10-315
Introduction to ML

Neural Networks

Instructor: Pat Virtue




Outline

Last time: Neural Networks
| = Three-neuron network + optimization
= Neural network structure (adding more neurons)

| = Forward pass and Backpropagation (scalar version) \/
?QG’C : m(/\){.\/af( ATe

Today: Neural Networks

= (Calculus: multi-variate chain rule
= Backpropagation (vector version)
-2y Neural Network Properties and Intuition



Backpropagation y = he(x) = g<w5 -g(w4~g(W3 - g(wz - g(wy -x))))>

Width 1 deep network (no bias) (dumb but will help with calculus)
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To do gradient descent we need the partial derivative of the objective with

respect to each parameter, w, <« w, —a dJ /0w,
—ﬁ_

The backward pass propagates the change in the objective with respect to

intermediate values (d//0z, and d] /da,) back through the network to
produce each d//dw,



Generic Layer Implementation (so-far)

Compute derivatives per layer, utilizing previous derivatives

Obijective: J(0)

Arbitrary layer: z,,« = f(zZin, 6)
Need:
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Optimization

Tons of repeated partial derivatives
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Tons of repeated partial derivatives
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Calculus Time-out



Multivariate-chain rule



Multivariable Chain Rule ()\)Jle - mad V\d"”"L"p’D
91(x) = 3x

g92(x) = 5x %L:,QLQ{‘+5y oz,
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f(21,23) = 22, + 72,
y = f(91(0), g2(x))
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Exercise: Multivariable Chain Rule

dx  0gq 0x dg, 0x

z1 = g1(x) = sin(x)
Zy = ga(x) = x>
y = f(z4,2,) = z{e?2 + 5z, + 7z,
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ercise: Multivariable Chain Rule dx _ g, ox | 3g, ox
z, = g41(x) = sin(x) dg,/dx = cos(x)
Zy = go(x) = x3 dg,/dx = 3x?
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Calculus Chain Rule

Scalar: Multivariate:
y = f(2) y = f(2)
z=g(x) z = g(x)
d_y __dydz

dx o dz dx

Multivariate:

y = f(2)
z=gx)




Calculus Chain Rule

Multivariate:
y=f(2)
z = g(x)

Scalar:

y = f(2)

z=g(x)
dy dydz

dx o dz dx

X,

Multivariate:
y =f(2)

z=gx)
d 0y aZj

d)@ J 0z 0xy




Multivariable Chain Rule

Numerator layout

Denominator layout

Notes
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Backpropagation (vector version)



Generic Layer Implementation (updated)

Compute derivatives per layer, utilizing previous derivatives

Objective: J(8) A CumL N

Arbitrary layer: z,,« = f(zZin, 6)

6
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Generic Layer Implementation (vector output version)

Compute derivatives per layer, utilizing previous derivatives

Objective: J(6) . e ZZ IZ

Arbitrary layer: z ¢ = f(Zin, 0) ) Ef[RM 5 :

Need: {é%
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Generic Layer Implementation (vector output version)

Compute derivatives per layer, utilizing previous derivatives
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Compute derivatives per layer

Objective: J(8) a — |layer a=f(a,W,b) > Z
Layer:z = f(a,W,b) =Wa+b dJ o ad]
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. . RM RX
Linear Layer Implementation i J
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Compute derivatives per layer

Objective: J(8) a4 —> | Layer a=f(a,W,b) > Z
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Linear Layer Implementation

Compute derivatives per layer

Obijective: J(0) a —

Layer:z = f(a,W,b) =Wa+b d]
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Linear Layer Implementation i J
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Compute derivatives per layer

Objective: J(8) a — | Layer z=f(a,W,b) >z
Layer:z = f(a,W,b) =Wa+b dJ o ad]
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Outline

Last time: Neural Networks
" Three-neuron network + optimization
= Neural network structure (adding more neurons)

* Forward pass and Backpropagation (scalar version)

Today: Neural Networks
v Calculus: multi-variate chain rule
A Backpropagation (vector version)
" Neural Network Properties and Intuition



Neural Network Properties



Neural Networks Properties

Practical considerations

" Large number of neurons
» Danger for overfitting
" Modeling assumptions vs data assumptions trade-off

* Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

= Atwo-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.



Neural Networks Properties

Non-linearity
Fitting complex functions

Fitting any! function (universal approximation theorem)

Overfitting



Neural Network Properties

Non-linearity



Non-linearity

Neural network prediction function, y = h(x), is definitely not linear. The non-
linear activation functions provide this non-linearity

-

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Example

What happens with you add to linear functions together?
= Adding two lines? h(x) = f;(x,wy,by) + f,(x,wy, by)
=" Adding two planes?



Objective Function is Not Convex

. .. : Closed-form
Objective function for... Convex? :
solution?

Linear regression )/5 S Y(’ S

Logistic regression Yeg No

Neural networks /\ja /\/ O



Optimization

Convex function
Iff(x) is convex, then:

* flax+(1—a)z) < af(x)+(1— a)f(Z)
vVoi<a<l

Convex optimization

If second derivati




Non-linearity

Prediction function

Neural network prediction function, ¥ = h(x), is defmltely not linear. The non-
linear activation functions provide this non-linearity

Objective function

Neural network prediction function, y = h(x), is definitely not linear. The non-
linear activation functions provide this non-linearity

Just because it can fit any function will it?
" (Objective function is non-convex
- it will get stuck in local minima
" Stochastic gradient decent take pseudorandom steps
- Helps pop out of local minima /

—=7 |s getting stuck at a local minima necessarily a bad thing??




