedded space - 3 heads



MinGPT Pico: Attention Weights – 3 layers, 3 heads

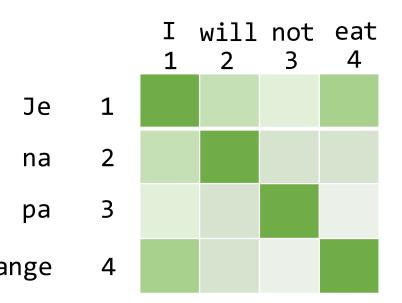


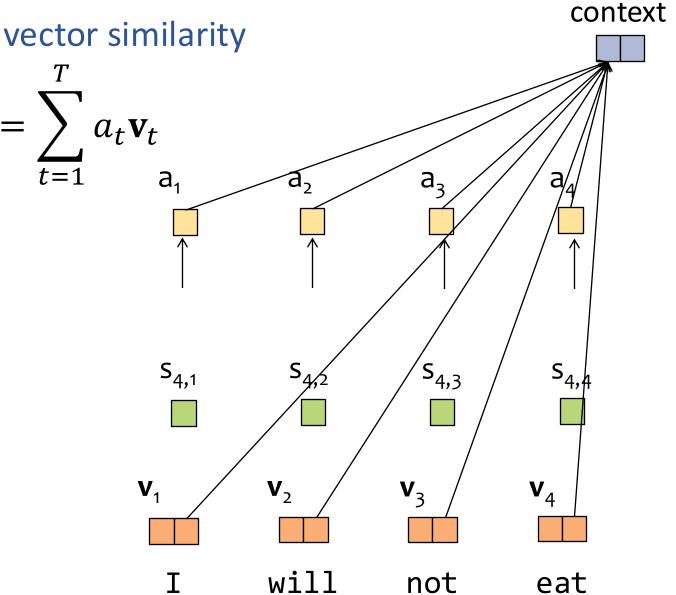


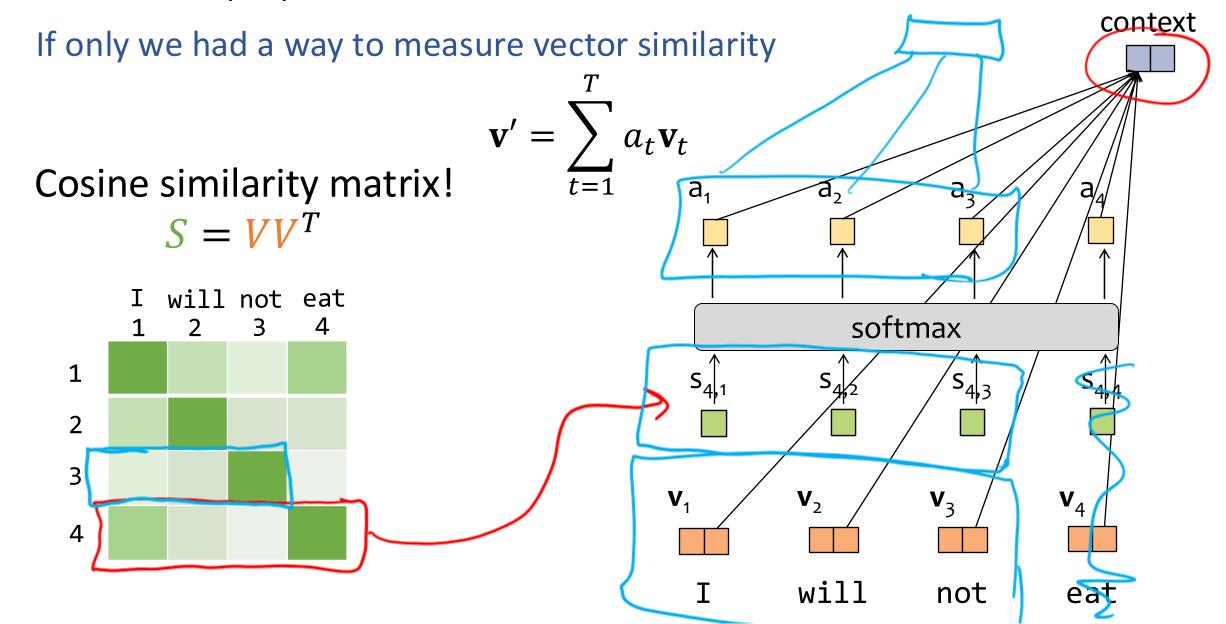
If only we had a way to measure vector similarity

