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MLE and
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of Machine Learning

Instructor: Pat Virtue



Poll 1
Course feedback link on Ed

Are you finished with the course feedback form?

A. Yes

B. No

C. Still working on it



Likelihood
Pre-reading



Likelihood
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.
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value 𝑦 given the distribution parameters, 𝜽.

Grades

Gaussian PDF: 𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒

−
𝑦−𝜇 2

2𝜎2

 



Likelihood
Trick coin: comes up heads only 1/3 of the time

1 flip:   H  probability:  
1

3

2 flips:  H,H  probability:  
1

3
⋅

1

3
 

3 flips:  H,H,T probability:  
1

3
⋅

1

3
⋅ 1 −

1

3

But why can we just multiply these?

 



Likelihood and i.i.d
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.

i.i.d.: Independent and identically distributed

 



Likelihood and Maximum Likelihood Estimation
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many 
different values of the parameters)

 

Maximum Likelihood Estimation (MLE): Find the parameter value that 
maximizes the likelihood.



From Probability to Statistics



MLE – Logistic Regression



Exercises

Calculate the probability of these event sequences happening

1. Coin
a) Fair:
 {H, H, T, H}

b) Biased, 𝜙 = 3/4 heads
 {H, H, T, H}

2. 4-sided die with sides: A, B, C, D
a) Fair:
 {A, B, D, D, A}

b) Weighted, [𝜙𝐴, 𝜙𝐵 , 𝜙𝐶 , 𝜙𝐷]  =  [1/10,  2/10,  3/10,  4/10]
 {A, B, D, D, A}



Bernoulli Likelihood
Bernoulli distribution:

 𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙   𝑝 𝑦 ∣ 𝜙 = ቊ
𝜙, 𝑦 = 1
1 − 𝜙, 𝑦 = 0

What is the likelihood for three i.i.d. samples, given parameter 𝜙:

 𝒟 = {𝑦 1 = 1, 𝑦 2 = 1, 𝑦 3 = 0} 

 ς𝑖=1
𝑁 𝑝(𝑌 = 𝑦 𝑖 ∣ 𝜙) 

 = 𝜙 ⋅ 𝜙 ⋅ 1 − 𝜙  
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What is the likelihood for three i.i.d. samples, given parameter 𝜙:

 𝒟 = {𝑦 1 = 1, 𝑦 2 = 1, 𝑦 3 = 0} 

 ς𝑖=1
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Estimating Parameters with Likelihood
We model the outcome of a single mysterious weighted-coin flip as a 
Bernoulli random variable:

𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙

𝑝 𝑦 ∣ 𝜙 = ቊ
𝜙, 𝑦 = 1 (ℎ𝑒𝑎𝑑𝑠)

1 − 𝜙, 𝑦 = 0 𝑡𝑎𝑖𝑙𝑠

Given the ordered sequence of coin flip outcomes:
1, 0, 1, 1

What is the estimate of parameter ෠𝜙?

𝑝 𝐷 𝜙 = 𝜙 ⋅ 𝜙 ⋅ 1 − 𝜙 ⋅ 𝜙 

                   = 𝜙3 1 − 𝜙 1 

https://www.desmos.com/calculator/kr7m2m6cf7

https://www.desmos.com/calculator/kr7m2m6cf7


MLE as Data Increases
Given the ordered sequence of coin flip outcomes:

1, 0, 1, 1

p(𝒟 ∣ 𝜙) = ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0

What happens as we flip more coins?

https://www.desmos.com/calculator/kr7m2m6cf7

https://www.desmos.com/calculator/kr7m2m6cf7


MLE for Categorical



M(C)LE for Logistic Regression
Learn to predict if a patient has cancer (𝑌 = 1) or not (𝑌 = 0) given the 
input of just one test results, 𝑋𝐴 and 𝑋𝐵

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝐱 𝑖 , 𝜽



Recipe for Estimation
MLE

1. Formulate the likelihood, 𝑝(𝒟 ∣ 𝜃)

2. Set objective 𝐽(𝜃) equal to negative log of likelihood

 J 𝜃 = − log 𝑝 𝒟 𝜃

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



M(C)LE for Multi-class Logistic Regression
Learn to predict if probability of output belonging to class 𝑘, 𝑌𝑘  , given 
input 𝑋, 𝑃(𝑌𝑘 = 1 ∣ 𝑋, 𝜽1, … , 𝜽𝐾)



M(C)LE for Multi-class Logistic Regression
Learn to predict if probability of output belonging to class 𝑘, 𝑌𝑘  , given 
input 𝑋, 𝑃(𝑌𝑘 = 1 ∣ 𝑋, 𝜽1, … , 𝜽𝐾)

ℒ Θ; 𝒟 = ෑ

𝑖

𝑁

ෑ

𝑘

𝐾
𝑒𝜽𝑘

𝑇𝐱
𝑖

σ𝑙=1
𝐾 𝑒𝜽𝑙

𝑇𝐱
𝑖

𝕀 𝑦𝑘
𝑖

=1



MLE – Linear Regression



Poll
Implement a function in Python for the pdf of a Gaussian distribution.

