10-315
Introduction to ML

Neural Networks

Instructor: Pat Virtue

Outline

Last time: Neural Networks
| = Three-neuron network + optimization
= Neural network structure (adding more neurons)

| = Forward pass and Backpropagation (scalar version) \/
?QG’C : m(/\){.\/af(ATe

Today: Neural Networks

= (Calculus: multi-variate chain rule
= Backpropagation (vector version)
-2y Neural Network Properties and Intuition

Backpropagation y = he(x) = g<w5 -g(w4~g(W3 - g(wz - g(wy -x))))>

Width 1 deep network (no bias) (dumb but will help with calculus)

g 4 9 o9 9 9 o I 9 I y
021 aal aZZ aaz 023 (9613 6Z4 aa4 025 5?
4
. 9 ", 19 W, fr19 " fr9 . /19
3 o 3 o o
ow, ow, 0w, odw, 0ws

To do gradient descent we need the partial derivative of the objective with

respect to each parameter, w, <« w, —a dJ /0w,
—ﬁ_

The backward pass propagates the change in the objective with respect to

intermediate values (d//0z, and d] /da,) back through the network to
produce each d//dw,

Generic Layer Implementation (so-far)

Compute derivatives per layer, utilizing previous derivatives

Obijective: J(0)

Arbitrary layer: z,,« = f(zZin, 6)
Need:

. d] _ dJ] OJf
0Zin 0Zout 0Zin
9] _ 0] of

90 9zyys 00

—_— Zin f Zout
6
Zin Layer zoue = f(Zin, 0) Zout
of
aJ . -)i
0Zin of 0Z oyt
a0

S —>

Optimization

Tons of repeated partial derivatives

8] 0 das, 0z3; %3
by, 09 0z3, Obs,

9] 8¢ Bas, 0z3, day; 07y

0b,; 09 0z3, 0ay; 0zy; by,

9] ¢ das, 0z3, 0a, 0z, day; 0z

0by; 09 0z3, 0a, 0z, da,; 0z;; 0by;

y=he(x)=g <b3,1 + Z W31k 9 <b2,k + Z Woki 9 <b1,i + Z W1, j x]>>>
k [j

O pt| m |Zat|o N y=hex)=g <b3,1 + Z W31k 9 (bz,k + Z Woki 9 <b1,i + Z W1, j x]>>>

Tons of repeated partial derivatives

Z11___ Qg
X4 f g
b11 f Z71 g a;q
Z12___ Qg b z y J
X, flg “ F—lgl—I7
by, fZ . A,y b, d
Z13___ Q43 b,,
0] 08¢ dazq 0z3; % lf g (=AB
0b3 1 0y 023, 0b3 4 " %ﬁ - A B
0] _ 9 daz, 973, 0ay; 07, L
0by; 09 0731 00y, 023 by oz, |D o
O

0] _ df (9613,1\\523,1 aaz aZZ aal,i (/)Zl,i — -
0by; 09 0z34) 0a, |0z, Day,;\0zy,; Oby d Z<

Calculus Time-out

Multivariate-chain rule

Multivariable Chain Rule ()\)Jle - mad V\d"”"L"p’D
91(x) = 3x

g92(x) = 5x %L:,QLQ{‘+5y oz,
. z

f(21,23) = 22, + 72,
y = f(91(0), g2(x))

af _ 9f 991 9f 992

Exercise: Multivariable Chain Rule

dx 0gq 0x dg, 0x

z1 = g1(x) = sin(x)
Zy = ga(x) = x>
y = f(z4,2,) = z{e?2 + 5z, + 7z,

. L . df _ 0f0dg. , 0f 0
Ey . 4 _ 1 9>
ercise: Multivariable Chain Rule dx _ g, ox | 3g, ox
z, = g41(x) = sin(x) dg,/dx = cos(x)
Zy = go(x) = x3 dg,/dx = 3x?

y — f(Z]_)ZZ) — Zfezz + 5Z1 + 722 5f/6zl — 425’822 _|_ 5
0f [0z, = zie”2 + 7

af _ 9f o9y Of 9
dx agl 0x agz 0x

Yi|
a f Y = (4z}e? + 5) cos(x)
+ (zfe? + 7) 3x?

