

10-315 Introduction to ML

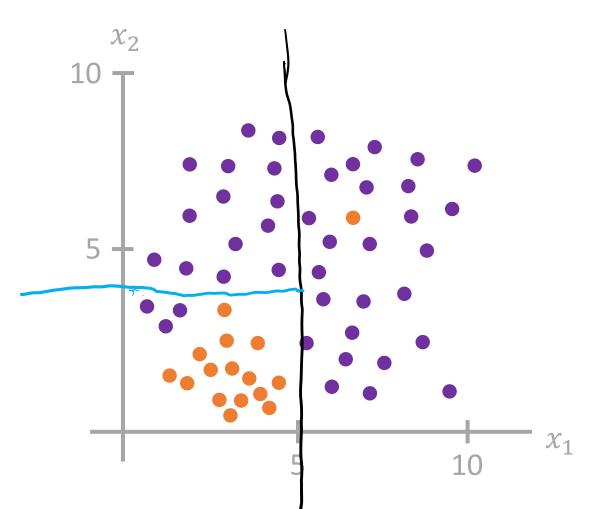
K-Nearest Neighbor and Model Selection

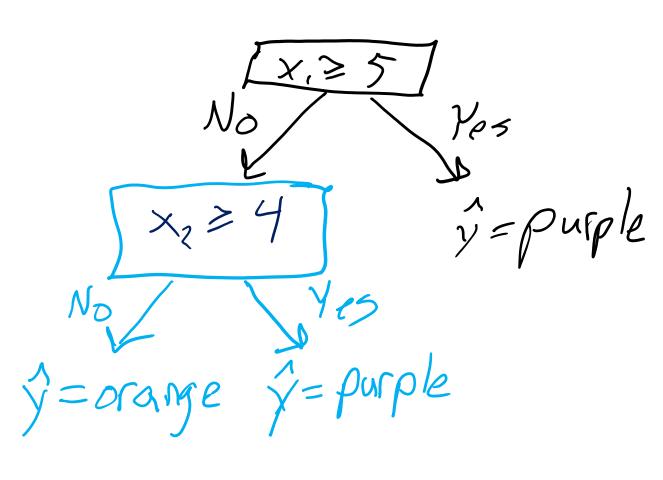
Instructor: Pat Virtue

Reminder: Decision Tree Worksheet

Consider input features $x \in \mathbb{R}^2$.

Draw a reasonable decision tree.





Poll 1

Decision tree generalization

Which of the following generalize best to unseen examples?

- A. Small tree with low training accuracy
- B. Large tree with low training accuracy
- C. Small tree with high training accuracy
- D. Large tree with high training accuracy

Poll 2

True or False:

For any dataset, you can find a decision tree that can perfectly classify the training data.

Underfitting and Overfitting

Underfitting occurs when model:

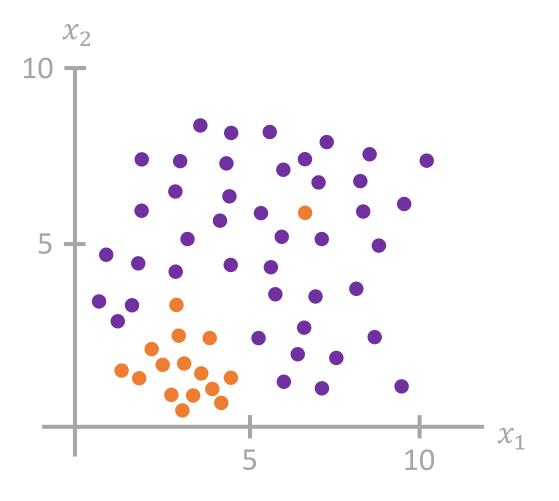
- is too simple
- can't capture the actual pattern of interest in the training dataset
- has too much inductive bias

Overfitting occurs when model:

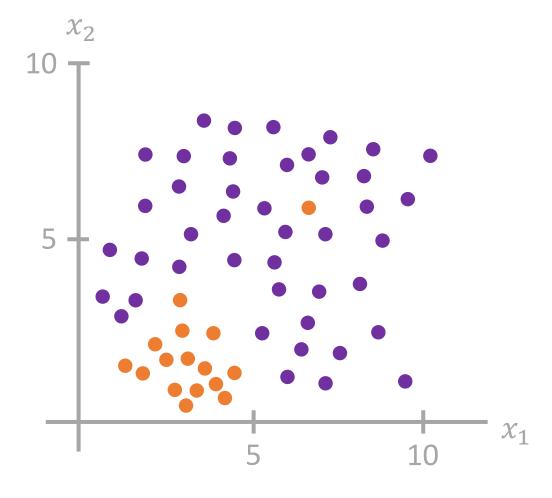
- is too complex
- fits noise or "outliers" in the training dataset as opposed to the actual pattern of interest
- doesn't have enough inductive bias pushing it to generalize

