10-315
Introduction to ML

K-Nearest Neighbor

and
Model Selection

Instructor: Pat Virtue




Reminder: Decision Tree Worksheet

Consider input features x € R?.
Draw a reasonable decision tree. /l} 5 /




Poll 1

Decision tree generalization
Which of the following generalize best to unseen examples?
A. Small tree with low training accuracy

Large tree with low training accuracy

B
C. '\Small tree with high training accuracy
D. Large tree with high training accuracy



Poll 1

Decision tree generalization
Which of the following generalize best to unseen examples?

C. Small tree with high training accuracy



Poll 2

True or False:

For any dataset, you can find a decision tree that can perfectly classify
the training data.



Underfitting and Overfitting

Overfitting occurs when model: Underfitting occurs when model:

" is too complex " is too simple

= fits noise or “outliers” in the " can’t capture the actual pattern of
training dataset as opposed to the interest in the training dataset
actual pattern of interest = has too much inductive bias

" doesn’t have enough inductive bias

pushing it to generalize



Underfitting and Overfitting: Classification
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Underfitting and Overfitting: Regression

Underfitting
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Decision Trees

When do we stop (base case)?

>< When leaves are “pure”, i.e., output values are all the same
= Likely to overfit

Limit

" Tree depth

" Total number of leaves

= Splitting criteria threshold, e.g. splitting criteria<=1
" Minimum number of datapoints in a leaf



But how do we choose all of those [imits?!?

Answer: Model selection

Model selection is the process to choose the “best” among a
set of (trained) models



Today

\/ Underfitting and Overfitting
= Decision Tree stopping criteria
= (Classification and regression examples

k-Nearest Neighbor

@ = [-NN k- MV ( notation)
@ U Detalls

Model Selection
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K-Nearest Neighbor



Nearest Neighbor Classifier

_
AR new
>(Z Test subject ne
O
@ @
© O
@ O
@
® O
. v
./Zl -
¢ @® Whales
° o O Seals
o ® Sharks
®
[ X\




Nearest Neighbor Classifier

Test subject
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Nearest Neighbor Classification

N
Given a training dataset D = {y("),x(")}nzl, y € {1, ..

and a test input X;.¢, predict the class label, Vo5

1) Find the closest point in the training data to X;eq¢
n = argmin d (X¢egr , X™)

n
2) Return the class label of that closest point
5} — y(n)
test

Need distance function! What should d(x, z) be?

,C}, xe RM

)z 2= N3-2)), é (.



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from
3 different species: Iris setosa (0), Iris virginica (1), Iris
versicolor (2) collected by Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0

0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from
3 different species: Iris setosa (0), Iris virginica (1), Iris
versicolor (2) collected by Anderson (1936)

{ X 7
Sepal Sepal
Length Width
4.3 3.0
4.9 3.6
5.3 3.7 '

0
0
0
1 4.9 2.4
1 5.7 2.8
1 6.3 3.3
1 6.7 3.0

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



Nearest Neighbor on Fisher Iris Data
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Nearest Neighbor on Fisher Iris Data

Slide credit: CMU MLD Matt Gormley
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Poll 3

’Vai(\

Which methods can achieve zero training error on this dataset?

\/A. Decision trees
B. 1-Nearest Neighbor
@ Both
D. Neither
If zero error, draw the decision boundary.
Otherwise, why not?




Poll 3

Which methods can achieve zero training error on this dataset?

C. Both

If zero error, draw the decision boundary.
Otherwise, why not?
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Decision Bounda[ies

Decision tree Nearest neighbor,”
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Decision Boundaries

Decision tree Nearest neighbor




Nearest Neighbor Decision Boundary

1-nearest neighbor classifier decision boundary

Voronoi Diagram




Poll 4

1-nearest neighbor will likely:

A. Overfit

B. Underfit

C. Neither (it’s a great learner!)



Poll 4

1-Nearest neighbor will likely:
&’,
A. Overfit
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Nearest Neighbor on Fisher Iris Data

Slide credit: CMU MLD Matt Gormley v



Nearest Neighbor on Gaussian Data

Slide credit: CMU MLD Matt Gormley
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Nearest Neighbor on Gaussian Data

Slide credit: CMU MLD Matt Gormley
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kNN classifier (k=5)

Test subject
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Nearest Neighbor Classification

Given a training dataset D = {y("),x(")}zzl, y€{1,..,C}, xe RM

and a test input X;.¢, predict the class label, V;oq:

