
10-315
Introduction to ML

Probabilistic Models:
MAP

Instructor: Pat Virtue



Course Feedback

Going well
▪ Recitation
▪ Pre-reading
▪ Homework
▪ Lecture Polls

Room for improvement
▪ Lecture slide ink handwritting
▪ Connecting lecture to other components
▪ Lecture detail

▪ Not enough
▪ Too much
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Plan

Today
▪ MLE

▪ Linear Regression
▪ Probability Motivation
▪ MAP

▪ ML Applications of Bayes Rule
▪ Linear Regression
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Probability Motivation



Empirical Risk Minimization vs MLE/MAP
We seem to be redoing a lot of work? ...well, we are. But there is a reason



Why Probabilistic Models?
Iris Data



Why Probabilistic Models?
Breast Cancer Diagnosis



Why Probabilistic Models?
MRI Image Reconstruction



Categorical Gaussian Generative Model
Estimating parameters

𝑌 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝜋1, 𝜋2, 𝜋3  

𝑋𝑌=𝑘  ~ 𝒩(𝜇𝑘 , 𝜎𝑘
2).

𝒟 = 𝑥 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 



Autoencoders



Language Models



ML Applications of Bayes Rule



𝑝 𝜃 𝒟 =
𝑝 𝒟 𝜃 𝑝(𝜃)

𝑝(𝒟)
𝑝 𝒟 𝜃 =

𝑝 𝜃 𝒟 𝑝(𝒟)

𝑝(𝜃)

Bayes Rule

𝑝 𝑎 𝑏 =
𝑝 𝑏 𝑎 𝑝(𝑎)

𝑝(𝑏)
𝑝 𝑏 𝑎 =

𝑝 𝑎 𝑏 𝑝(𝑏)

𝑝(𝑎)



Poll 1
Which of these terms is the likelihood?

Select all that apply

BA C

D

FE G

H

𝑝 𝜃 𝒟 =
𝑝 𝒟 𝜃 𝑝(𝜃)

𝑝(𝒟)
𝑝 𝒟 𝜃 =

𝑝 𝜃 𝒟 𝑝(𝒟)

𝑝(𝜃)



Poll
Which of these terms is the likelihood?

Select all that apply

BA C

D

FE G

H

𝑝 𝜃 𝒟 =
𝑝 𝒟 𝜃 𝑝(𝜃)

𝑝(𝒟)
𝑝 𝑦 𝑥 =

𝑝 𝑥 𝑦 𝑝(𝑦)

𝑝(𝑥)



Bayes Rule
Terminology

Posterior      Likelihood      Prior

𝑝 𝜃 𝒟 =
𝑝 𝒟 𝜃 𝑝(𝜃)

𝑝(𝒟)



Two Applications of Bayes Rule

𝑝 𝜃 𝒟 =
𝑝 𝒟 𝜃 𝑝(𝜃)

𝑝(𝒟)
𝑝 𝑦 𝑥 =

𝑝 𝑥 𝑦 𝑝(𝑦)

𝑝(𝑥)

𝑝 𝑎 𝑏 =
𝑝 𝑏 𝑎 𝑝(𝑎)

𝑝(𝑏)



MLE and MAP



Poll 2

Where do we plug in the pdf that we used for MLE, e.g., 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥?

BA C

D

𝑝 𝜃 𝒟 =
𝑝 𝒟 𝜃 𝑝(𝜃)

𝑝(𝒟)



MLE and MAP
Maximum likelihood estimation

𝜃𝑀𝐿𝐸 = argmax
𝜃

𝑝(𝒟 ∣ 𝜃) 

           = argmax
𝜃

ς𝑖=1
𝑁 𝑝(𝑦 𝑖 ∣ 𝜃) 

Maximum a prosteriori estimation

𝜃𝑀𝐴𝑃 = argmax
𝜃

𝑝(𝜃 ∣ 𝒟) 

           = argmax
𝜃

𝑝(𝒟 ∣ 𝜃)𝑝(𝜃)

𝑝(𝒟)
 

           = argmax
𝜃

ς𝑖=1
𝑁 𝑝(𝑦 𝑖 ∣𝜃)𝑝(𝜃)

𝑝(𝒟)
 

           = argmax
𝜃

 ς𝑖=1
𝑁 𝑝(𝑦 𝑖 ∣ 𝜃) 𝑝(𝜃)



Recipe for Estimation
MLE

1. Formulate the likelihood, 𝑝(𝒟 ∣ 𝜃)

2. Set objective 𝐽(𝜃) equal to negative log of the likelihood

 J 𝜃 = − log 𝑝 𝒟 𝜃

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



Recipe for Estimation
MAP

1. Formulate the likelihood times the prior, 𝑝 𝒟 𝜃 𝑝(𝜃)

2. Set objective 𝐽(𝜃) equal to negative log of the likelihood times the prior

 J 𝜃 = − log 𝑝 𝒟 𝜃 𝑝(𝜃)

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



Coin Flipping Example
Trick coin from pre-reading

Initially: no information about the coin, so we just default to a uniform 
belief about the Bernoulli parameter 𝜙



Poll 3

As we collect more and more data (more coin flips), will the peak of the 
likelihood curve increase or decrease?

