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1 Definitions

1.1 Gaussian Mixture Models (GMM)

1. GMM: Probabilistic models used for clustering data. The algorithm assumes that the data is generated
by a mixture of K Gaussian distributions, where K is a hyperparameter. GMM works by iteratively
estimating the parameters of the Gaussian distributions and the weights of the mixture components
using the Expectation-Maximization (EM) algorithm.

2. EM: An iterative method used for estimating the parameters of statistical models.

Let Z be a categorical random variable with components z1, z2, . . . , zk, where each component is 0
or 1 i.e. P (zj = 1) is the probability that a point comes from the Gaussian distribution j.

Let θ = µ1, µ2, . . . , µk,Σ1, . . . ,Σk, π1, . . . , πk, where πj = P (zj = 1).

The likelihood is
∏N

i=1 P (xi | θ).
Hence, the log-likelihood is ℓ(θ) =

∑N
i=1 logP (xi | θ) =

∑N
i=1 log

∑K
k=1 πkN (xi | µk,Σk).

E-Step: Calculate P (zj = 1 | xi,θ) ∀i, j.

P (zj = 1 | xi,θ)

=
p(xi | zj = 1, µj ,Σj)p(zj = 1 | πj)

p(xi | θ)

=
N (xi | µj ,Σj)πj∑K
k=1 πkN (xi | µl,Σk)

M-Step: Apply MLE and update the parameters πj , µj ,Σj ∀j.
Let’s find the MLE for µj .

∂l

∂µj

N∑
i=1

log

K∑
k=1

πkN (xi | µk,Σk)

=

N∑
i=1

1∑k
l=1 πlN (xi | µl,Σl)

∂l

∂µj

K∑
k=1

πkN (xi | µk,Σk)

=

N∑
i=1

1∑K
k=1 πkN (xi | µk,Σk)

∂l

∂µj
πjN (xi | µj ,Σj)

=

N∑
i=1

πjN (xi | µj ,Σj)∑K
k=1 πlN (xi | µk,Σk)

∂l

∂µj

(xi − µj)
2

2Σj

=

N∑
i=1

P (zj = 1 | xi, θ)Σ
−1
j (xi − µj)

We can set this to 0, and solve for µj to get µj =
∑N

i=1 P (zj=1|xi,θ)xi∑N
i=1 P (zj=1|xi,θ)

.

We can do similar calculations for the other two parameters πj and Σj .

πj =
∑N

i=1 P (zj=1|xi,θ)

N

Σj =
∑N

i=1 P (zj=1|xi,θ)(xi−µj)(xi−µj)
⊤∑N

i=1 P (zj=1|xi,θ)
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1.2 Kernel Regression

1. Kernel regression is a non-parametric technique (we don’t make any assumptions about the data) to
estimate the conditional expectation of a random variable, which helps us find a non-linear relationship
between a pair of random variables X and Y. In other words, it helps us to formulate a prediction
function ŷ = h(x) that works with data that is non-linear in x and y.

2. The process for kernel regression is as follows:

(a) Step 1: Compute α = (K+λI)−1y whereKij = k(x(i),x(j)) and k(x, z) is your kernel function.

(b) Step 2: Given a new point x, predict ŷ =
∑N

i=1 αik(x,x
(i))

1.3 Kernels

1. Kernel function

For a given feature transform function ϕ(x), a kernel function is a function that takes in two points, x
and z, and returns the value ϕ(x)⊤ϕ(z).

The purpose of a kernel function is to compute ϕ(x)⊤ϕ(z) without having to explicitly compute the
feature transforms ϕ(x) and ϕ(z) that can be prohibitively expensive in both memory and computation
time.

2. Common kernels functions

Name Function Feature space description

Linear k(x, z) = x⊤z Same as original input space

Polynomial (v1) k(x, z) = (x⊤z)d All polynomials of degree d

Polynomial (v2) k(x, z) = (x⊤z+ 1)d All polynomials up to and including degree d

RBF k(x, z) = e−γ∥x−z∥2
2 Equivalent to polynomial (v2) with infinite d

Boxcar k(x, z) =

{
1 if ∥x− z∥2 ≤ width

2

0 otherwise
Simple toy kernel

1.4 The Kernel Trick

The so-called kernel trick is to reformulate an optimization problem involving feature-transformed input
points ϕ(x), such that ϕ(x) never appears alone in the optimization and only appears in a dot product with
another feature-transformed point, ϕ(x)⊤ϕ(z). This dot product can then be replaced by the kernel function
associated with ϕ,

k(x, z) = ϕ(x)⊤ϕ(z)

The kernel trick can be used to efficiently complex feature transforms to a wide variety of machine learning
techniques, including linear regression, logistic regression, PCA, and SVMs.