1) Find the closest point in the training data to x4

n = argmin d(X;pg , x™)
n

2) Return the class label of that closest point
5} — y(n)
test



k-Nearest Neighbor Classification

Given a training dataset D = {y("),x(")}zzl, y€{1,..,C}, xe RM

and a test input X;.¢, predict the class label, V;oq:

1) Find the closest k points in the training data to x4
Nk (xtest: D) <

2) Return the class label of that closest point
ytest — argmaxp(Y = C | xtest; D; k)
C

. v./\ 0\5@( \‘\7/
I(y® = c) \ o VY

= argmax —
where k. is the number of the k-neighbors with class label ¢

C k

[ € Nk(xtest.D)

k¢
= argmax—,
.k



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (kNN) classifier
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3-Nearest Neighbor (kNN) classifier
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5-Nearest Neighbor (kNN) classifier
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What is the best k?

How do we choose a learner that is accurate and also generalizes to
unseen data?

—> Larger k = predicted label is more stable
* Smaller k = predicted label is more affected by individual training

points X

But how to choose k?
P



k-NN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)
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Slide credit: CMU MLD Matt Gormley
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k-NN on Fisher Iris Data

3-Class classification (k = 2, weights = 'uniform’)
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k-NN on Fisher Iris Data

3-Class classification (k = 3, weights = 'uniform’)
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k-NN on Fisher Iris Data

3-Class classification (k = 4, weights = 'uniform’)
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k-NN on Fisher Iris Data

3-Class classification (k = 5, weights = 'uniform’)

5.0 -
4.5 -
4.0 -
3.5 -
3.0 -
2.5 -
2.0 -
1.5-

1.0 - I I I I I
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k-NN on Fisher Iris Data

3-Class classification (k = 10,

weights = ‘uniform’)

Slide credit: CMU MLD Matt Gormley
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k-NN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform’)
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K-NN Details



k-NN: Details

The inductive bias of a machine learning algorithm is the principal by

which it generalizes to unseen examples

Inductive Bias:
@ Close points should have similar labels
2. All dimensions are created equally!

—
{

p—
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k-NN: Details

Inductive Bias:
1. Close points should have similar labels
2. All dimensions are created equally!

Slide credit: CMU MLD Matt Gormley
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k-NN: Details

Computational Efficiency:

Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1

Slide credit: CMU MLD Matt Gormley
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Poll 5: Two questions (train) and (predict)

Suppose we have N training examples, and each one

nas M features

Computational complexity for the special case where k=1

A.

— I 6 mMmoO0Ow

O(1)
O(log N)
O(log M)

. O(log NM)

O(N)
O(M)

. O(NM)
. O(N~2)

O(NA2M)



Poll 5 : Two questions (train) and (predict)

Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1

A. O(1)

G. O(NM)



k-NN: Details

Computational Efficiency:
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

Train 0(1) ~O(M N log N)
Predict O(MN) ~0(2Mlog N) on average

(one test example) @

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)




k-NN: Details

Computational Efficiency:
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

Train 0(1) ~O(M N log N)
Predict O(MN) ~0(2Mlog N) on average

(one test example) @

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)




Model Selection



Model Selection

WARNING:

* |In some sense, our discussion of model selection is
premature.

* The models we have considered thus far are fairly simple.

* The models and the many decisions available to the data
scientist wielding them will grow to be much more complex
than what we’ve seen so far.



Model Selection

Statistics Machine Learning

* Def: a model defines the data generation * Def: (loosely) a model defines the hypothesis
process (i.e. a set or family of parametric space over which learning performs its
probability distributions) search

* Def: model parameters are the values that * Def: model parameters are the numeric
give rise to a particular probability values or structure selected by the learning
distribution in the model family algorithm that give rise to a hypothesis

Def: learning (aka. estimation) is the process * Def: the learning algorithm defines the data-
of finding the parameters that best fit the driven search over the hypothesis space (i.e.
data search for good parameters)

.
Def: hyperparameters are the parameters of * Def: hyperparameters are the tunable
a prior distribution over parameters aspects of the model, that the learning
algorithm does not select

—



Model Selection

Example: Decision Tree

model = set of all possible trees, possibly
restricted by some hyperparameters (e.g.
max depth)

parameters = structure of a specific decision
tree

learning algorithm = ID3, CART, etc.

hyperparameters = max-depth, threshold for
splitting criterion, etc.

