
10-315
Introduction to ML

Logistic Regression

Instructor: Pat Virtue



Example: Breast cancer classification
Well-known classification example: using machine learning to diagnose 
whether a breast tumor is benign or malignant [Street et al., 1992]

Setting: doctor extracts a sample of fluid from tumor, stains cells, then 
outlines several of the cells (image processing refines outline)

System computes features for each cell such as area, perimeter, 
concavity, texture (10 total); computes mean/std/max for all features
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Example: Breast cancer classification
Plot of two features: mean area vs. mean concave points, for two classes
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Linear classification example
Linear classification: linear decision boundary
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Logistic regression for classification
Linear classification: linear decision boundary

Probabilistic classification: provide 𝑃(𝑌 = 1 ∣ 𝑥) rather than just ො𝑦 ∈ {0, 1}

Slide credit: CMU AI Zico Kolter



Logistic regression for classification
Linear classification: linear decision boundary

Probabilistic classification: provide 𝑃(𝑌 = 1 ∣ 𝑥) rather than just ො𝑦 ∈ {0, 1}

Slide credit: CMU AI Zico Kolter



Logistic regression for classification
Linear classification: linear decision boundary

Probabilistic classification: provide 𝑃(𝑌 = 1 ∣ 𝑥) rather than just ො𝑦 ∈ {0, 1}

Slide credit: CMU AI Zico Kolter



Pre-reading
Cross-entropy loss



Classification Decisions
Predicting one specific class is troubling, especially when we know that 
there is some uncertainty in our prediction



Classification Probability
Constructing a model than can return the probability of the output 
being a specific class could be incredibly useful



Classification Probability
Constructing a model than can return the probability of the output 
being a specific class could be incredibly useful

We can still make decisions, .e.g,
argmax

𝑘
 𝑃(𝑌𝑘 = 1 ∣ 𝐱)

𝑃(𝑌𝑠𝑒𝑡𝑜𝑠𝑎 = 1 ∣ 𝐱) 𝑃(𝑌𝑣𝑒𝑟𝑠 = 1 ∣ 𝐱) 𝑃(𝑌𝑣𝑖𝑟𝑔 = 1 ∣ 𝐱)

1.0



Loss for Probabilty Disributions
We need a way to compare how good/bad each prediction is

Cross-entropy loss

ℓ 𝐲, ො𝐲 = − σ𝑘=1
𝐾  𝑦𝑘  log ො𝑦𝑘 

𝑃(𝑌𝑠𝑒𝑡𝑜𝑠𝑎 = 1 ∣ 𝐱) 𝑃(𝑌𝑣𝑒𝑟𝑠 = 1 ∣ 𝐱) 𝑃(𝑌𝑣𝑖𝑟𝑔 = 1 ∣ 𝐱)

1.0



Loss for Probabilty Disributions
We need a way to compare how good/bad each prediction is

Cross-entropy loss

ℓ 𝐲, ො𝐲 = − σ𝑘=1
𝐾  𝑦𝑘  log ො𝑦𝑘 

1.0

𝑦1 ො𝑦1 𝑦2 ො𝑦2 𝑦3 ො𝑦3



Loss for Probabilty Disributions
Cross-entropy more generally is a way to compare any to probability 
distributions*

Cross-entropy loss

𝐻(𝑃, 𝑄) = − σ𝑘=1
𝐾  𝑝(𝑦𝑘)  log 𝑞(𝑦𝑘) 

𝑝 𝑦1  𝑞(𝑦1)

1.0

𝑝 𝑦2  𝑞(𝑦2) 𝑝 𝑦3  𝑞(𝑦3)

*when used in logistic regression 
   𝐲 is always a one-hot vector



Pre-reading
Linear model for classification



Prediction for Cancer Diagnosis
Learn to predict if a patient has cancer (𝑌 = 1) or not (𝑌 = 0) given the 
input of two test results, 𝑋𝐴 and 𝑋𝐵.