1.5 Kernel Matrix

The kernel trick often includes applying the kernel to all pairs of N training points x(i) and x(j). These
kernel values can be represented by the symmetric kernel matrix K where Kij = k(x(i),x(j)).
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2 Gaussian Mixture Models

2.1 GMM vs K-means

What is the key difference between mixture modeling and K-means?

K-means is hard assignment (each point belongs to only one cluster) while mixture modeling is soft
assignment (calculates probability that a point belongs to a cluster).

In GMM, we aim to maximize our likelihood. That is, argmaxθ
∏N

i=1 P (xi | θ).

argmax
θ

N∏
i=1

P (xi | θ) = argmax
θ

N∏
i=1

K∑
k=1

P (xi, zi = k | θ)

= argmax
θ

N∏
i=1

K∑
k=1

P (zi = k)P (xi | zi = k, θ)

What happens to this expression if we assume a hard-assignment? Simplify using the assumption.

Hard assignment means that P (zi = k) = 1 if the point belongs to the jth cluster.

Thus we have:
argmaxθ

∏N
i=1

∑K
k=1 P (zi = k)P (xi | zi = k, θ)

Our points are from a gaussian distribution, thus we have:
argmaxθ

∏N
i=1

∑K
k=1 P (zi = k) 1√

2πσ2
exp( −1

2σ2 ||xi − µk||22)
= argmaxθ

∏N
i=1 exp(

−1
2σ2 ||xi − µk||22)

Taking the log, we get
= argmaxθ log

∏N
i=1 exp(

−1
2σ2 ||xi − µk||22)

= argmaxθ
∑N

i=1 log exp(
−1
2σ2 ||xi − µk||22)

= argmaxθ
∑N

i=1
−1
2σ2 ||xi − µk||22

= argminµ
∑N

i=1 ||xi − µk||22

This looks familiar....it’s K-means!
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3 Kernels

The XOR-problem is a non-linear problem which can be represented by the plot below. For the following
questions, consider a feature transformation - ϕ([x1, x2]

⊤) = [x1, x1x2]
⊤

1. What is the kernel k(x, z)?

K(x, z) = ϕ([x1, x2])
⊤ϕ([z1, z2]) = [x1, x1x2]

⊤[z1, z1z2] = x1z1 + x1x2z1z2
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2. How is the dataset represented in the transformed space?

3. Is the dataset linearly separable in the transformed space? If so, give the boundary in the original
space?

x1x2 = 0
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4 Kernel Regression

4.1 Conceptual Recap

1. Is kernel regression a parametric or nonparametric model? Explain.

It is a nonparametric model. The kernel is applied to each data point, so the number of
parameters increase as the number of data points increase.

2. Consider the RBF kernel, k(x, z) = e−γ∥x−z∥2
2 . Match the models below with their corresponding γ

values (0.01 or 100). What is the effect of γ on overfitting?

The left model corresponds to γ = 100, while the right corresponds to γ = 0.01. When γ grows
too large, the model is likely to overfit.
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4.2 Kernelize it!

For this question, consider the box kernel:

k(x,x′) =

{
1 ∥x− x′∥22 ≤ 1

2

0 otherwise

You are given the following 1D data points (x,y): (3,4), (3.7,1), (4.2,-2).

1. Find K and calculate α. For simplicity, let λ = 0. You can use an online inverse matrix calculator.

K (3x3):

1 1 0
1 1 1
0 1 1

, where K−1 (3x3):

 0 1 −1
1 −1 1
−1 1 0


y (3x1): [4, 1, -2]

With γ = 0, we get α (3x1): K−1y =

 0 1 −1
1 −1 1
−1 1 0

 [4, 1, -2] = [3, 1, -3]

2. Predict ŷ for x = 3.4.

ŷ =
∑3

i=1 αik(3.4, x
(i))

= α1k(3.4, 3) + α2k(3.4, 3.7) + α3k(3.4, 4.2)

= 3*1 + 1*1 + (-3)*0

= 4
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