10-315: Introduction to Machine Learning

Recitation 12

1.1

Definitions

Gaussian Mixture Models (GMM)

. GMM: Probabilistic models used for clustering data. The algorithm assumes that the data is generated

by a mixture of K Gaussian distributions, where K is a hyperparameter. GMM works by iteratively
estimating the parameters of the Gaussian distributions and the weights of the mixture components

using the Expectation-Maximization (EM) algorithm.

. EM: An iterative method used for estimating the parameters of statistical models.

Let Z be a categorical random variable with components zi, z9,..., 2;, where each component is 0
or 1ie. P(z; =1) is the probability that a point comes from the Gaussian distribution j.

Let 0 = p11, pt2, - fth, 215+, Dk, T, - - -, T, Where 75 = P(z; = 1).

The likelihood is [T, P(x; | 6).

Hence, the log-likelihood is £(8) = S°N  log P(x; | 0) = 2% log S p meN (i | pk, Ti)-

E-Step: Calculate P(z; =1 | z;,0) ¥i,j.

P(z; =1]x;0)
plw; | zj = 1,5, 5;)p(z; = 1| 7))
p(xi | 0)
_ N<xz|,u372 )7
S TN (2 | s Si)

M-Step: Apply MLE and update the parameters m;, 11, 3, Vj.
Let’s find the MLE for p;.
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SN, P(zij=1lzi,0)x;

We can set this to 0, and solve for u; to get u; = SN P te)

We can do similar calculations for the other two parameters 7; and X;.
r = Zicy PGi=1lzi,0)
=

N
Y- SN P(zyj=12:,0) (wi—py) (wi—py) "
J Zf\[:l P(z]-:1|w¢,0)
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1.2 Kernel Regression

1. Kernel regression is a non-parametric technique (we don’t make any assumptions about the data) to
estimate the conditional expectation of a random variable, which helps us find a non-linear relationship
between a pair of random variables X and Y. In other words, it helps us to formulate a prediction
function § = h(x) that works with data that is non-linear in x and y.

2. The process for kernel regression is as follows:
(a) Step 1: Compute @ = (K+AI)~'y  where K;; = k(x(?,x0)) and k(x, z) is your kernel function.
(b) Step 2: Given a new point x, predict § = Ziil aik(x, x@)

1.3 Kernels

1. Kernel function

For a given feature transform function ¢(x), a kernel function is a function that takes in two points, x
and z, and returns the value ¢(x) " ¢(z).

The purpose of a kernel function is to compute ¢(x)" ¢(z) without having to explicitly compute the
feature transforms ¢(x) and ¢(z) that can be prohibitively expensive in both memory and computation
time.

2. Common kernels functions

Name Function Feature space description
Linear k(x,2) =x'z Same as original input space
Polynomial (v1) | k(x,z) = (x'z)? All polynomials of degree d
Polynomial (v2) | k(x,2z) = (x 'z + 1)¢ All polynomials up to and including degree d
RBF k(x,z) = e Ix= zll3 Equivalent to polynomial (v2) with infinite d
Boxcar { if [} —.ZH2 = %dth Simple toy kernel

otherwise

1.4 The Kernel Trick

The so-called kernel trick is to reformulate an optimization problem involving feature-transformed input
points ¢(x), such that ¢(x) never appears alone in the optimization and only appears in a dot product with
another feature-transformed point, ¢(x) " ¢(z). This dot product can then be replaced by the kernel function
associated with ¢,

k(x,2) = 6(x) ¢(2)

The kernel trick can be used to efficiently complex feature transforms to a wide variety of machine learning
techniques, including linear regression, logistic regression, PCA, and SVMs.

1.5 Kernel Matrix

The kernel trick often includes applying the kernel to all pairs of N training points x(¥ and x(). These
kernel values can be represented by the symmetric kernel matrix K where K;; = k(x®,x)).
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2 Gaussian Mixture Models

2.1 GMM vs K-means

What is the key difference between mixture modeling and K-means?

7

K-means is hard assignment (each point belongs to only one cluster) while mixture modeling is soft
assignment (calculates probability that a point belongs to a cluster).

In GMM, we aim to maximize our likelihood. That is, argmax, Hf\,:l P(x; | 0).

N N K
argmax | | P(z; | 0) = argmax Plz;,zi=Fk| 0
en [[P@i16) =argmax [ P( | 6)

i=1 i=1k=1

N K
= argmax P(zi =k)P(x; | z; = k,0
gmax [ Y- Plei = )P (o | 2= k,6)

i=1k=1

What happens to this expression if we assume a hard-assignment? Simplify using the assumption.

7

Hard assignment means that P(z; = k) = 1 if the point belongs to the jth cluster.

Thus we have:
argmax Hfil Zle P(z; =k)P(x; | z; = k,0)

Our points Jare fr?(m a gaussian distribution, thus we have:
argmaxg Hi:l Zk}:l P(z = k)\/ﬁ eXP(%HQ?i - Hk”%)

N _
= argmaxy [ [;_; exp(gz[los — pucl[3)

Taking the log, we get
_ 1 N =11 _ 2
argmax, log [[,.Z; exp(5z ||zi — prll3)
N _
= argmaxy »_,;_, logexp(o% ||z — pill3)
_ N o =1, 2
= argmaxg » ;¢ 5o3||Ti — pxll3
. N
= argmin,, Dim |l — pel |5

This looks familiar....it’s K-means!
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3 Kernels

The XOR-problem is a non-linear problem which can be represented by the plot below.

questions, consider a feature transformation - ¢([x1, 2] ") = [x1, z122] T

N

1. What is the kernel k(z, z)?

For the following

K(x,z) = ¢([5E1,5U2DT¢([21,22]) = [$1,$1$2]T[21,2122] = 2121 + X1T22122
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2. How is the dataset represented in the transformed space?

J

3. Is the dataset linearly separable in the transformed space? If so, give the boundary in the original
space?

L1Xg = 0
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4 Kernel Regression

4.1 Conceptual Recap

1. Is kernel regression a parametric or nonparametric model? Explain.

It is a nonparametric model. The kernel is applied to each data point, so the number of
parameters increase as the number of data points increase.

J

2. Consider the RBF kernel, k(z,z) = e~llz==l3 Match the models below with their corresponding ~y
values (0.01 or 100). What is the effect of v on overfitting?

15 15 °
109 10
05 05
0.0 00
-05 1 -05
-10 -1.0
0 1 2 3 1 0 1 2 3 4

The left model corresponds to v = 100, while the right corresponds to v = 0.01. When ~ grows
too large, the model is likely to overfit.
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4.2 Kernelize it!

For this question, consider the box kernel:

voery = [1 Ix=xI3 <3
x,X') = ,
0 otherwise

You are given the following 1D data points (x,y): (3,4), (3.7,1), (4.2,-2).

1. Find K and calculate . For simplicity, let A = 0. You can use an online inverse matrix calculator.

1 1 0 0 1 -1
K(@3x3): [1 1 1|, whereK™?(3x3): |1 -1 1
0 1 1 -1 1 0
y (1) [4, 1,2
0 1 -1
With v =0, we get @ (3x1): K™y = | 1 -1 1| [4,1,-2] =3, 1,-3]
-1 1 0

2. Predict g for x = 3.4.

¥ =0 aik(3.4,20)
= a1k(3.4,3) + aok(3.4,3.7) + azk(3.4,4.2)
= 3*1 + 1*1 + (-3)*0

=4
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