Python numpy or math packages are fine, no scipy, etc.

𝑓 𝑥 =
1

2𝜋𝜎2
𝑒

− 𝑥−𝜇 2

2𝜎2

def gaussian(x, mu, sigmaSq):

What is gaussian(3.3, 2.2, 1.1)?



Poll
Assume that exam scores are drawn independently from the same 
Gaussian (Normal) distribution.

Given three exam scores {75, 80, 90}, which pair of parameters is a 
better fit (a higher likelihood)?

A) Mean 80, standard deviation 3

B) Mean 85, standard deviation 7

C) I don't know

Use a calculator/computer.

Gaussian PDF: 𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒

−
𝑦−𝜇 2

2𝜎2



MLE for Gaussian
Gaussian distribution:

 𝑌 ∼ 𝒩 𝜇, 𝜎2

 𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒

−
𝑦−𝜇 2

2𝜎2

𝒟 = {𝑦 1 = 65, 𝑦 2 = 95, 𝑦 3 = 85}

Formulate the likelihood for three i.i.d. samples, given parameters 𝜇, 𝜎2?

 

𝐿 𝜇, 𝜎2 =  

 

ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒

−
𝑦(𝑖)−𝜇

2

2𝜎2 ෠𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜽



MLE for Gaussian
Assume that exam scores are drawn independently from the same 
Gaussian (Normal) distribution.

Given three exam scores 2, 3, 4, which pair of parameters is the best fit 
(the highest likelihood)?

𝑝 𝒟 𝜇, 𝜎2 = ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒

−
𝑦(𝑖)−𝜇

2

2𝜎2

https://www.desmos.com/3d/988327bd26

https://www.desmos.com/3d/988327bd26


MLE

26

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)

Slide credit: CMU MLD Matt Gormley



Why Log Likelihood?
Updating our objective: Minimize neg. log likelihood

 

መ𝜃𝑀𝐿𝐸 = argmax
𝜃

ෑ

𝑖=1

𝑁

𝑝 𝑦 𝑖 𝜃

= argmax
𝜃

෍

𝑖=1

𝑁

log 𝑝 𝑦 𝑖 𝜃

Log is monotonic:
    If 𝑎 <  𝑏
    then log 𝑎 < log 𝑏

= argmin
𝜃

− ෍

𝑖=1

𝑁

log 𝑝 𝑦 𝑖 𝜃

Minimize 𝐽 𝜃 = −log ℒ 𝜃; 𝒟 = − ෍

𝑖=1

𝑁

log 𝑝 𝑦 𝑖 𝜃



MLE for Gaussian
Gaussian distribution:

 𝑌 ∼ 𝒩 𝜇, 𝜎2

 𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒

−
𝑦−𝜇 2

2𝜎2

What is the log likelihood for three i.i.d. samples, given parameters 𝜇, 𝜎2?

𝒟 = {𝑦 1 = 75, 𝑦 2 = 80, 𝑦 3 = 90}

 

𝐿 𝜇, 𝜎2 =  

 ℓ 𝜇, 𝜎2 =  

ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒

−
𝑦(𝑖)−𝜇

2

2𝜎2

෍

𝑖=1

𝑁

−log 2𝜋𝜎2 −
𝑦(𝑖) − 𝜇

2

2𝜎2

෠𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜽

෠𝜃𝑀𝐿𝐸 = argmax
𝜽

෍

𝑖

𝑁

log 𝑝 𝑦 𝑖 𝜽



Recipe for Estimation
MLE

1. Formulate the likelihood, 𝑝(𝒟 ∣ 𝜃)

2. Set objective 𝐽(𝜃) equal to negative log of likelihood

 J 𝜃 = − log 𝑝 𝒟 𝜃

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



M(C)LE for Linear Regression
Probabilistic interpretation of linear regression

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝐱 𝑖 , 𝜽

𝑓 𝑧; 𝜇, 𝜎 =
1

2𝜋𝜎2
𝑒

− 𝑥−𝜇 2

2𝜎2



M(C)LE for Linear Regression
Probabilistic interpretation of linear regression

𝑓 𝑧 =
1

2𝜋𝜎2
𝑒

− 𝑧−𝜇 2

2𝜎2

ℒ 𝜃; 𝒟 = ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝐱 𝑖 , 𝜽

ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒

−
𝑧(𝑖)−𝜇

2

2𝜎2

෍

𝑖=1

𝑁

−log 2𝜋𝜎2 −
𝑧(𝑖) − 𝜇

2

2𝜎2
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