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Introduction to ML

Regularization

Instructor: Pat Virtue



Plan

Today
▪ Regularization

▪ (Make sure they aren’t too powerful ☺)
▪ Regularization with L2 norm
▪ Regularization optimization
▪ Regularization with L1 norm
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Regularization with L2 norm
Example: Linear regression with polynomial features



Poll 1
Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):

ℎ𝜽 𝑥 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥2 +𝜃3𝑥3 + 𝜃4𝑥4 +𝜃5𝑥5 +𝜃6𝑥6 +𝜃7𝑥7 +𝜃8𝑥8

Model parameters:

𝜽 = 𝜃0,  𝜃1,  𝜃2,  𝜃3,  𝜃4,  𝜃5,  𝜃6,  𝜃7,  𝜃8
𝑇 

A. 𝜽𝐴 =
[−190.0, −135.0, 310.0, 45.0, −62.0,  90.0, −82.0, −40.0, 29.0]𝑇

B. 𝜽𝐵 =
[ 25.5,  −6.4,  −0.8,  0.0,  6.6,  −4.4,  0.2,  −2.9,  0.1]𝑇
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Overfitting
Definition: The problem of overfitting is when the model captures the 
noise in the training data instead of the underlying structure 

Overfitting can occur in all the models we’ve seen so far: 

▪ Decision Trees (e.g. when tree is too deep)

▪ K-NN (e.g. when k is small)

▪ Linear Regression (e.g. with nonlinear features or extraneous features)

▪ Logistic Regression (e.g. with nonlinear features or extraneous features)

▪ Neural networks

Slide credit: CMU MLD Matt Gormley



Best of both worlds
How can we keep the expressive power of a complex model while still 
avoiding overfitting? 

Notebook demo: regression_regularization.ipynb

https://drive.google.com/file/d/17aD17TVVIx8MO5icXOLL9RWyN7BUrTQD/view?usp=drive_link


Example: Linear Regression

8x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian 
noise

y x x2 … x9

2.0 1.2 (1.2)2 … (1.2)9

1.3 1.7 (1.7)2 … (1.7)9

0.1 2.7 (2.7)2 … (2.7)9

1.1 1.9 (1.9)2 … (1.9)9
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Symptoms of Overfitting

Slide credit: CMU MLD William Cohen



Motivation: Regularization

Occam’s Razor: prefer the simplest hypothesis

What does it mean for a hypothesis (or model) to be simple?

1. small number of features (model selection)

2. small number of “important” features (feature reduction)

3. small values for associated parameters

10Slide credit: CMU MLD Matt Gormley



Regularization

Key idea:

Define regularizer 𝑟(𝜽) that we will add to our minimization objective 
to keep the model simple.

𝑟(𝜽) should be:

▪ Small for a simple model

▪ Large for a complex model

L2 norm: square-root of sum of squares

L1 norm: sum of absolute values

L0 norm: count of non-zero values



Regularization

A. 𝜽𝐴 = [6, 3, −4, −2]𝑇

B. 𝜽𝐵 = [0, 3, −4,  0]𝑇

𝜽 2



Poll 2
Which model do you prefer?

A. 𝜽𝐴 = [−190.0, −135.0, 310.0, 45.0]𝑇  Training error: 0.0

B. 𝜽𝐵 = [ 0.0,  0.0,  0.0,  0.0]𝑇  Training error: 34.2



Poll 3
Notebook demo: regression_regularization.ipynb on course website

What is the best value for lambda?

https://drive.google.com/file/d/17aD17TVVIx8MO5icXOLL9RWyN7BUrTQD/view?usp=drive_link


Poll 3
Notebook demo: regression_regularization.ipynb on course website

What is the best value for lambda?

https://drive.google.com/file/d/17aD17TVVIx8MO5icXOLL9RWyN7BUrTQD/view?usp=drive_link


Regularization

Given objective function: 𝐽(𝜃)

Goal is to find:

Key idea: Define regularizer 𝑟(𝜽) s.t. we tradeoff 
between fitting the data and keeping the model simple

Choose form of 𝑟(𝜽):
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Regularization
L2 Demos

Desmos: 1-D
Regularization Interpolation

Notebook: 2-D
L1_sparsity.ipynb (L2 part for now)

https://www.desmos.com/calculator/wmkqef6itl
https://colab.research.google.com/drive/1JDxYswLLJJQNOUGnYnuM82TVZpQqTG5x?usp=drive_link


Regularization
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Poll 4

Suppose we are minimizing J’(θ) where

As λ increases, the minimum of J’(θ) will…

A. …move towards the midpoint between J’(θ) and r(θ)

B. …move towards the minimum of J(θ) 

C. …move towards the minimum of r(θ)

D. …move towards a theta vector of positive infinities

E. …move towards a theta vector of negative infinities

F. …stay the same
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Regularization Exercise

In-class Exercise

1. Plot train error vs. regularization hyperparameter (cartoon)

2. Plot validation error vs . regularization hyperparameter (cartoon)

20
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regularization hyperparameter, 𝜆
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Poll 5

