

10-315 Introduction to ML

Probabilistic Models: MAP

Instructor: Pat Virtue

Course Feedback

Going well

- Recitation
- Pre-reading
- Homework
- Lecture Polls

Room for improvement

- Lecture slide ink handwritting
- Connecting lecture to other components
- Lecture detail
 - Not enough
 - Too much

Plan

Today

- MLE
 - Linear Regression
- Probability Motivation
- MAP
 - ML Applications of Bayes Rule
 - Linear Regression

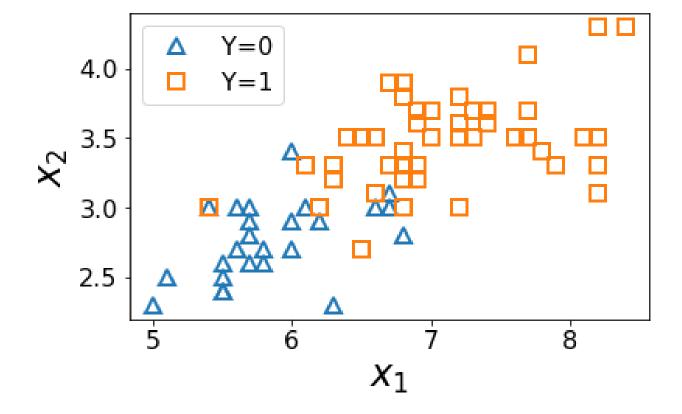
Probability Motivation

Empirical Risk Minimization vs MLE/MAP

We seem to be redoing a lot of work? ...well, we are. But there is a reason

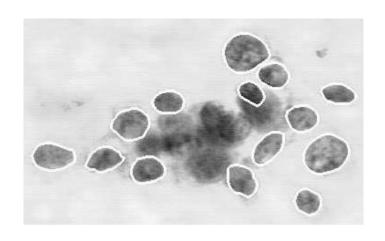
Why Probabilistic Models?

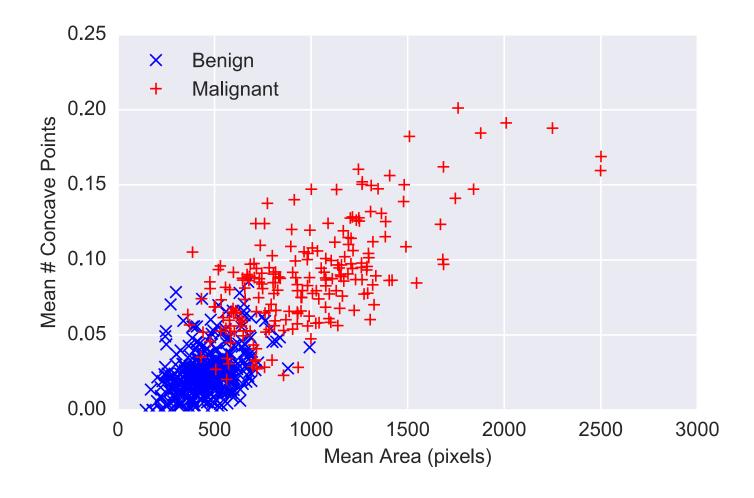
Iris Data



Why Probabilistic Models?

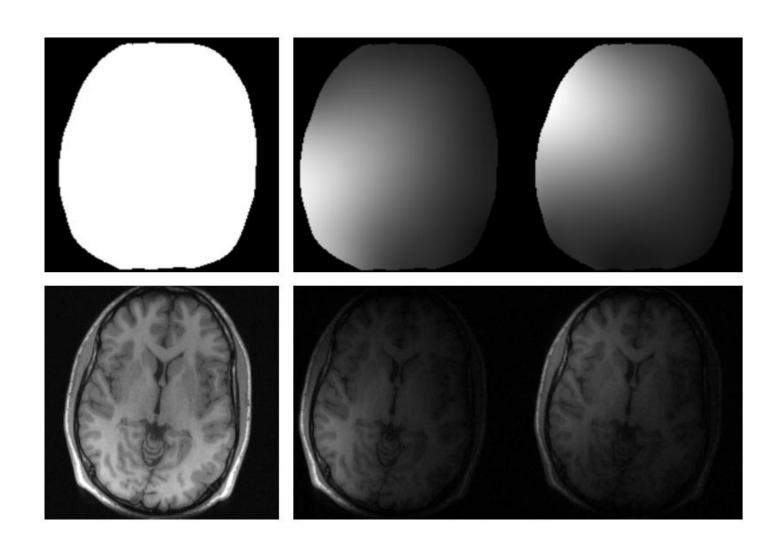
Breast Cancer Diagnosis





Why Probabilistic Models?