Prediction for Cancer Diagnosis
Learn to predict if a patient has cancer (𝑌 = 1) or not (𝑌 = 0) given the 
input of just one test result, 𝑋𝐴.



Building on a Linear Model
Linear vs Thresholded Linear vs Logistic Linear



Building on a Linear Model
Linear vs Thresholded Linear vs Logistic Linear



Logistic Regression
Linear model for classification

(now with 2+ input features)



Building on a Linear Model
With two input features, 𝐱 = 𝑥1 𝑥2

⊤ , we have two weight 
parameters and one bias parameter, 𝐰 = 𝑤1 𝑤2

⊤ and 𝑏, that control 
the slope and vertical offset of the following plane:

𝑧 = 𝐰⊤𝐱 + 𝑏

The sigmoid function ො𝑦 = 𝑔(𝑧) then squashed the plane such that any 
𝑧 values going to +∞ go to 1 and 𝑧 values going to −∞ go to −1

𝑔(𝑧) 𝑧 

𝑥1 𝑥2 



Slide credit: CMU MLD Matt Gormley

Building on a Linear Model



Slide credit: CMU MLD Matt Gormley

Building on a Linear Model



Slide credit: CMU MLD Matt Gormley

Logistic Regression Decision Boundary



Logistic Regression
Linear decision boundary



Slide credit: CMU MLD Matt Gormley

Logistic Regression Decision Boundary



Exercise
Interact with the linear_logistic.ipynb posted on the course website schedule



Linear in Higher Dimensions
What are these linear shapes called for 1-D, 2-D, 3-D, M-D input?

𝑦 = 𝒘𝑇𝒙 + 𝑏

 𝒘𝑇𝒙 + 𝑏 = 0

 𝒘𝑇𝒙 + 𝑏 ≥ 0

    

𝒙 ∈ ℝ 𝒙 ∈ ℝ2 𝒙 ∈ ℝ3 𝒙 ∈ ℝ𝑀



Logistic Regression

Slide credit: CMU MLD Matt Gormley



Logistic Regression

Slide credit: CMU MLD Matt Gormley



Logistic Regression

Slide credit: CMU MLD Matt Gormley



Poll 3
For a point 𝐱 on the decision boundary of logistic regression, 
does 𝑔 𝐰𝑇𝐱 + 𝑏 = 𝐰𝑇𝐱 + 𝑏?

A) Yes

B) No

C) I have no idea
𝑔 𝑧 =

1

1 + 𝑒−𝑧



Logistic Regression
Optimization



Optimizing a Model for Cancer Diagnosis
Learn to predict if a patient has cancer (𝑌 = 1) or not (𝑌 = 0) given the 
input of two test results, 𝑋𝐴, 𝑋𝐵. Note: bias term included in 𝐱.

𝑝 𝑌 = 1 𝐱, 𝜽 =
1

1 + 𝑒−𝜽𝑇𝐱



Empirical Risk Minimization
Still doing empirical risk minimization, just with a cross-entropy loss



Empirical Risk Minimization
Still doing empirical risk minimization, just with a cross-entropy loss

Cross-entropy loss

ℓ 𝐲, ො𝐲 = − σ𝑘=1
𝐾  𝑦𝑘  log ො𝑦𝑘 

But now we need a model ℎ𝜽(𝐱) that 
returns values that look like probabilities



Binary Logistic Regression
1) Model

2) Objective function

3) Solve for ෡𝜽



Binary Logistic Regression
Objective: Special case for binary logistic regression

ො𝑦 = 𝑔 𝜽𝑇𝐱  

𝑔 𝑧 =
1

1 + 𝑒−𝑧

𝐽 𝜽 = −
1

𝑁
෍

𝑖

෍

𝑘

𝑦𝑘
𝑖

 log 𝑦𝑘
𝑖

= −
1

𝑁
෍

𝑖

𝑦 𝑖 log ො𝑦(𝑖) + 1 − 𝑦(𝑖) log 1 − ො𝑦(𝑖)