9o

Calculus Chain Rule

Scalar: Multivariate:
y = f(2) y = f(2)
z=g(x) z = g(x)
d_y __dydz

dx o dz dx

Multivariate:

y = f(2)
z=gx)

Calculus Chain Rule

Multivariate:
y=f(2)
z = g(x)

Scalar:

y = f(2)

z=g(x)
dy dydz

dx o dz dx

X,

Multivariate:
y =f(2)

z=gx)
d 0y aZj

d)@ J 0z 0xy

Multivariable Chain Rule

Numerator layout

Denominator layout

Notes

L (g(t), h(t)) Lo L Same f:(RxR) =R, teR
g:R—-R, h:R—-R
4 (gi(t),. .., gn(t)) Sy oL do Same h:(Rx---xR)—=> R, teR
ff-@\ — fi:R>R Vie{l,....N}
ar f(g(t) _ﬂgg = ﬁ/g = o f:RY 2R, g:R—RY
e = teR
2 f(g(v) -3{7 soe o = s fiRY SR g:RM RV
| ol MRS A =t ﬂ veRM
4 f(&(v),h(v)) 3”; 3% + Sii o swogtovon | MREXRY SR veRY

f:RM 5 RE g:RM 5 RN

Backpropagation (vector version)

Generic Layer Implementation (updated)

Compute derivatives per layer, utilizing previous derivatives

Objective: J(8) A CumL N

Arbitrary layer: z,,« = f(zZin, 6)

6
Need:
o o] += o] of Zin_> Layer zgye = f(zin, 0) Zout
0Zin 0Zout 0Zin of
. 9J 4= d] df 9 < 0Zin - 9/
90 020yt 06 0Zin of 0Z oyt
20

S —>
—

Generic Layer Implementation (vector output version)

Compute derivatives per layer, utilizing previous derivatives

Objective: J(6) . e ZZ IZ

Arbitrary layer: z ¢ = f(Zin, 0)) Ef[RM 5 :

Need: {é%
G| 33 & Cy . L Z5

- 0Zin B 1 <k ??‘,\ Zin Layer Zouta=ff (Zin, 6) out

- aagj. ZZ _‘_)_)é-— azt« 6(Z-n “ 0Zin - a:{{ut
;] o 07y 6’9? %

~>
O
O —>
<—

Generic Layer Implementation (vector output version)

Compute derivatives per layer, utilizing previous derivatives

Zout,1
ObJeCt|Ve](0) Zin Zyyt S]RK Zout,2
. — = f |
Arbitrary layer: z,,« = f(zZin, 6) o = R Zout,3
Need:
0 —_—

M 2 = QK 2 Zoutk Zin~ ¥ | Layer zgy = f(Zin, 0) Zout
0Zin 0Zoutk 0Zin 3 of 3
. d] — aJ odf p / < 0Zin « 3 J
30 K 0Zoutk 00 Zin of Zout

00

S —>
<—_

: : a € RM z € RK
Linear Layer Implementation — f J
W e RE*M b e RX

Compute derivatives per layer

Objective: J(8) a — |layer a=f(a,W,b) > Z
Layer:z = f(a,W,b) =Wa+b dJ o ad]
< da «—
Scalar version (no formatting) da of of 0z
dY Jzx ow ob

aaj

aj Y
.5Wi,j_ ;@ZLW. o9

/3 oW 0b

. =f’f&"§—a—3’
k iy

. . RM RX
Linear Layer Implementation i J

W e REXM p e RK

Compute derivatives per layer

Objective: J(8) a4 —> | Layer a=f(a,W,b) > Z
Layer: Z = f(a, W,b)=Wa+Db d] o d/
< da «—
Scalar version (no formatting) da af of 0z
_y 010z ob
aa] K ozy 0a; T T l l
d] 0z
=2 Wb 9 0]
aWU k 0z aWi’j 3 3b
.ﬂ . Z d] 0z
0b; — “k 0z 0b;

Linear Layer Implementation

Compute derivatives per layer

Obijective: J(0) a —

Layer:z = f(a,W,b) =Wa+b d]

a € RM

—r

K
Z €ER]

W e REXM p e RK

(Denominator format) y Oa

z 00 'y)DK
8J —-"%’%9}: MD , ,

| —
—

da A
9z 0) [’@ M
‘: W Oz : . E

Layer z=f(aw,b) |~ * Z
af
9a — 9
of of 0Z
ow b
W b a] d]
oW db
5
W e W =TS
/ —_J

. . RM RX
Linear Layer Implementation i J

W e REXM p e RK

Compute derivatives per layer

Objective: J(8) a — | Layer z=f(a,W,b) >z
Layer:z = f(a,W,b) =Wa+b dJ o ad]
< da «—
(Numerator format) da of of 0Z
aw b
g RE
da
W b a] d]
o) oW b
oW
d]

Outline

Last time: Neural Networks
" Three-neuron network + optimization
= Neural network structure (adding more neurons)

* Forward pass and Backpropagation (scalar version)

Today: Neural Networks
v Calculus: multi-variate chain rule
A Backpropagation (vector version)
" Neural Network Properties and Intuition

Neural Network Properties

Neural Networks Properties

Practical considerations

" Large number of neurons
» Danger for overfitting
" Modeling assumptions vs data assumptions trade-off

* Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

= Atwo-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.