A) Increase

B) Decrease

C) I have no idea



Coin Flipping Example
Trick coin from pre-reading

Suppose we discover information about the distribution of trick coin types? 
How can we use this information both before and after flipping coins?



Coin Flipping Example
Trick coin from pre-reading

Suppose we discover information about the distribution of trick coin types? 
How can we use this information both before and after flipping coins?

መ𝜃𝑀𝐴𝑃 = argmax
𝜃

𝑝 𝜃 ෑ

𝑖=1

𝑁

𝑝 𝑦(𝑖) 𝜃



Poll 4

𝑝(𝜃 ∣ 𝒟) ∝ 𝑝(𝒟 𝜃 𝑝(𝜃)

𝑝(𝜃 ∣ 𝒟) ∝ ς 𝑝(𝑦 𝑖 𝜃  𝑝 𝜃

As the number of data points increases, which of the following are true?

Select ALL that apply
A. The MAP estimate approaches the MLE estimate

B. The posterior distribution approaches the prior distribution

C. The likelihood distribution approaches the prior distribution

D. The posterior distribution approaches the likelihood distribution

E. The likelihood has a lower impact on the posterior

F. The prior has a lower impact on the posterior

posterior ∝ likelihood ⋅ prior



MAP as Data Increases
Given the ordered sequence of coin flip outcomes:

p 𝒟 𝜙 𝑝(𝜙) = ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 𝑝 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 𝑝(𝜙)

What happens as we flip more coins?

𝑁 = 0:  𝒟 = {} 



MAP as Data Increases
Given the ordered sequence of coin flip outcomes:

p 𝒟 𝜙 𝑝(𝜙) = ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 𝑝 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 𝑝(𝜙)

What happens as we flip more coins?

𝑁 = 0:  𝒟 = {𝐻} 



MAP as Data Increases
Given the ordered sequence of coin flip outcomes:

p 𝒟 𝜙 𝑝(𝜙) = ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 𝑝 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 𝑝(𝜙)

What happens as we flip more coins?

𝑁 = 0:  𝒟 = {𝐻, 𝑇, 𝑇, 𝑇, 𝑇} 



Prior Distributions for MAP
If the prior 𝑝(𝜃) is uniform, then MLE and MAP are the same!

p 𝒟 𝜙 𝑝(𝜙) = ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 𝑝 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 𝑝(𝜙)

https://www.desmos.com/calculator/kr7m2m6cf7

https://www.desmos.com/calculator/kr7m2m6cf7


Prior Distributions for MAP
If the prior 𝑝(𝜃) is uniform, then MLE and MAP are the same!

p 𝒟 𝜙 𝑝(𝜙) = ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 𝑝 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 𝑝(𝜙)

Conjugate priors: when the prior and the posterior distributions are in the 
same family

Bernoulli likelihood with a Beta prior has Beta posterior

Categorical likelihood with a Dirichlet prior has Dirichlet posterior

Gaussian likelihood with a Gaussian prior has Gaussian posterior

https://www.desmos.com/calculator/kr7m2m6cf7

https://www.desmos.com/calculator/kr7m2m6cf7


Prior Distributions for MAP
If the prior 𝑝(𝜃) is uniform, then MLE and MAP are the same!

p 𝒟 𝜙 𝑝(𝜙) = ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 𝑝 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 𝑝(𝜙)

Conjugate priors: when the prior and the posterior distributions are in the 
same family

Bernoulli likelihood with a Beta prior has Beta posterior

 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0  𝐵𝑒𝑡𝑎 𝛼, 𝛽 = 𝐵𝑒𝑡𝑎(𝛼 + 𝑁𝑦=1, 𝛽 + 𝑁𝑦=0) 

Tip: Think of the Beta distribution as having 𝛼 − 1 heads and 𝛽 − 1 tails

https://www.desmos.com/calculator/kr7m2m6cf7

https://www.desmos.com/calculator/kr7m2m6cf7


M(C)LE for Linear Regression
Probabilistic interpretation of linear regression

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝒙 𝑖 , 𝜽



MAP for Linear Regression
What assumptions are we making about our parameters?



MAP for Linear Regression
Recall prereading example of Gausssian prior for Gaussian likelihood

Linear Regression with Gaussian prior on weights



M(C)LE for Linear Regression
Probabilistic interpretation of linear regression

𝑓 𝑧 =
1

2𝜋𝜎2
𝑒

− 𝑧−𝜇 2

2𝜎2

ℒ 𝜃; 𝒟 = ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝐱 𝑖 , 𝜽

ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒

−
𝑧(𝑖)−𝜇

2

2𝜎2

෍

𝑖=1

𝑁

−log 2𝜋𝜎2 −
𝑧(𝑖) − 𝜇

2

2𝜎2



Regularization and MAP
Linear Regression

𝑓 𝑧 =
1

2𝜋𝜎2
𝑒

− 𝑧−𝜇 2

2𝜎2



Regularization and MAP
Linear Regression
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