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1 Motivation: Dimensionality Reduction

Dimensionality reduction is a key technique in machine learning and data analysis. It aims to map

the original dataset to a smaller dimension, where each sample has fewer features. Dimensionality

reduction can be thought of as reducing the dimensions of the data matrix x from N ×M to N ×K

where K < M , hence the name dimensionality reduction. By reducing the number of features, we

can

• Reduce computational cost and therefore increase the training speed of our models because

there are fewer features to train on

• Improve model performance by excluding irrelevant or noisy features

• Reconstruct high-dimensional data in two or three dimensions for better visualization

Principal component analysis is just one dimensionality reduction strategy, which we will cover in

detail below.
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2 PCA Math Background

2.1 Projections

2.1.1 Scalar Projection

Given two vectors in RN denoted x and v, the scalar projection of x onto v is defined as:

d =
v⊤x

∥v∥2

Note that if we assume that v is a unit vector, i.e., ∥v∥2 = 1, the projection formula is much simpler:

d = v⊤x

x

v

d

θ

The scalar projection, d, is the length of the vector x projected onto v. We can prove this geomet-

rically (recall that v⊤x = v · x = ∥v∥2∥x∥2 cos(θ)):

cos(θ) ≜
d

∥x∥2
d = ∥x∥2 cos(θ)

d =
v⊤x

∥v∥2

2.1.2 Vector Projection

Recall from linear algebra, the definition of vector projection. Given two vectors in RN denoted x

and v, the vector projection of x onto v, or projvx, is defined as:

z =
v⊤x

∥v∥2
v

∥v∥2

Note that if we assume that v is a unit vector, i.e., ∥v∥2 = 1, the projection formula is much simpler:

z =
(
v⊤x

)
v

The projected vector z lies in the direction of v and represents the component of x in the direction

of v. We can think of the projection z as a restriction of x to the v-axis. The vector projection is

visualized below:
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Geometrically, the vector projection can be thought of as the vector z above, when both vectors are

anchored at the origin.

To develop a better understanding of how projections work and what they mean, feel free to use

this Desmos link. Moving around the u and v points in the Desmos link will change the projected

vector.
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2.2 Rotating Data

Now that we have established an intuition for projections, we can use this concept for rotating data.

Recall that a basis for RN is a set of unit vectors V = {v1, . . . ,vN} such that any vector x ∈ RN

can be written as a linear combination of v1, . . . ,vN . When the basis vectors are perpendicular

to each other, they can also be thought of as the axes of our data. For example, the basis vectors

v1 = [1, 0]⊤ and v2 = [0, 1]⊤ represent the x-axis and y-axis in the standard Cartesian coordinate

system. You should observe that vector x ∈ R2 can be written as z1v1 + z2v2 where z1 and z2 are

scalars.

2.2.1 Rotation

We can transform the data to be aligned to any set of axes by projecting onto the corresponding set

of basis vectors. Consider the x = [2, 3]⊤. Now we will project x onto the basis vectors

v1 =

[
2√
5
,
1√
5

]⊤
and v2 =

[
−1√
5
,
2√
5

]⊤
Note that v1 and v2 are once again unit vectors. Performing the projection calculation, we have

that

z1 = v⊤
1 x =

7√
5
≈ 3.13

z2 = v⊤
2 x =

4√
5
≈ 1.79
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−2

2

z1 z2

v1

v2

x

A

−2 2

−2

2

z2

z1

v1

v2 z

B

2.2.2 Projection Matrix

You may have noticed that when the vi are unit vectors, zi is just the dot product of v1 and x. Let

us now define V as:

V =


− v⊤

1 −
...

− v⊤
N −


Then it follows that z = V x where the matrix V is called the projection matrix. Sometimes we

want to reconstruct the original x from the projection z. Let x′ = V ⊤z = V ⊤V x. When the

projection matrix V is a square matrix, we are projecting x into a space with the same number of

dimensions. Then V ⊤V = I =⇒ x′ = x, so we can reconstruct x perfectly. When we project into

a lower-dimensional space, V is not a square matrix and thus we cannot reconstruct x perfectly.
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Now, we can consider reversing that rotation through a different rotation matrix. Define U = V ⊤.

We can see that by applying the rotation U onto z, we get x′ = Uz. Note that this is simply another

rotation; however, because we have specifically chosen U = V −1 = V ⊤, we get that x′ = x.

Intuitively, if x represents the data in terms of the standard basis [1, 0]⊤ and [0, 1]⊤, then z represents

the data in terms of v1 =

[
2√
5
,
1√
5

]
and v2 =

[
−1√
5
,
2√
5

]
. We can visualize what is happening

below. Moving from plot A to plot B represents applying the rotation matrix V onto x to get z.

Then, by moving from plot C to D, we can see the reverse step by applying the rotation matrix U

onto z to get x′
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2.3 Covariance Matrix

You may be wondering what we mean by the variance of our dataset. In machine learning, when

our dataset D has multiple features, each sample is represented as a column vector x(i) ∈ RM . Then

we can represent the entire dataset as a matrix x = [x(i) . . .x(N)]⊤.

In this context, variance measures the variability of each feature in the dataset, as well as the

relationships between different features. We will now introduce the covariance matrix.

The covariance matrix Σ ∈ RM×M is a square matrix that summarizes the covariance between each

pair of features in the dataset. The size of the matrix is determined by the number of features.

• Diagonal Elements: The diagonal elements of the covariance matrix represent the variances

of each feature. In other words, they represent how spread out the values are for a specific

feature. Mathematically, the variance of feature m is
1

N

∑N
i=1(x

(i)
m − µm)2 where x

(i)
m is the

value of feature m for the i-th data point and µm is the mean of feature m.

• Off-Diagonal Elements: The off-diagonal elements of the covariance matrix represent the

covariance between different features. Covariance is a measure of how two features vary to-

gether. If the covariance is positive, it means that when one feature increases, the other

tends to increase as well. If it’s negative, it means that when one feature increases, the

other tends to decrease. Mathematically, the covariance between feature j and feature j is
1

N

∑N
i=1(x

(i)
j − µj)(x

(i)
k − µk).

Generally, we assume that our data is centered and scaled for each feature, in other words µm =∑N
i=1 x

(i)
m = 0.

Because each feature of our dataset has a mean of zero, and Σjk =
1

N

∑N
i=1(x

(i)
j − µj)(x

(i)
k − µk),

the covariance matrix simplifies to

Σ =
1

N
x⊤x
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