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Example: k-Nearest Neighbors

model = set of all possible nearest neighbors
classifiers

parameters = none
(KNN is an instance-based or non-parametric
method)

learning algorithm = for naive setting, just
storing the data

hyperparameters :@the number of
neighbors to consider

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Statistics Machine Learning

* Def: a model defines the data generation * Def: (loosely) a model defines the hypothesis
process (l.e. a set or.famlly If “learning” is all about hich learning performs its
probability distributions) .

picking the best

* Def: model parameters are] parameters how do we |parameters are the numeric
give rise to a particular pro pick the best ructure selected by the learning
distribution in the model fa - at give rise to a hypothesis

hyperparameters?

* Def: learning (aka. estimati : ing algorithm defines the data-
of finding the paramet at best fit the driven sear& \er the hypothesis space (i.e.
data search for go rameters)

Def: hyperparameters are the parameters of * Def: hyperparameters are the tunable
a prior distribution over parameters aspects of the model, that the learning
algorithm does not select



Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose the “best”

model from among a set of candidates
— Def: hyperparameter optimization is the process by which we choose
the “best” hyperparameters from among a set of candidates (could be

called a special case of model selection)

* Both assume access to a function capable of measuring the
quality of a model

* Both are typically done “outside” the main training algorithm -
typically training is treated as a black box



(s

Experimental Design

Input

Output

Notes

Training

Hyperparameter
Optimization

* training cataset
* hyperparameters

 training dataset
e validation dataset

/ RN
% ——
mﬁm

Tzsting

* test dataset
* hypotiesis (i.e. fixed
model parameters)

* best model parameters

* best hyperparameters

test error

We pick the best model
parameters by learning on
the training dataset for a
fixed set of
hyperparameters

We pick the best
hyperparameters by
learning on the training data
and evaluating error on the
validation error

We evaluate a hypothesis
corresponding to a decision
rule with fixed model
parameters on a test
dataset to obtain test error




Special Cases of k-NN

k=1: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)
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Slide credit: CMU MLD Matt Gormley

k=N: Majority Vote

3-Class classification (k = 150, weights = 'uniform’)
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Example o
Choosing k for k-NN
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Example of Hyperparameter Optimization

Choosing k for k-NN 407 y = 2, L0% Y= \
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Example o
Choosing k for k-NN
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Classification with KNN (k = 1, weights = 'uniform') Classification with KNN (k = 144, weights = ‘uniform’)

K-NN: Choosing k

o Train / Test Errors with k-NN N

07- @ train
v validation
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Fisher Iris Data: varying the value of k
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 Classification with KNN (k = 1, weights = 'uniform’)
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Cross-validation

Why do we need cross-validation?

" Choose hyperparameters

" Choose technique

* Help make any choices beyond our parameters

But now, we have another choice to make!
" How do we split training and validation?

Trade-offs
=" More held-out data, better meaning behind validation numbers
= More held-out data, less data to train on!



Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.
Do K runs: train using K-1 partitions and calculate validation error

on remaining partition (rotating validation partition on each run).
Report average validation error

Total number of examples I:I training I:Ivalidation

Run 1

Run 2

Run K




Cross-validation

Leave-one-out (LOQO) cross-validation

Special case of K-fold with K=N partitions
Equivalently, train on N-1 samples and validate on only one
sample per run for N runs

|:| training I:Ivalidation
Total number of examples

¢ >

Run 1

Run 2

Run K




Cross-validation

Random subsampling

Randomly subsample a fixed fraction aN (0< a <1) of the dataset

for validation.

Compute validation error with remaining data as training data.

Repeat K times
Report average valid

ation error

Total number of examples

I:I training I:Ivalidation

4

Run 1

Run 2

Run K




Poll 6

Say you are choosing amongst 7 discrete values of a decision tree
mutual information threshold, and you want to do K=5-fold cross-
validation.

How many times do | have to train my model?



Poll 6

Say you are choosing amongst 7 discrete values of a decision tree
mutual information threshold, and you want to do K=5-fold cross-

validation.

How many times do | have to train my model?



Model Selection

WARNING (again):
— This section is only scratching the surface!
— Lots of methods for hyperparameter optimization: (to talk about

later)
e Grid search
* Random search
* Bayesian optimization
e Graduate-student descent

Main Takeaway:
— Model selection [ hyperparameter optimization is just another
form of learning
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