Underfitting and Overfitting: Classification

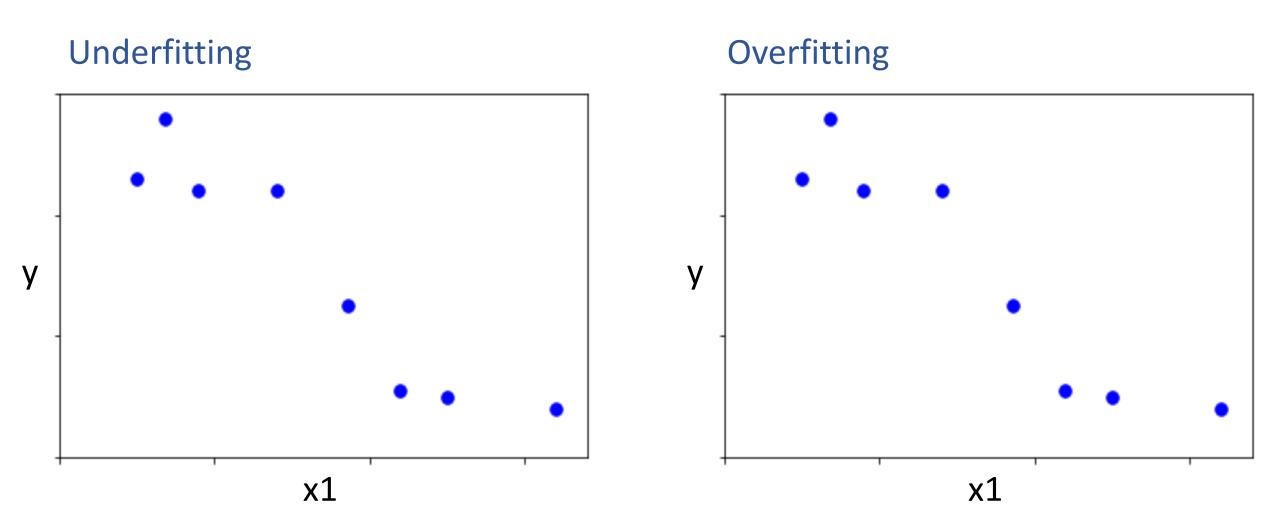
Underfitting



Overfitting



Underfitting and Overfitting: Regression



Decision Trees

When do we stop (base case)?

When leaves are "pure", i.e., output values are all the same

Likely to overfit

Limit

- Tree depth
- Total number of leaves
- Splitting criteria threshold, e.g. splitting criteria $\leftarrow \tau$
- Minimum number of datapoints in a leaf

But how do we choose all of those limits?!?

Answer: Model selection

Model selection is the process to choose the "best" among a set of (trained) models

Today

Underfitting and Overfitting

- Decision Tree stopping criteria
- Classification and regression examples

k-Nearest Neighbor

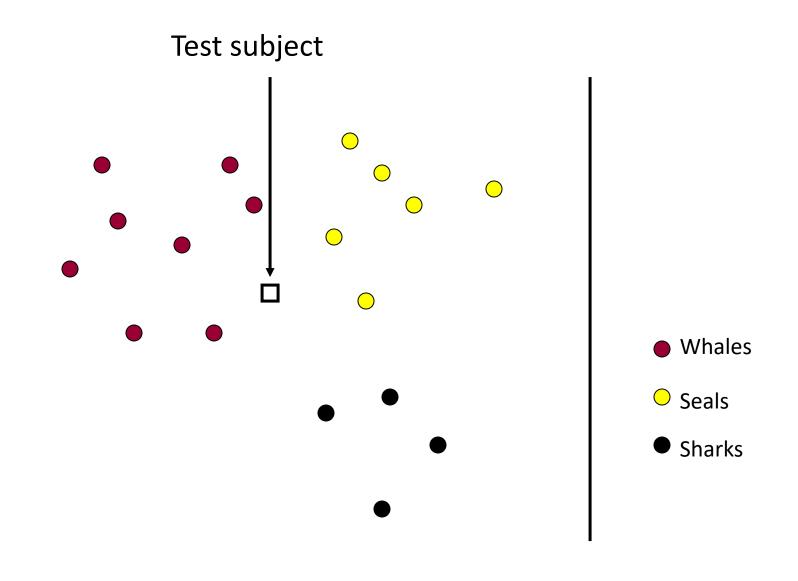
- 1-NN, k-NN (mostly notation)
- Practical details

