10-315 Notation Guide

Based on 10-301/601 Notation Guide by Matt Gormley

1 Scalars, Vectors, Matrices

Scalars are either lowercase letters $x, y, z, \alpha, \beta, \gamma$ or uppercase Latin letters N, M, T. The latter are typically used to indicate a **count** (e.g. number of examples, features, timesteps) and are often accompanied by a corresponding **index** n, m, t (e.g. current example, feature, timestep). **Vectors** are bold lowercase letters $\mathbf{x} = [x_1, x_2, \dots, x_M]^T$ and are typically assumed to be *column* vectors—hence the transposed row vector in this example. When handwritten, a vector is indicated by an over-arrow $\vec{x} = [x_1, x_2, \dots, x_M]^T$. **Matrices** are uppercase letters:

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1m} \\ u_{21} & u_{22} & & & \\ \vdots & & \ddots & \vdots \\ u_{n1} & & \dots & u_{nm} \end{bmatrix}$$

As in the examples above, subscripts are used as **indices** into structured objects such as vectors or matrices.

2 Sets

Sets are represented by caligraphic uppercase letters $\mathcal{X}, \mathcal{Y}, \mathcal{D}$. We often index a set by labels in parenthesized superscripts $\mathcal{S} = \{s^{(1)}, s^{(2)}, \dots, s^{(S)}\}$, where $S = |\mathcal{S}|$. A shorthand for this equivalently defines $\mathcal{S} = \{s^{(s)}\}_{s=1}^{S}$. This shorthand is convenient when defining a set of **training examples**: $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$ is equivalent to $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$.

3 Random Variables

Random variables are also uppercase Latin letters X, Y, Z, but their use is typically apparent from context. When a random variable X_i and a scalar x_i are upper/lower-case versions of each other, we typically mean that the scalar is a **value** taken by the random variable.

When possible, we try to reserve Greek letters for parameters θ , ϕ or hyperparameters α , β , γ .

For a random variable X, we write $X \sim \text{Gaussian}(\mu, \sigma^2)$ to indicate that X follows a 1D Gaussian distribution with mean μ and variance σ^2 . We write $x \sim \text{Gaussian}(\mu, \sigma^2)$ to say that x is a value sampled from the same distribution.

A conditional probability distribution over random variable X given Y and Z is written $P(X \mid Y, Z)$ and its probability mass function (pmf) or probability density function (pdf) is $p(x \mid Y, Z)$

y,z). If the probability distribution has parameters α,β , we can write its pmf/pdf in at least three equivalent ways: A statistician might prefer $p(x\mid y,z;\alpha,\beta)$ to clearly demarcate the parameters. A graphical models expert prefer $p(x\mid y,z,\alpha,\beta)$ since said parameters are really just additional random variables. A typographer might prefer to save ink by writing $p_{\alpha,\beta}(x\mid y,z)$. To refer to this pmf/pdf as a function over possible values of a we would elide it as in $p_{\alpha,\beta}(\cdot\mid y,z)$. Using our \sim notation from above, we could then write that X follows the distribution $X \sim p_{\alpha,\beta}(\cdot\mid y,z)$ and x is a sample from it $x \sim p_{\alpha,\beta}(\cdot\mid y,z)$.

The **expectation** of a random variable X is $\mathbb{E}[X]$. When dealing with random quantities for which the generating distribution might not be clear we can denote it in the expectation. For example, $\mathbb{E}_{x \sim p_{\alpha,\beta}(\cdot|y,z)}[f(x,y,z)]$ is the expectation of f(x,y,z) for some function f where x is sampled from the distribution $p_{\alpha,\beta}(\cdot|y,z)$ and y and z are constant for the evaluation of this expectation.

4 Functions and Derivatives

Suppose we have a function f(x). We write its partial derivative with respect to x as $\frac{\partial f(x)}{\partial x}$ or $\frac{df(x)}{dx}$. We also denote its first derivative as f'(x), its second derivative as f''(x), and so on. For a multivariate function $f(\mathbf{x}) = f(x_1, \dots, x_M)$, we write its gradient with respect to \mathbf{x} as $\nabla_{\mathbf{x}} f(\mathbf{x})$ and frequently omit the subscript, i.e. $\nabla f(\mathbf{x})$, when it is clear from context—it might not be for a gradient such as $\nabla_{\mathbf{y}} g(\mathbf{x}, \mathbf{y})$.