Solve Logistic Regression

𝐽(𝑖) 𝜽 = − 𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦 𝑖 log 1 − ො𝑦 𝑖  

𝜕𝐽 𝑖

𝜕𝜽
= − 𝑦 𝑖 − ො𝑦 𝑖  𝐱 𝑖  

ො𝑦 = 𝑔 𝜽𝑇𝐱  𝑔 𝑧 =
1

1 + 𝑒−𝑧

𝑑𝑔

𝑑𝑧
= 𝑔 𝑧 1 − 𝑔 𝑧
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𝐽(𝑖) 𝜽 = − 𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦(𝑖) log 1 − ො𝑦(𝑖)  

𝜕𝐽 𝑖

𝜕𝜽
= − 𝑦 𝑖 − ො𝑦 𝑖  𝐱 𝑖  

ො𝑦 = 𝑔 𝜽𝑇𝐱  𝑔 𝑧 =
1

1 + 𝑒−𝑧

𝑑𝑔

𝑑𝑧
= 𝑔 𝑧 1 − 𝑔 𝑧



Solve Logistic Regression

𝐽(𝑖) 𝜽 = − 𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦(𝑖) log 1 − ො𝑦(𝑖)  

𝜕𝐽 𝑖

𝜕𝜽
= − 𝑦 𝑖 − ො𝑦 𝑖  𝐱 𝑖  

ො𝑦 = 𝑔 𝜽𝑇𝐱  𝑔 𝑧 =
1

1 + 𝑒−𝑧

𝑑𝑔

𝑑𝑧
= 𝑔 𝑧 1 − 𝑔 𝑧



Solve Logistic Regression

𝐽 𝜽 = −
1

𝑁
σ𝑖 𝑦 𝑖 log ො𝑦(𝑖) + 1 − 𝑦(𝑖) log 1 − ො𝑦(𝑖)  

∇𝜽𝐽 𝜽 = −
1

𝑁
σ𝑖 𝑦 𝑖 − ො𝑦 𝑖 𝐱 𝑖  

∇𝜽𝐽(𝜽) = 0? 

No closed form solution 

Back to iterative methods. Solve with (stochastic) gradient descent, 
Newton’s method, or Iteratively Reweighted Least Squares (IRLS)

ො𝑦 = 𝑔 𝜽𝑇𝐱  𝑔 𝑧 =
1

1+𝑒−𝑧 



Solve Logistic Regression

𝐽 𝜽 = −
1

𝑁
σ𝑖 𝑦 𝑖 log ො𝑦(𝑖) + 1 − 𝑦(𝑖) log 1 − ො𝑦(𝑖)  

∇𝜽𝐽 𝜽 = −
1

𝑁
σ𝑖 𝑦 𝑖 − ො𝑦 𝑖 𝐱 𝑖  

No closed form solution 

Back to iterative methods. Solve with (stochastic) gradient descent, 
Newton’s method, or Iteratively Reweighted Least Squares (IRLS)

Good news: The logistic regression optimization function is convex!

ො𝑦 = 𝑔 𝜽𝑇𝐱  𝑔 𝑧 =
1

1+𝑒−𝑧 



Logistic Regression
Convexity



Optimization
Convex function

If 𝑓(𝒙) is convex, then:

▪ 𝑓 𝛼𝒙 + 1 − 𝛼 𝒛 ≤ 𝛼𝑓 𝒙 + 1 − 𝛼 𝑓 𝒛
∀ 0 ≤ 𝛼 ≤ 1

Demo on Desmos

https://www.desmos.com/calculator/3zljmwqyel


Optimization
Convex function

If 𝑓(𝒙) is convex, then:

▪ 𝑓 𝛼𝒙 + 1 − 𝛼 𝒛 ≤ 𝛼𝑓 𝒙 + 1 − 𝛼 𝑓 𝒛 ∀ 0 ≤ 𝛼 ≤ 1

Convex optimization

If second derivative is ≥ 0 
everywhere then function is 
convex

If 𝑓(𝒙) is convex, then:

▪ Every local minimum is also a 
global minimum ☺



Optimization
ℎ 𝐱 = 𝑔(𝐰⊤𝐱 + 𝑏) is definitely not convex

But...what are we optimizing over in logistic regression?