Neural Network Properties

Fitting complex functions (with 1-D input)



Network to Approximate a 1-D Function




Linear Classifiers for Nonlinear Data

Linear classifiers have linear decision boundaries
Feature mapping can convert nonlinear data to higher dimensions
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This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial. ppt

Today, instead of choosing a feature mapping function, we’ll use neural
networks to learn nonlinear decision boundaries and regression

functions



Network to Approximate a 1-D Function




Network to Approximate a 1-D Function

Design a network to approximate this function using:
Linear, Sigmoid, Step, or RelLU

Y L




Network to Approximate a 1-D Function




Neural Network Properties
Fitting complicated functions (with 2-D input)



Classification Design Challenge ha(x) = sign(w, x + b,)
hg(x) = sign(wgx + bg)

How could you configure three specific he(z) = Sign(WCTZ + bc)

perceptrons to classify this data?

X9
& & +
+|++ [~
- o == —
2 IR
B T




Perceptron . C (1, if z>0
sign(z) = _y, if z<0

Classification: Hard threshold on linear model
h(x) = sign(w'x + b)




Perceptron History

Frank Rosenblatt, 1957

The New Yorker, December 6,1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built,
but which has been successfully simulated on the I.B.M. 704. Talk with Dr.
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the
two men who developed the prodigy; the other man is Dr. Marshall C. Yovits,
of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the
perceptron as the first non-biological object which will achieve an organization
o its external environment in a meaningful way. It interacts with its
environment, forming concepts that have not been made ready for it by a
human agent. If a triangle is held up, the perceptron's eye picks up the image &
conveys it along a random succession of lines to the response units, where the
image is registered. It can tell the difference betw. a cat and a dog, although it
wouldn't be able to tell whether the dog was to theleft or right of the cat. Right
now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day

it might be useful to send one into outer space to take in impressions for us.



Exercise

h(x) = sign(w'x + b)

Which of the following perceptron parameters

will perfectly classify this data?

A.

W — 1
11’
W= -1
1
w = 1
_1_
W= -1
-1
None of t

b=20

ne above

. 1, ifz=0
sign(z) = {—1 if z< 0




Poll

Which of the following perceptron parameters
will perfectly classify this data?

A.

w=_1
1]’
w=__1_
1
W= 1
_1_
W= -1
_1_

None of t

b=20

ne above

+
+

+
+

h(x) = sign(w'x + b)

. 1, ifz=0
sign(z) = {—1 if z< 0




Poll he(z) = sign(wlz + b¢)
Which of the following parameters of h(z)

will perfectly classify this data? . 1, ifx=0
o sign(x) = {—1 if x <0
_ |1 _
B WC — 1 JbC — 1 - T =
C. Wp = 1 b = —1
B B Y | — %3

D. None of the above




Classification Design Challenge ha(x) = sign(w, x + b,)
hg(x) = sign(wgx + bg)

How could you configure three specific he(z) = Sign(WCTZ + bc)

perceptrons to classify this data?
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Classification Design Challenge ha(x) = sign(waX + bs)
hg(x) = sign(Wix + bg)

How could you configure three specific he(z) = sign(wgz + bc)

perceptrons to classify this data?

X 2] 2Tk




Network to Approximate Binary Classification

https://playground.tensorflow.org/#activation=sigmoid

Q-

DATA

Which dataset
do you want to
use?

B

Ratio of training
to test

data: 50%
—

Noise: 0

Batch size: 10

Epoch

000,000

FEATURES

Which
properties do
you want to
feed in?

X

3
g

XXy

Learning rate

0.03 v

+_

+_

4 neurons

00

P

This is the output
from one neuron.
Hover to see it

Activation

(

Sigmoid v None

2 HIDDEN LAYERS

+_

2 neurons

1

The outputs are
mixed with varying
weights, shown
by the thickness of
the lines.

Regularization

Regularization rate Problem type

v 0 v Classification

OUTPUT

Test loss 0.503
Training loss 0.502


https://playground.tensorflow.org/#activation=sigmoid

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Neural Network Properties

(Over?) Fitting any function



Neural Networks Properties

Universal Approximation Theorem

= Atwo-layer neural network with a sufficient number of neurons can approximate any
continuous function to any desired accuracy

Reminder
Just because it can fit any function will it?
= (Objective function is non-convex
- it will get stuck in local minima
" Stochastic gradient decent take pseudorandom steps
— Helps pop out of local minima
= |s getting stuck at a local minima necessarily a bad thing??



Network to Approximate a 1-D Function




Debugging Overfitting and Underfitting

Underfitting (check this first!)

* Evidence: poor training loss (and poor validation loss)

= Note: Compare with human performance as a baseline, i.e., make sure
the task isn't impossible for a human (with unlimited resources)

= Try: Adding more capacity to network (wider or deeper)
=  But how do we choose a new network structure?

Overfitting

" Evidence: good training loss, but poor validation loss

" Evidence: really large parameter values

= Try: Regularization (we'll learn about this soon!) <&——
= Try: Adding more data <——



Summary: Neural Networks Properties

Practical considerations

" Large number of neurons
» Danger for overfitting
" Modeling assumptions vs data assumptions trade-off

* Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

= Atwo-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.
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