1 Definitions Ahoy!

1.1 MLE/MAP

1. MLE: Finds the best parameters for a specific dataset, \mathcal{D} . Specifically, we want to find the parameters $\hat{\theta}_{MLE}$ that maximize the likelihood for \mathcal{D} .

$$\hat{\theta}_{MLE} = \operatorname*{argmax}_{\theta} p(\mathcal{D} \mid \theta)$$

2. **MAP:** Finds the best parameters given \mathcal{D} and a prior belief about the parameters. Specifically, we want to find the parameters $\hat{\theta}_{MAP}$ that maximize the posterior distribution $p(\theta \mid \mathcal{D})$ of parameters θ .

$$\begin{split} \hat{\theta}_{MAP} &= \operatorname*{argmax}_{\theta} p(\theta \mid \mathcal{D}) \\ &= \operatorname*{argmax}_{\theta} \frac{p(\mathcal{D} \mid \theta) p(\theta)}{\operatorname{Normalizing Constant}} \\ &= \operatorname*{argmax}_{\theta} p(\mathcal{D} \mid \theta) p(\theta) \\ &= \operatorname*{argmin}_{\theta} - \log \left(p(\mathcal{D} \mid \theta) p(\theta) \right) \\ &= \operatorname*{argmin}_{\theta} - \log p(\mathcal{D} \mid \theta) - \log p(\theta) \end{split}$$

3. MLE and MAP for conditional likelihood: When we want to predict the output y given the input x using our supervised dataset, we have to reformulate the MLE and MAP optimizations to use the conditional likelihood (and conditional posterior) instead:

$$\begin{split} \hat{\theta}_{MLE} &= \operatorname*{argmax}_{\theta} p(\mathcal{D} \mid \theta) \\ &= \operatorname*{argmax}_{\theta} \prod_{i=1}^{N} p\left(y^{(i)} \mid x^{(i)}, \theta\right) \\ &= \operatorname*{argmin}_{\theta} - \log \prod_{i=1}^{N} p\left(y^{(i)} \mid x^{(i)}, \theta\right) \\ &= \operatorname*{argmin}_{\theta} - \sum_{i=1}^{N} \log p\left(y^{(i)} \mid x^{(i)}, \theta\right) \end{split}$$

$$\begin{split} \hat{\theta}_{MAP} &= \operatorname*{argmax}_{\theta} p(\theta \mid \mathcal{D}) \\ &= \operatorname*{argmax}_{\theta} \left(\prod_{i=1}^{N} p\left(y^{(i)} \mid x^{(i)}, \theta\right) \right) p(\theta) \\ &= \operatorname*{argmin}_{\theta} - \log \prod_{i=1}^{N} p\left(y^{(i)} \mid x^{(i)}, \theta\right) - \log p(\theta) \\ &= \operatorname*{argmin}_{\theta} - \sum_{i=1}^{N} \log p\left(y^{(i)} \mid x^{(i)}, \theta\right) - \log p(\theta) \end{split}$$

2 Anybody have a MAP?

Imagine you are a data scientist working for an advertising company. The advertising company has recently run an ad and they want you to estimate its performance. The ad was shown to N people. $y^{(i)}=1$ if person i clicked on the ad and 0 otherwise. Thus $\sum_{i}^{N}y^{(i)}=N_{1}$ people decided to click on the ad. Assume that the probability that the i-th person clicks on the ad is ϕ and the probability that the i-th person does not click on the ad is $1-\phi$.

$$p(\mathcal{D} \mid \theta) = p\left(y^{(1)}, y^{(2)}, ..., y^{(N)} \mid \phi\right) = \prod_{i=1}^{N} p\left(y^{(i)} \mid \phi\right) = \phi^{N_1} (1 - \phi)^{N - N_1}$$

1. Calculate $\hat{\phi}_{MLE}$.

Note

2. Your coworker tells you that $\phi \sim \text{Beta}(\alpha, \beta)$. That is:

$$p(\phi) = \frac{\phi^{\alpha - 1} (1 - \phi)^{\beta - 1}}{B(\alpha, \beta)}$$

Note that $B(\alpha, \beta)$ is not a function of ϕ and can be treated as a constant. Formulate the optimization of the log posterior, $\operatorname{argmin}_{\phi} - \log p(\phi \mid \mathcal{D})$, in terms of N, N_1, ϕ, α , and β .

Now, calcula	te ϕ_{MAP} .					
Calculate $\hat{\phi}_{M}$	e time, so you, som IAP .		, decide to set	a - 0 + 1 - 1	, where $\rho = 100^{-4}$	0 1 -
How do $\hat{\phi}_{ML}$	$_{E}$ and $\hat{\phi}_{MAP}$ differ	:? Argue which	n estimate you	think is better	r.	

3 Conceptual MLE/MAP Questions

1.	When calculating the MAP estimates, we rely on the Bayes formula and then argue we can ignore $p(\mathcal{D})$. Why do we usually ignore calculating $p(\mathcal{D})$?
2.	As the amount of data increases, how are MLE and MAP affected?
3.	Can MLE and MAP estimates be the same? If so, when?