Suppose we are minimizing 𝐽’(𝜃) where

As we increase λ from zero, the validation error will…

A. …increase

B. …decrease

C. …first increase, then decrease

D. …first decrease, then increase

E. …stay the same
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Poll 6

As we increase 𝜆, our model is more likely to:

A. Overfit

B. Underfit



Regularization
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Don’t Regularize the Bias (Intercept) Parameter

• In our models so far, the bias / intercept parameter is usually denoted by 𝜃0 -
- that is, the parameter for which we fixed 𝑥0 = 1 

• Regularizers always avoid penalizing this bias / intercept parameter

• Why? Because otherwise the learning algorithms wouldn’t be invariant to a 
shift in the y-values

Whitening Data

• It’s common to whiten each feature by subtracting its mean and dividing by 
its variance

• For regularization, this helps all the features be penalized in the same units 
(e.g. convert both centimeters and kilometers to z-scores)



Regularization Optimization



Linear Regression with L2 Regularization
a.k.a Ridge regression or Tychonov regression



Linear Algebra Timeout
Distribution of multiplication and addition with scalar involved



Regularization with L1 norm



Model Preference
Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):

ℎ𝜽 𝐱 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 +𝜃3𝑥3 +𝜃4𝑥4 +𝜃5𝑥5 +𝜃6𝑥6 +𝜃7𝑥7 +𝜃8𝑥8

Model parameters:

𝜽 = 𝜃0,  𝜃1,  𝜃2,  𝜃3,  𝜃4,  𝜃5,  𝜃6,  𝜃7,  𝜃8
𝑇 

A. 𝜽𝐴 =
[−190.0, −135.0, 310.0, 45.0, −62.0,  90.0, −82.0, −40.0, 29.0]𝑇

B. 𝜽𝐵 =
[ 25.5,  −6.4,  −0.8,  0.0,  6.6,  −4.4,  0.2,  −2.9,  0.1]𝑇

What if 𝐱 was a vector of input feature measurements (rather than 
polynomial features)?



Motivation: Regularization
Example: Stock Prices

Suppose we wish to predict Google’s 
stock price at time t+1 

What features should we use?
(putting all computational concerns aside)

▪ Stock prices of all other stocks at times t, t-1, t-
2, …, t - k

▪ Mentions of Google with positive / negative 
sentiment words in all newspapers and social 
media outlets

Do we believe that all of these features 
are going to be useful?

29Slide credit: CMU MLD Matt Gormley



Regularization

Key idea:

Define regularizer 𝑟(𝜽) that we will add to our minimization objective 
to keep the model simple.

𝑟(𝜽) should be:

▪ Small for a simple model

▪ Large for a complex model

L2 norm: square-root of sum of squares

L1 norm: sum of absolute values

L0 norm: count of non-zero values



Regularization

A. 𝜽𝐴 = [6, 3, −4, −2]𝑇

B. 𝜽𝐵 = [0, 3, −4,  0]𝑇

𝜽 2 𝜽 1 𝜽 0



Regularization

Given objective function: 𝐽(𝜃)

Goal is to find:

Key idea: Define regularizer 𝑟(𝜽) s.t. we tradeoff 
between fitting the data and keeping the model simple

Choose form of 𝑟(𝜽):
▪ Example: q-norm (usually p-norm)
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Regularization
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Regularization
L1 demo: L1_sparsity.ipynb

https://colab.research.google.com/drive/1JDxYswLLJJQNOUGnYnuM82TVZpQqTG5x?usp=drive_link


L2 vs L1 Regularization
Combine original objective with penalty on parameters

Figures: Bishop, Ch 3.1.4



L2 vs L1: Housing Price Example
Predict housing price from several features

Figure: Emily Fox, University of Washington
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L2 vs L1: Housing Price Example
Predict housing price from several features
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Regularization as MAP

L1 and L2 regularization can be interpreted as maximum a-posteriori 
(MAP) estimation of the parameters

To be discussed later in the course…

45Slide credit: CMU MLD Matt Gormley



Additional Slides



Logistic Regression with Nonlinear Features

Jupyter notebook demo: quadratic_logistic.ipynb
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https://drive.google.com/file/d/1mZkVHZ371GQWAau0cwJMxPXYVisMlekD/view?usp=sharing


Example: Logistic Regression

For this example, we 
construct nonlinear 
features (i.e. feature 
engineering)
Specifically, we add 
polynomials up to order 9 
of the two original features 
x1 and x2

Thus our classifier is linear 
in the high-dimensional 
feature space, but the 
decision boundary is 
nonlinear when visualized 
in low-dimensions (i.e. the 
original two dimensions)
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Training 
Data

Test
Data

Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression

53
Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Example: Logistic Regression

63

lambda

e
rr

o
r

Slide credit: CMU MLD Matt Gormley
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