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1 Motivation: Dimensionality Reduction

Dimensionality reduction is a key technique in machine learning and data analysis. It aims to map
the original dataset to a smaller dimension, where each sample has fewer features. Dimensionality
reduction can be thought of as reducing the dimensions of the data matrix x from N x M to N x K
where K < M, hence the name dimensionality reduction. By reducing the number of features, we
can

e Reduce computational cost and therefore increase the training speed of our models because
there are fewer features to train on

e Improve model performance by excluding irrelevant or noisy features

e Reconstruct high-dimensional data in two or three dimensions for better visualization

Principal component analysis is just one dimensionality reduction strategy, which we will cover in
detail below.



2 PCA Math Background

2.1 Projections
2.1.1 Scalar Projection

Given two vectors in RV denoted x and v, the scalar projection of x onto v is defined as:
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Note that if we assume that v is a unit vector, i.e., ||v||2 = 1, the projection formula is much simpler:

d=v'x
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The scalar projection, d, is the length of the vector x projected onto v. We can prove this geomet-
rically (recall that v'x = v - x = ||v]|2]|x]||2 cos(f)):
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2.1.2 Vector Projection
Recall from linear algebra, the definition of vector projection. Given two vectors in R denoted x
and v, the vector projection of x onto v, or proj,x, is defined as:
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Note that if we assume that v is a unit vector, i.e., ||v||2 = 1, the projection formula is much simpler:
z = (vTx) v

The projected vector z lies in the direction of v and represents the component of x in the direction
of v. We can think of the projection z as a restriction of x to the v-axis. The vector projection is

visualized below:
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Geometrically, the vector projection can be thought of as the vector z above, when both vectors are

anchored at the origin.

To develop a better understanding of how projections work and what they mean, feel free to use
this Desmos link. Moving around the w and v points in the Desmos link will change the projected

vector.


https://www.desmos.com/calculator/ejek9vjv5n

2.2 Rotating Data

Now that we have established an intuition for projections, we can use this concept for rotating data.
Recall that a basis for RY is a set of unit vectors V = {vi,..., vy} such that any vector x € RY
can be written as a linear combination of vi,...,vy. When the basis vectors are perpendicular
to each other, they can also be thought of as the axes of our data. For example, the basis vectors
vi = [1,0]" and vy = [0,1] " represent the z-axis and y-axis in the standard Cartesian coordinate
system. You should observe that vector x € R? can be written as z1vi + z9ve where z; and 2y are
scalars.

2.2.1 Rotation

We can transform the data to be aligned to any set of axes by projecting onto the corresponding set
of basis vectors. Consider the x = [2,3]". Now we will project x onto the basis vectors
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Note that v and vy are once again unit vectors. Performing the projection calculation, we have
that

2.2.2 Projection Matrix

You may have noticed that when the v; are unit vectors, z; is just the dot product of v and x. Let

us now define V as:
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Then it follows that z = Vx where the matrix V is called the projection matrix. Sometimes we
want to reconstruct the original x from the projection z. Let x’ = V'z = VTVx. When the
projection matrix V is a square matrix, we are projecting x into a space with the same number of
dimensions. Then V'V =1 = x’ = x, so we can reconstruct x perfectly. When we project into

a lower-dimensional space, V' is not a square matrix and thus we cannot reconstruct x perfectly.



Now, we can consider reversing that rotation through a different rotation matrix. Define U = V' T.
We can see that by applying the rotation U onto z, we get x’ = Uz. Note that this is simply another
rotation; however, because we have specifically chosen U = V=1 = VT we get that x’ = x.

Intuitively, if x represents the data in terms of the standard basis [1,0] " and [0,1] T, then z represents
2 1 -1 2
V5 V5 V5 V5

below. Moving from plot A to plot B represents applying the rotation matrix V onto x to get z.

the data in terms of v; = . We can visualize what is happening

and vo = [

Then, by moving from plot C' to D, we can see the reverse step by applying the rotation matrix U
onto z to get x’
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2.3 Covariance Matrix

You may be wondering what we mean by the variance of our dataset. In machine learning, when
our dataset D has multiple features, each sample is represented as a column vector x(¥ € RM. Then
we can represent the entire dataset as a matrix x = [x(?) .. x(M]T,

In this context, variance measures the variability of each feature in the dataset, as well as the
relationships between different features. We will now introduce the covariance matrix.

The covariance matrix & € RM*M ig a square matrix that summarizes the covariance between each
pair of features in the dataset. The size of the matrix is determined by the number of features.

e Diagonal Elements: The diagonal elements of the covariance matrix represent the variances
of each feature. In other words, they represent how spread out the values are for a specific
ivzl(x%) — 1tm)? where D is the

value of feature m for the i-th data point and u,, is the mean of feature m.

1
feature. Mathematically, the variance of feature m is — >

e Off-Diagonal Elements: The off-diagonal elements of the covariance matrix represent the
covariance between different features. Covariance is a measure of how two features vary to-
gether. If the covariance is positive, it means that when one feature increases, the other
tends to increase as well. If it’s negative, it means that when one feature increases, the
other tends to decrease. Mathematically, the covariance between feature j and feature j is
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Generally, we assume that our data is centered and scaled for each feature, in other words u,, =
Zi]\il x%) =0.
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Because each feature of our dataset has a mean of zero, and 3j;, = N Zf\;1(x§) — ,uj)(x;) — UE),

the covariance matrix simplifies to
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