MRI Image Reconstruction



Catagorical Gaussian Generative Model

timating parameters

$$Y \sim Categorical(\pi_1, \pi_2, \pi_3)$$

$$X_{Y=k} \sim \mathcal{N}(\mu_k, \sigma_k^2).$$

$$\mathcal{D} = \{x^{(i)}, y^{(i)}\}_{i=1}^{N}$$

$$\frac{\partial \mathcal{L}}{\partial x} = 0 \quad \begin{cases} y_{1}(i) \\ y_{2}(i) \\ y_{3}(i) \end{cases}$$

Autoencoders

Language Models

ML Applications of Bayes Rule

Bayes Rule

$$p(a \mid b) = \frac{p(b \mid a) p(a)}{p(b)}$$

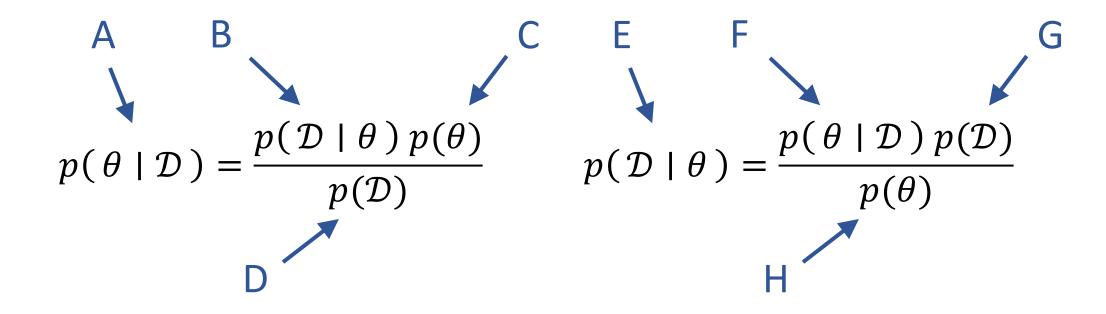
$$p(b \mid a) = \frac{p(a \mid b) p(b)}{p(a)}$$

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})} \qquad p(\mathcal{D} \mid \theta) = \frac{p(\theta \mid \mathcal{D}) p(\mathcal{D})}{p(\theta)}$$

Poll 1

Which of these terms is the likelihood?

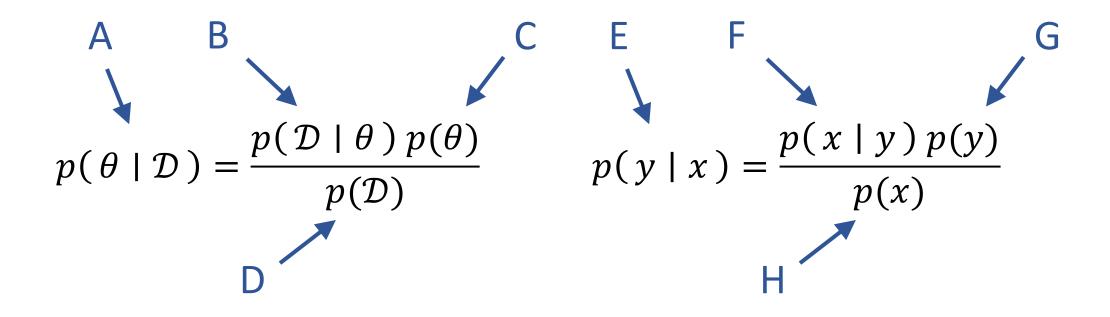
Select all that apply



Poll

Which of these terms is the likelihood?