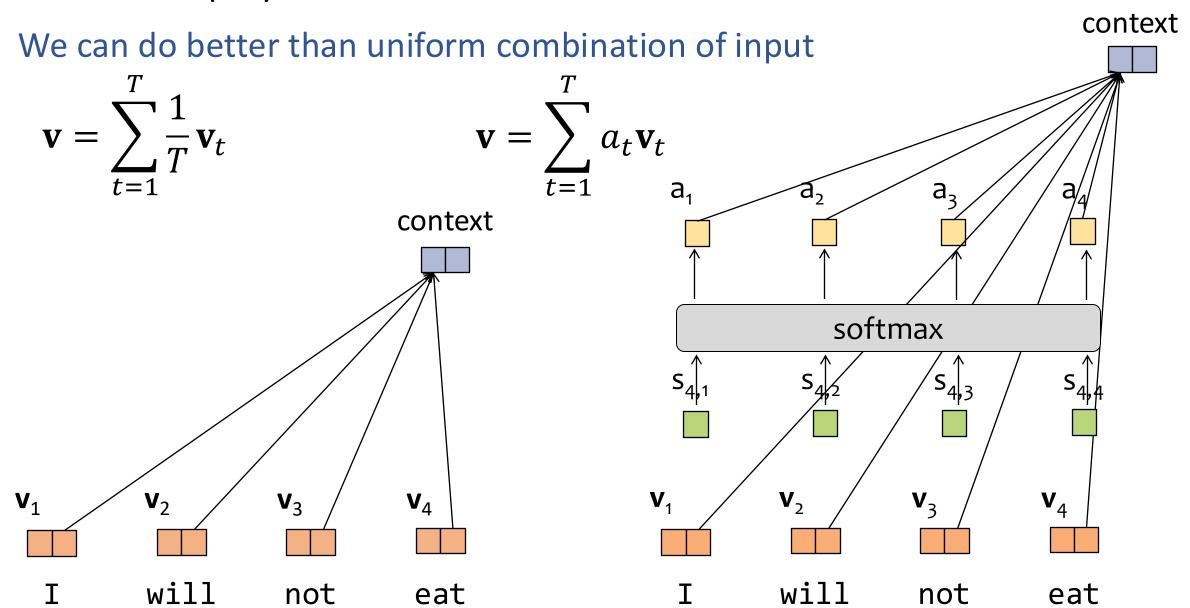
Cosine similarity matrix!

$$S = VV^T$$









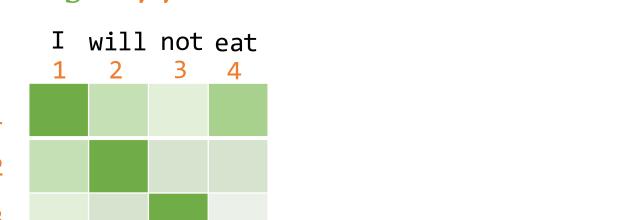
But...there is an issue with just doing VV^T \otimes

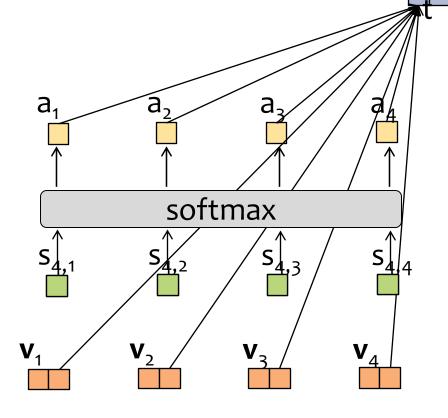
We're really just comparing input to input