Neural Networks Properties

Non-linearity
Fitting complex functions

Fitting any! function (universal approximation theorem)

Overfitting

Neural Network Properties

Non-linearity

Non-linearity

Neural network prediction function, y = h(x), is definitely not linear. The non-
linear activation functions provide this non-linearity

-

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Example

What happens with you add to linear functions together?
= Adding two lines? h(x) = f;(x,wy,by) + f,(x,wy, by)
=" Adding two planes?

Objective Function is Not Convex

. .. : Closed-form
Objective function for... Convex? :
solution?

Linear regression)/5 S Y(’ S

Logistic regression Yeg No

Neural networks /\ja /\/ O

Optimization

Convex function
Iff(x) is convex, then:

* flax+(1—a)z) < af(x)+(1— a)f(Z)
vVoi<a<l

Convex optimization

If second derivati

Non-linearity

Prediction function

Neural network prediction function, ¥ = h(x), is defmltely not linear. The non-
linear activation functions provide this non-linearity

Objective function

Neural network prediction function, y = h(x), is definitely not linear. The non-
linear activation functions provide this non-linearity

Just because it can fit any function will it?
" (Objective function is non-convex
- it will get stuck in local minima
" Stochastic gradient decent take pseudorandom steps
- Helps pop out of local minima /

—=7 |s getting stuck at a local minima necessarily a bad thing??

Neural Network Properties

Fitting complex functions (with 1-D input)

Network to Approximate a 1-D Function

Linear Classifiers for Nonlinear Data

Linear classifiers have linear decision boundaries
Feature mapping can convert nonlinear data to higher dimensions

x=(X1,X,) P(X) =(X1%, X5, V2, X,
\/2x1x2 ,
[]
e . e ®
L4 P o 4
FAL N O: x— ¢p(x) * .
¢ ° ° o
™ .) — °
° ® o | @ R
. [] . [] X22
o A .
. . 1. . ® o . ®
[

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial. ppt

Today, instead of choosing a feature mapping function, we’ll use neural
networks to learn nonlinear decision boundaries and regression

functions

Network to Approximate a 1-D Function

Network to Approximate a 1-D Function

Design a network to approximate this function using:
Linear, Sigmoid, Step, or RelLU

Y L

Network to Approximate a 1-D Function

Neural Network Properties
Fitting complicated functions (with 2-D input)

Classification Design Challenge ha(x) = sign(w, x + b,)
hg(x) = sign(wgx + bg)

How could you configure three specific he(z) = Sign(WCTZ + bc)

perceptrons to classify this data?

X9
& & +
+|++ [~
- o == —
2 IR
B T

Perceptron . C (1, if z>0
sign(z) = _y, if z<0

Classification: Hard threshold on linear model
h(x) = sign(w'x + b)

Perceptron History

Frank Rosenblatt, 1957

The New Yorker, December 6,1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built,
but which has been successfully simulated on the I.B.M. 704. Talk with Dr.
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the
two men who developed the prodigy; the other man is Dr. Marshall C. Yovits,
of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the
perceptron as the first non-biological object which will achieve an organization
o its external environment in a meaningful way. It interacts with its
environment, forming concepts that have not been made ready for it by a
human agent. If a triangle is held up, the perceptron's eye picks up the image &
conveys it along a random succession of lines to the response units, where the
image is registered. It can tell the difference betw. a cat and a dog, although it
wouldn't be able to tell whether the dog was to theleft or right of the cat. Right
now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day

it might be useful to send one into outer space to take in impressions for us.

Exercise

h(x) = sign(w'x + b)

Which of the following perceptron parameters

will perfectly classify this data?

A.

W — 1
11’
W= -1
1
w = 1
1
W= -1
-1
None of t

b=20

ne above

. 1, ifz=0
sign(z) = {—1 if z< 0

Poll

Which of the following perceptron parameters
will perfectly classify this data?

A.

w=_1
1]’
w=__1_
1
W= 1
1
W= -1
1

None of t

b=20

ne above

+
+

+
+

h(x) = sign(w'x + b)

. 1, ifz=0
sign(z) = {—1 if z< 0

Poll he(z) = sign(wlz + b¢)
Which of the following parameters of h(z)

will perfectly classify this data? . 1, ifx=0
o sign(x) = {—1 if x <0
_ |1 _
B WC — 1 JbC — 1 - T =
C. Wp = 1 b = —1
B B Y | — %3

D. None of the above

Classification Design Challenge ha(x) = sign(w, x + b,)
hg(x) = sign(wgx + bg)

How could you configure three specific he(z) = Sign(WCTZ + bc)

perceptrons to classify this data?