Select all that apply



Bayes Rule

Terminology

Posterior Likelihood Prior

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})}$$

Two Applications of Bayes Rule

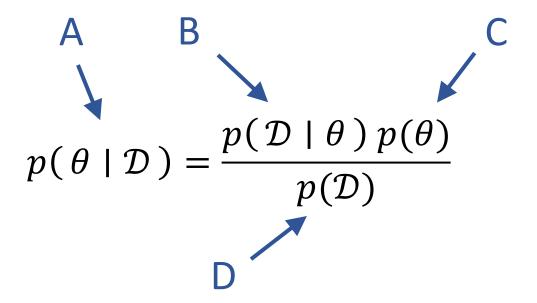
$$p(a \mid b) = \frac{p(b \mid a) p(a)}{p(b)}$$

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})} \qquad p(y \mid x) = \frac{p(x \mid y) p(y)}{p(x)}$$

MLE and MAP

Poll 2

Where do we plug in the pdf that we used for MLE, e.g., $f(x) = \lambda e^{-\lambda x}$?



MLE and MAP

Maximum likelihood estimation

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} \, p(\mathcal{D} \mid \theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{N} p(y^{(i)} \mid \theta)$$

Maximum a prosteriori estimation

$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}} p(\theta \mid \mathcal{D})$$

$$= \underset{\theta}{\operatorname{argmax}} \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}$$

$$= \underset{\theta}{\operatorname{argmax}} \frac{\prod_{i=1}^{N} p(y^{(i)} \mid \theta)p(\theta)}{p(\mathcal{D})}$$

$$= \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{N} p(y^{(i)} \mid \theta) p(\theta)$$

Recipe for Estimation

MLE

- 1. Formulate the likelihood, $p(\mathcal{D} \mid \theta)$
- 2. Set objective $J(\theta)$ equal to negative log of the likelihood $J(\theta) = -\log p(\mathcal{D} \mid \theta)$
- 3. Compute derivative of objective, $\partial J/\partial \theta$
- 4. Find $\hat{\theta}$, either
 - a. Set derivate equal to zero and solve for θ
 - b. Use (stochastic) gradient descent to step towards better θ

Recipe for Estimation

MAP

- 1. Formulate the likelihood times the prior, $p(\mathcal{D} \mid \theta)p(\theta)$
- 2. Set objective $J(\theta)$ equal to negative log of the likelihood times the prior $J(\theta) = -\log[p(\mathcal{D} \mid \theta)p(\theta)]$
- 3. Compute derivative of objective, $\partial J/\partial \theta$
- 4. Find $\hat{\theta}$, either
 - a. Set derivate equal to zero and solve for θ
 - b. Use (stochastic) gradient descent to step towards better θ

Coin Flipping Example

Trick coin from pre-reading

Initially: no information about the coin, so we just default to a uniform belief about the Bernoulli parameter ϕ

Invoice: Weighted Coins		Customer: Torch Tricks, Inc.	
<u> Item</u>	Quantity	Cointype, &	p(\$\phi)_
0% Heads Coin	40/200	0.0	0,20
20% Heads Coin	50/200	0,2	0,25
50% Heads Coin	80/100	0.5	0.40
80% Heads Coin	10/200	0.8	0.05
100% Heads Coin	20/200	1.0	0.10
Total: 200			1.00

Poll 3

As we collect more and more data (more coin flips), will the peak of the likelihood curve increase or decrease?

- A) Increase
- B) Decrease
- C) I have no idea

Coin Flipping Example

Trick coin from pre-reading

Suppose we discover information about the distribution of trick coin types? How can we use this information both before and after flipping coins?

Invoice: Weighted Coins		Customer: Torch Tricks, Inc.	
<u>Item</u> ○ 0% Heads Coin	<u>Quantity</u> 40/200	Cointype, \$	p(\$\phi) 0,20
20% Heads Coin	50/200	0,2	0,25
50% Heads Coin	80/100	0.5	0.40
80% Heads Coin	10/200	0.8	0,05
100% Heads Coin	20/200	1.0	0.10
Total: 200			1.00

Coin Flipping Example

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} p(\theta) \prod_{i=1}^{n} p(y^{(i)} | \theta)$$

Trick coin from pre-reading

Suppose we discover information about the distribution of trick coin types? How can we use this information both before and after flipping coins?