𝐽 𝜽 = −
1

𝑁
෍

𝑖

෍

𝑘

𝑦𝑘
𝑖

log 𝑦𝑘
𝑖

= −
1

𝑁
෍

𝑖

𝑦 𝑖 log ො𝑦(𝑖) + 1 − 𝑦(𝑖) log 1 − ො𝑦(𝑖)



Multi-class Logistic Regression



Multi-class Logistic Regression
Desmos Demo:

https://www.desmos.com/calculator/53bautbxjp

https://www.desmos.com/calculator/53bautbxjp


Multi-class Logistic Regression
Cross-entropy loss

ℓ 𝒚, ො𝐲 = − σ𝑘=1
𝐾 𝑦𝑘 log ො𝑦𝑘

Model

ො𝐲 = ℎ 𝐱 = 𝑔𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐳  

𝐳 = Θ𝐱 

𝑧𝑘 = 𝜽𝑘𝐱 

𝐱 =
1
x1

x2

 𝜽𝑘 =

𝑏𝑘

𝑤𝑘,1

𝑤𝑘,2

 Θ =

− 𝜽1
⊤ −

− 𝜽2
⊤ −

− 𝜽3
⊤ −

=

𝑏1 𝑤1,1 𝑤1,2

𝑏2 𝑤2,1 𝑤2,2

𝑏3 𝑤3,1 𝑤3,2

One vector of 
parameters for 

each class Stacked into a matrix of 𝐾 × 𝑀 parameters



Logistic Function
Logistic (sigmoid) function converts value from −∞, ∞ → (0, 1)

𝑔 𝑧 =
1

1 + e−z
=

𝑒𝑧

𝑒𝑧 + 1

𝑔 𝑧 and 1 − 𝑔 𝑧 sum to one

Example 2 → 𝑔 2 = 0.88,     1-𝑔 2 = 0.12



Softmax Function
Softmax function convert each value in a vector of values 

from −∞, ∞ → (0, 1), such that they all sum to one.

𝑔 𝑧 𝑗 =
𝑒𝑧j

σ𝑘=1
𝐾 𝑒𝑧𝑘

𝑧1

𝑧2

⋮
𝑧𝐾

→

𝑒𝑧1

𝑒𝑧2

⋮
𝑒𝑧K

⋅
1

σ𝑘=1
𝐾 𝑒𝑧𝑘

Example 

−1
4
1

−2
3

→

0.0047
0.7008
0.0349
0.0017
0.2578



Multiclass Predicted Probability
Multiclass logistic regression uses the parameters learned across all 
𝐾 classes to predict the discrete conditional probability distribution 
of the output 𝑌 given a specific input vector 𝐱

𝑝(𝑌 = 1 ∣ 𝐱, 𝜽1, 𝜽2, 𝜽3)
𝑝(𝑌 = 2 ∣ 𝐱, 𝜽1, 𝜽2, 𝜽3)
𝑝(𝑌 = 3 ∣ 𝐱, 𝜽1, 𝜽2, 𝜽3)

=
𝑒𝜽1

𝑇𝐱

𝑒𝜽2
𝑇𝐱

𝑒𝜽3
𝑇𝐱

⋅
1

σ𝑘=1
𝐾 𝑒𝜽𝑘

𝑇𝐱



Multiclass Predicted Probability
Multiclass logistic regression uses the parameters learned across all 
𝐾 classes to predict the discrete conditional probability distribution 
of the output 𝑌 given a specific input vector 𝐱



Logistic Regression with 
Polynomial Features



Exercise
Interact with the logistic_quadratic.ipynb posted on the course website 
schedule



Exercise
Interact with the logistic_quadratic.ipynb posted on the course website 
schedule
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