5 Common Conventions

The table below lists additional common conventions we follow:

Notation	Description
\overline{N}	number of training examples
M	number of feature types
K	number of classes
n or i	current training example
m	current feature type
k	current class
${\mathbb Z}$	set of integers
\mathbb{R}	set of reals
\mathbb{R}^M	
$\{0,1\}^{M}$	set of binary vectors of length M
X	feature vector (input) where $\mathbf{x} = [x_1, x_2, \dots, x_M]^T$; typically
	$\mathbf{x} \in \mathbb{R}^M \text{ or } \mathbf{x} \in \{0,1\}^M$
y	label / regressand (output); for classification $y \in$
	$\{1, 2, \dots, K\}$; for binary classification $y \in \{0, 1\}$ or $y \in \{0, 1\}$
	$\{+1,-1\}$; for regression, $y \in \mathbb{R}$
\mathcal{X}	input space, i.e. $\mathbf{x} \in \mathcal{X}$
	output space, i.e. $y \in Yc$
$\mathbf{x}^{(i)}$	the i th feature vector in the training data

Note that a more careful notation system would always use $\frac{\partial f(x)}{\partial x}$ for partial derivatives, since $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$ is typically reserved for total derivatives. However, only partial derivatives make an appearance herein.

```
the ith true output in the training data
            x_m^{(i)} \\ (\mathbf{x}^{(i)}, y^{(i)})
                            the mth feature of the ith feature vector
                            the ith training example (feature vector, true output)
                            set of training examples; for supervised learning \mathcal{D} =
                            \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N; for unsupervised learning \mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N
                            design matrix; the ith row contains the features of the ith
                            training example \mathbf{x}^{(i)}; i.e the ith row contains x_1^{(i)}, \ldots, x_M^{(i)}
          X_1,\ldots,X_M
                            random variables corresponding to feature vector x; (note:
                            notation gets dicey when we start to have a vector-valued
                            random variable X = [X_1, X_2, \dots, X_M]^T, which will easily
                            be confused with the design matrix; we'll try to make these
                            cases as clear as possible.)
                            random variable corresponding to predicted class y
  P(Y = y \mid X = \mathbf{x})
                            probability of random variable Y taking value y given that
                            random variable X takes value \mathbf{x}
                            shorthand for P(Y = y \mid X = \mathbf{x})
               p(y \mid \mathbf{x})
                            model parameters
                            model parameters (weights of linear model)
                            model parameter (bias term of linear model)
                    \ell(\boldsymbol{\theta})
                            log-likelihood of the data; depending on context, this might
                            alternatively be the log-conditional likelihood or log-
                            marginal likelihood
                   J(\boldsymbol{\theta})
                            objective function
                 J^{(i)}(\boldsymbol{\theta})
                            example i's contribution to the objective function; typically
                            J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})
                            gradient of the objective function with respect to model pa-
                 \nabla J(\boldsymbol{\theta})
              \nabla J^{(i)}(\boldsymbol{\theta})
                            gradient of J^{(i)}(\boldsymbol{\theta}) with respect to model parameters \boldsymbol{\theta}
                            stepsize in numerical optimization
\theta^T \mathbf{x} or \mathbf{x}^T \boldsymbol{\theta} or \boldsymbol{\theta} \cdot \mathbf{x}
                            dot product of model parameters and features
                  h_{\boldsymbol{\theta}}(\mathbf{x})
                            decision function / decision rule / hypothesis
                       \mathcal{H}
                            hypothesis space; we say that h \in \mathcal{H}
                            prediction of a decision function, e.g. \hat{y} = h_{\theta}(\mathbf{x})
                            model parameters that result from learning
                 \ell(y,\hat{y})
                            loss function
               p^*(\mathbf{x}, y)
                            unknown data generating distribution of labeled examples
                  p^*(\mathbf{x})
                            unknown data generating distribution of feature vectors only
                  c^*(\mathbf{x})
                            true unknown hypothesis (i.e. oracle labeling function), e.g.
                            y = c^*(\mathbf{x})
                            Values of unknown variables (latent)
           Z_1,\ldots,Z_C
                            random variables (latent) corresponding to z
                            predicted structure (output) for structured prediction
```

random variables corresponding to predicted structure y

 Y_1,\ldots,Y_C

 $\mathbb{I}(a=b) \quad \text{indicator function which returns 1 when a equals b and 0 otherwise—other notations are also possible $\mathbb{I}(a=b)=\mathbf{1}_{a=b}$$