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Natural Language Processing (NLP)
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N-gram Language Models

Word Embedding Language Models



Practical Deep Learning



Deep learning issues and Fixes
Issues

▪ Numerical Stability

▪ Vanishing/Exploding gradients

▪ Overfitting

Andrew Ng videos on Hyperparameter Tuning!

Fixes

▪ Input normalization

▪ Weight initialization

▪ Batch normalization

▪ Adam

▪ Exponential moving average

▪ Momentum

▪ RMSprop

▪ Learning rate decay

▪ Skip connections

▪ Dropout

https://youtube.com/playlist?list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&si=i2lBXNVrBAdgEiYt
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Fixes

▪ Input normalization

▪ Weight initialization

▪ Batch normalization

▪ Adam

▪ Exponential moving average

▪ Momentum

▪ RMSprop

▪ Learning rate decay

▪ Skip connections

▪ Dropout

Deep learning issues and Fixes
Issues

▪ Numerical Stability

▪ Vanishing/Exploding gradients

▪ Overfitting



Natural Language Processing (NLP)



Language is Hard
Emphasis can drastically change meaning

I didn’t eat your dog



NLP Tasks Examples
How many different NLP Input/Output agents can you think of?

Input Task Output



NLP Task: Sentiment Analysis
Sentiment analysis demo

https://text2data.com/Demo

“I recommend that you find something better to do with your time”

https://text2data.com/Demo


Text Features



Text Features
SPAM Classification



Text Features
SPAM Classification



Text Features
Bag of words: Vector of length the size of the vocabulary

Two options

▪ Word occurrence: Binary: does the word exist (at least once) or not

▪ Word histogram: Integer: count of how many times the word appears



Text Features
Predicting Rating from Written Movie Review



Text Features: Tokenization
Text encoding: token → index within vocabulary

What is our "vocabulary", i.e., what are our tokens?

▪ Characters

▪ Byte pair encoding

▪ Words and punctuation

I am Sam. I am 

Sam. Sam I am. 

That Sam-I-am. 

That Sam-I-am!

Corpus
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Text Features : Tokenization
Text encoding: token → index within vocabulary

Byte pair encoding (BPE)
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Text Feature Learning
Feature learning

Word to Vec

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/tutorial.html

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/tutorial.html


Text Feature Learning
Word embeddings



Feature Engineering vs Feature Learning
Feature engineering

▪ Humans decide what the features may be useful

▪ Humans implement feature extraction algorithms

Feature learning

▪ Humans choose data and performance measure 

▪ Humans decide on structure/algorithm to learn features

▪ Features are just intermediate values between input and output

▪ Structure defines number of feature values

▪ Allow machine to map data to feature values as needed



Feature Engineering vs Feature Learning
Feature engineering

▪ Humans decide what the features may be useful

▪ Leverage human experience for that input

▪ Consider data available

▪ Humans implement feature extraction algorithms

▪ Leverage data and compute power

Pro: Human interpretable features → trained models easier to explain

Con: Features may not be sufficient for effective training

Con: Humans likely needed to adapt to new tasks

Pro: Less likely to overfit as humans have selected impactful features



Feature Engineering vs Feature Learning
Feature learning

▪ Humans choose data and performance measure 

▪ Humans decide on structure/algorithm to learn features

▪ Features are just intermediate values between input and output

▪ Structure defines number of feature values

▪ Allow machine to map data to feature values as needed

Con: Humans cannot interpret features → trained models unexplainable

Pro: Allow machine to search larger space for efficient features

Pro: Humans may not be needed to adapt to new tasks (just new/more data)

Con: Can overfit to data as there is no human logic in feature definition



Natural Language Processing (NLP)

Practical Deep Learning

NLP Intro

Feature Engineering/Learning for Text

N-gram Language Models

Word Embedding Language Models



Language Models



Language Models
N-grams



N-gram Exercise



The Chain Rule of Probability

Question: How can we define a probability distribution over a 
sequence of length T?

31

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2, w1)
      p(w5 | w4, w3, w2, w1)
      p(w6 | w5, w4, w3, w2, w1)
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n-Gram Language Model

Question: How can we define a probability distribution over a 
sequence of length T?
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p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2)
      p(w4 | w3)
      p(w5 | w4)
      p(w6 | w5)

The bat made nightnoise at
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n-Gram Model (n=2)



n-Gram Language Model

Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at
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n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)



N-gram Training
Where do the n-gram probabilities come from?

Google n-grams demo

https://books.google.com/ngrams/graph?content=Albert+Einstein%2CSherlock+Holmes%2CFrankenstein&year_start=2010&year_end=2019&corpus=26&smoothing=3


N-gram Training
N-gram probabilities

Vocabulary size: 30,000



N-gram Training
Self-supervised

Example: Jane Austen, Pride and Prejudice

Vanity and pride are different things, though the words are often used 
synonymously. A person may be proud without being vain. Pride relates 
more to our opinion of ourselves, vanity to what we would have others 
think of us.



N-gram Training
Self-supervised learning (auto-regressive)

Example: Jane Austen, Pride and Prejudice

Vanity and pride are different things, though the words are often used 
synonymously. A person may be proud without being vain. Pride relates 
more to our opinion of ourselves, vanity to what we would have others 
think of us.



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat

41

The bat made nightnoise atSTART



N-gram Examples
Random samples from language model trained on Shakespeare:

n=1: “in as , stands gods revenge ! france pitch good in fair hoist an what 
fair shallow-rooted , . that with wherefore it what a as your . , powers 

course which thee dalliance all”

n=2: “look you may i have given them to the dank here to the jaws of tune 
of great difference of ladies . o that did contemn what of ear is shorter 

time ; yet seems to”

n=3: “believe , they all confess that you withhold his levied host , having 
brought the fatal bowels of the pope ! ' and that this distemper'd 

messenger of heaven , since thou deniest the gentle desdemona ,”

n=7: “so express'd : but what of that ? 'twere good you do so much for 
charity . i cannot find it ; 'tis not in the bond . you , merchant , have 

you any thing to say ? but little”

This is starting to look a lot like Shakespeare… because it is Shakespeare

42Slide: CMU, Zico Kolter
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