X9
& & +
+|++ [~
- o == —
2 IR
B T

Classification Design Challenge ha(x) = sign(waX + bs)
hg(x) = sign(Wix + bg)

How could you configure three specific he(z) = sign(wgz + bc)

perceptrons to classify this data?

X 2] 2Tk

Network to Approximate Binary Classification

https://playground.tensorflow.org/#activation=sigmoid

Q-

DATA

Which dataset
do you want to
use?

B

Ratio of training
to test

data: 50%
—

Noise: 0

Batch size: 10

Epoch

000,000

FEATURES

Which
properties do
you want to
feed in?

X

3
g

XXy

Learning rate

0.03 v

+_

+_

4 neurons

00

P

This is the output
from one neuron.
Hover to see it

Activation

(

Sigmoid v None

2 HIDDEN LAYERS

+_

2 neurons

1

The outputs are
mixed with varying
weights, shown
by the thickness of
the lines.

Regularization

Regularization rate Problem type

v 0 v Classification

OUTPUT

Test loss 0.503
Training loss 0.502

https://playground.tensorflow.org/#activation=sigmoid

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Neural Network Properties

(Over?) Fitting any function

Neural Networks Properties

Universal Approximation Theorem

= Atwo-layer neural network with a sufficient number of neurons can approximate any
continuous function to any desired accuracy

Reminder
Just because it can fit any function will it?
= (Objective function is non-convex
- it will get stuck in local minima
" Stochastic gradient decent take pseudorandom steps
— Helps pop out of local minima
= |s getting stuck at a local minima necessarily a bad thing??

Network to Approximate a 1-D Function

Debugging Overfitting and Underfitting

Underfitting (check this first!)

* Evidence: poor training loss (and poor validation loss)

= Note: Compare with human performance as a baseline, i.e., make sure
the task isn't impossible for a human (with unlimited resources)

= Try: Adding more capacity to network (wider or deeper)
= But how do we choose a new network structure?

Overfitting

" Evidence: good training loss, but poor validation loss

" Evidence: really large parameter values

= Try: Regularization (we'll learn about this soon!) <&——
= Try: Adding more data <——

Summary: Neural Networks Properties

Practical considerations

" Large number of neurons
» Danger for overfitting
" Modeling assumptions vs data assumptions trade-off

* Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

= Atwo-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.

	Slide 1: 10-315 Introduction to ML Neural Networks
	Slide 2: Outline
	Slide 3: Backpropagation
	Slide 4: Generic Layer Implementation (so-far)
	Slide 5: Optimization
	Slide 6: Optimization
	Slide 7: Calculus Time-out
	Slide 8: Multivariate-chain rule
	Slide 9: Multivariable Chain Rule
	Slide 10: Exercise: Multivariable Chain Rule
	Slide 11: Exercise: Multivariable Chain Rule
	Slide 12: Calculus Chain Rule
	Slide 13: Calculus Chain Rule
	Slide 14: Multivariable Chain Rule
	Slide 15: Backpropagation (vector version)
	Slide 16: Generic Layer Implementation (updated)
	Slide 17: Generic Layer Implementation (vector output version)
	Slide 18: Generic Layer Implementation (vector output version)
	Slide 19: Linear Layer Implementation
	Slide 20: Linear Layer Implementation
	Slide 21: Linear Layer Implementation
	Slide 22: Linear Layer Implementation
	Slide 23: Outline
	Slide 24: Neural Network Properties
	Slide 25: Neural Networks Properties
	Slide 26: Neural Networks Properties
	Slide 27: Neural Network Properties
	Slide 28: Non-linearity
	Slide 29: Objective Function is Not Convex
	Slide 30: Optimization
	Slide 31: Non-linearity
	Slide 32: Neural Network Properties
	Slide 33: Network to Approximate a 1-D Function
	Slide 34: Linear Classifiers for Nonlinear Data
	Slide 35: Network to Approximate a 1-D Function
	Slide 36: Network to Approximate a 1-D Function
	Slide 37: Network to Approximate a 1-D Function
	Slide 38: Neural Network Properties
	Slide 39: Classification Design Challenge
	Slide 40: Perceptron
	Slide 41: Perceptron History
	Slide 42: Exercise
	Slide 43: Poll
	Slide 44: Poll
	Slide 45: Classification Design Challenge
	Slide 46: Classification Design Challenge
	Slide 47: Network to Approximate Binary Classification
	Slide 48: Network to Approximate Binary Classification
	Slide 49: Network to Approximate Binary Classification
	Slide 50: Network to Approximate Binary Classification
	Slide 51: Neural Network Properties
	Slide 52: Neural Networks Properties
	Slide 53: Network to Approximate a 1-D Function
	Slide 54: Debugging Overfitting and Underfitting
	Slide 55: Summary: Neural Networks Properties