\mathcal{D}	$p(\phi) \prod_{i=1}^{N} p(y^{(i)} \mid \phi)$
{}	$p(\phi)$
$\{H\}$	$p(\phi) \phi$
$\{H,T\}$	$p(\phi) \ \phi(1-\phi)$
$\{H,T,T\}$	$p(\phi) \ \phi(1-\phi)(1-\phi)$

Poll 4

$$p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta) p(\theta)$$
 posterior \propto likelihood · prior $p(\theta \mid \mathcal{D}) \propto \prod p(y^{(i)} \mid \theta) p(\theta)$

As the number of data points increases, which of the following are true? Select ALL that apply

- A. The MAP estimate approaches the MLE estimate
- B. The posterior distribution approaches the prior distribution
- C. The likelihood distribution approaches the prior distribution
- D. The posterior distribution approaches the likelihood distribution
- E. The likelihood has a lower impact on the posterior
- F. The prior has a lower impact on the posterior

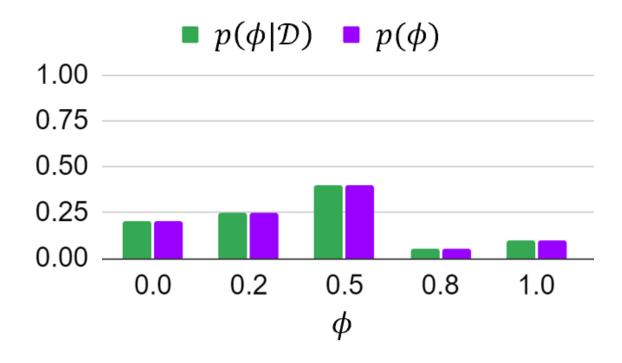
MAP as Data Increases

Given the ordered sequence of coin flip outcomes:

$$p(\mathcal{D} | \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} | \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

What happens as we flip more coins?

$$N = 0$$
: $\mathcal{D} = \{\}$



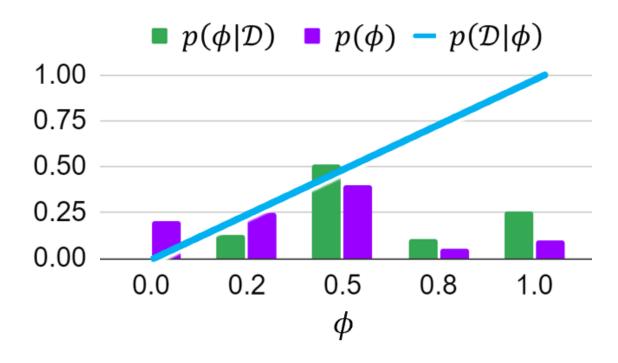
MAP as Data Increases

Given the ordered sequence of coin flip outcomes:

$$p(\mathcal{D} | \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} | \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

What happens as we flip more coins?

$$N = 0$$
: $\mathcal{D} = \{H\}$



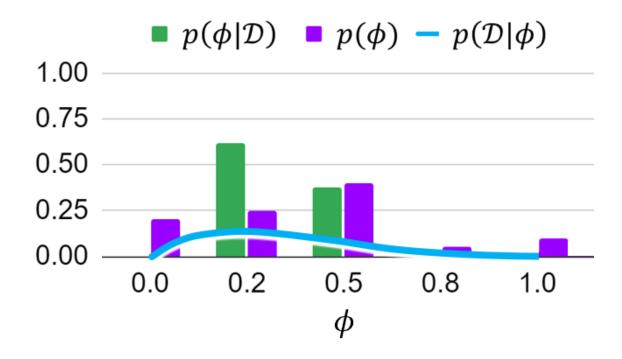
MAP as Data Increases

Given the ordered sequence of coin flip outcomes:

$$p(\mathcal{D} \mid \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} \mid \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

What happens as we flip more coins?

$$N = 0$$
: $\mathcal{D} = \{H, T, T, T, T\}$



Prior Distributions for MAP

If the prior $p(\theta)$ is uniform, then MLE and MAP are the same!

$$p(\mathcal{D} \mid \phi) p(\phi) = \prod_{i} p(y^{(i)} \mid \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

Prior Distributions for MAP

If the prior $p(\theta)$ is uniform, then MLE and MAP are the same!

$$p(\mathcal{D} \mid \phi) p(\phi) = \prod_{i} p(y^{(i)} \mid \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

Conjugate priors: when the prior and the posterior distributions are in the same family

Bernoulli likelihood with a **Beta prior** has **Beta posterior**

Categorical likelihood with a <u>Dirichlet prior</u> has <u>Dirichlet posterior</u>

Gaussian likelihood with a Gaussian prior has Gaussian posterior

https://www.desmos.com/calculator/kr7m2m6cf7

Prior Distributions for MAP

If the prior $p(\theta)$ is uniform, then MLE and MAP are the same!