→ Symmetric with strong diagonal 😊

$$S = VV^T$$

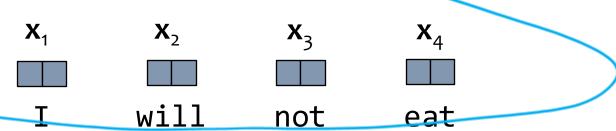
4



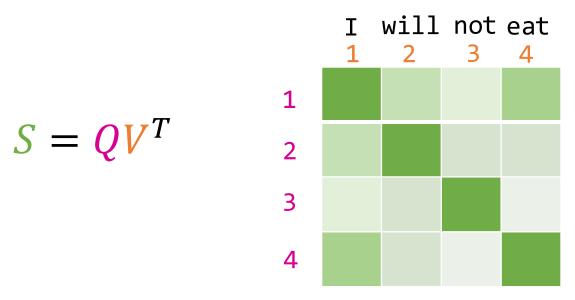


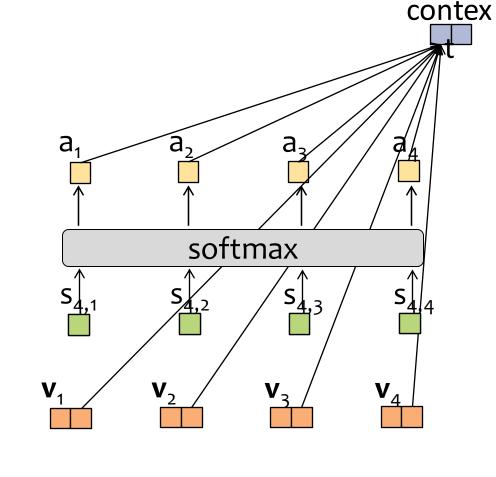
contex

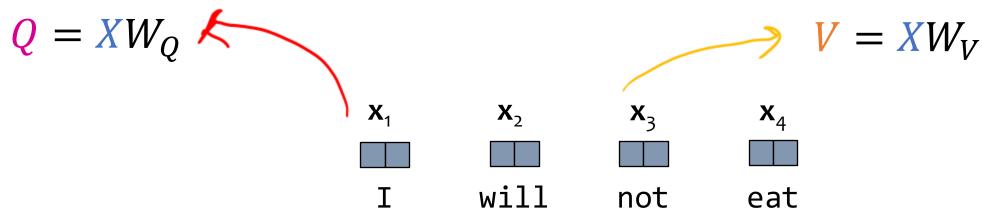
$$V = XW_V$$



Instead learn a query vectors \mathbf{q}_t to represent the output



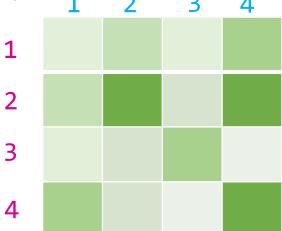




Instead learn a query vectors \mathbf{q}_t to represent the output

(And also \mathbf{k}_t for the input)

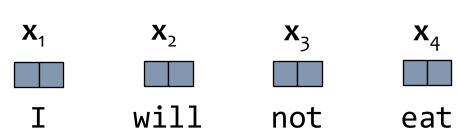
$$S = \frac{QK^T}{\sqrt{d_k}}$$

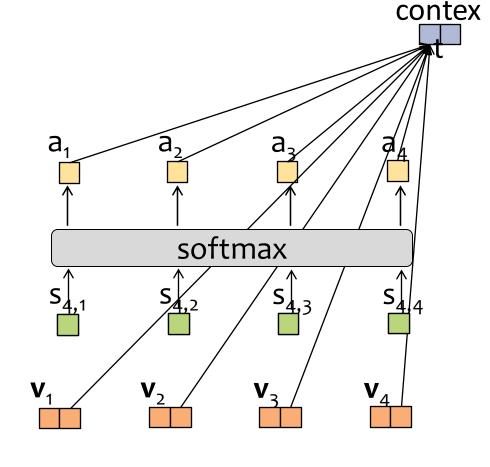


will not eat

$$Q = XW_O$$

$$K = XW_K$$





$$V = XW_V$$

Instead learn a query vectors \mathbf{q}_t to represent the output

(And also \mathbf{k}_t for the input)

Attention:

Query, Key, Value

$$Q = XW_Q$$

$$S = QK^T/\sqrt{d_k}$$

$$K = XW_K$$

$$V = XW_V$$