$$p(\mathcal{D} \mid \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} \mid \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

Conjugate priors: when the prior and the posterior distributions are in the same family

Bernoulli likelihood with a **Beta prior** has **Beta posterior**

$$\phi^{N_{y=1}}(1-\phi)^{N_{y=0}} Beta(\alpha,\beta) = Beta(\alpha+N_{y=1},\beta+N_{y=0})$$

Tip: Think of the Beta distribution as having $\alpha-1$ heads and $\beta-1$ tails

https://www.desmos.com/calculator/kr7m2m6cf7

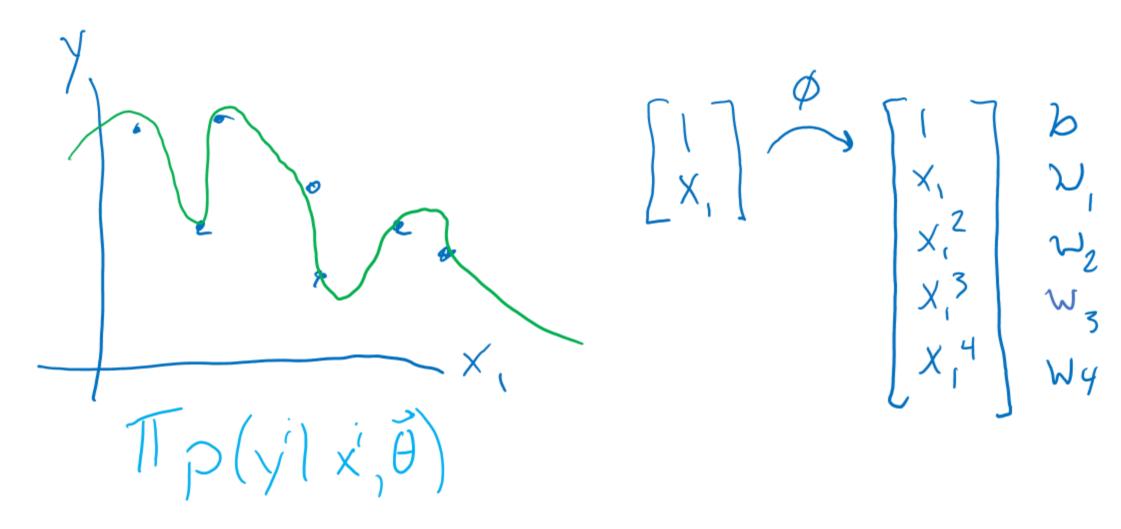
M(C)LE for Linear Regression

Probabilistic interpretation of linear regression

$$\hat{\theta}_{MLE} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i}^{N} p(y^{(i)} \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta})$$

MAP for Linear Regression

What assumptions are we making about our parameters?



MAP for Linear Regression

Recall prereading example of Gausssian prior for Gaussian likelihood

$$p(\mu \mid \mathcal{D}) \propto p(\mu) \prod_{i=1}^{4} p(x^{(i)} \mid \mu)$$

$$= \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{1}{2\tau^2}(\mu - \nu)^2} \prod_{i=1}^{4} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x^{(i)} - \mu)^2}$$

Linear Regression with Gaussian prior on weights

M(C)LE for Linear Regression

$$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(z-\mu)^2}{2\sigma^2}}$$

Probabilistic interpretation of linear regression
$$\mathcal{L}(\theta; \mathcal{D}) = \prod_{i}^{N} p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$\mathcal{L}(\theta; \mathcal{D}) = \sum_{i}^{N} p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$\sum_{i=1}^{N} -\log\sqrt{2\pi\sigma^2} - \frac{\left(z^{(i)} - \mu\right)^2}{2\pi\sigma^2}$$

$$\mathcal{U}^{(i)} \partial^{\top} \chi^{(i)}$$

$$\mathcal{O}^{z} = 1$$

$$\frac{1}{200} \sum_{i \leq l} \left(y^{(i)} - \theta^T x^{(i)} \right)^2$$

$$\frac{1}{N} \underset{(i)}{\overset{N}{\leq}} \left(\chi^{(i)} - \theta^T \chi^{(i)} \right)^2$$

Regularization and MAP

Linear Regression

$$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(z-\mu)^2}{2\sigma^2}}$$

Regularization and MAP

Linear Regression