Model Selection

- Define terms
- Stress importance
- Cross-validation techniques

K-Nearest Neighbor

Nearest Neighbor Classifier



Nearest Neighbor Classifier



Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, \mathbf{x}^{(n)}\}_{n=1}^{N}, y \in \{1, ..., C\}, \mathbf{x} \in \mathbb{R}^{M}$ and a test input \mathbf{x}_{test} , predict the class label, \hat{y}_{test} :

- 1) Find the closest point in the training data to \mathbf{x}_{test} $n = \operatorname*{argmin}_{n} d(\mathbf{x}_{test}, \mathbf{x}^{(n)})$
- 2) Return the class label of that closest point $\hat{y}_{test} = y^{(n)}$

Need distance function! What should $d(\mathbf{x}, \mathbf{z})$ be?

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Fisher Iris Dataset

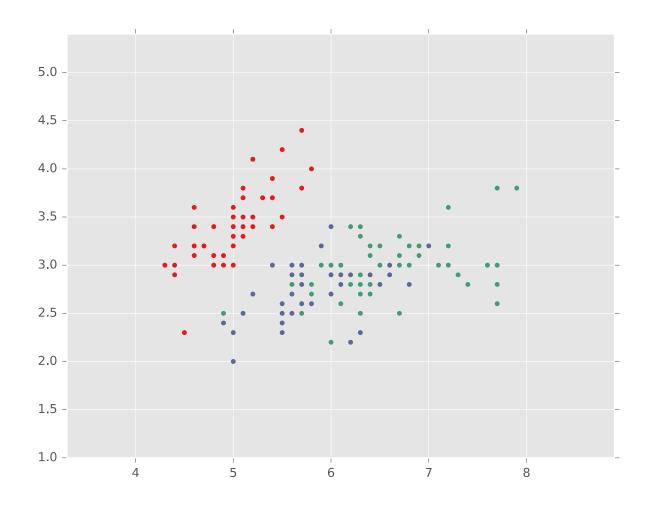
Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width
0	4.3	3.0
0	4.9	3.6
0	5.3	3.7
1	4.9	2.4
1	5.7	2.8
1	6.3	3.3
1	6.7	3.0

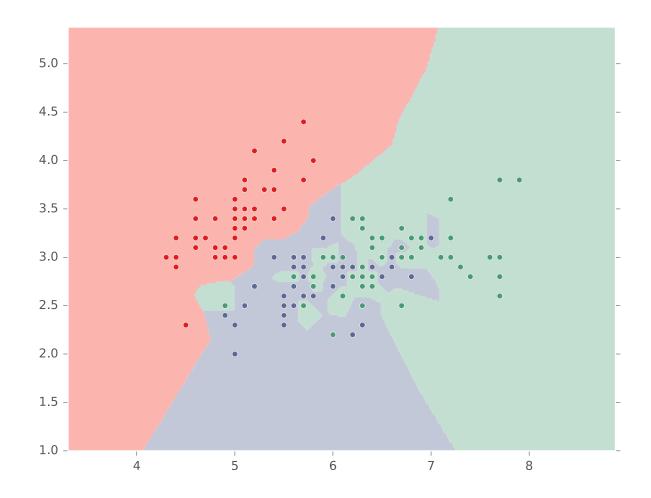
Deleted two of the four features, so that input space is 2D

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Nearest Neighbor on Fisher Iris Data



Nearest Neighbor on Fisher Iris Data



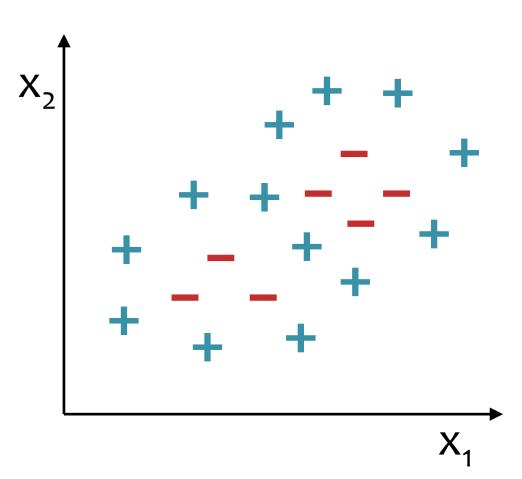
Poll 3

Which methods can achieve zero training error on this dataset?

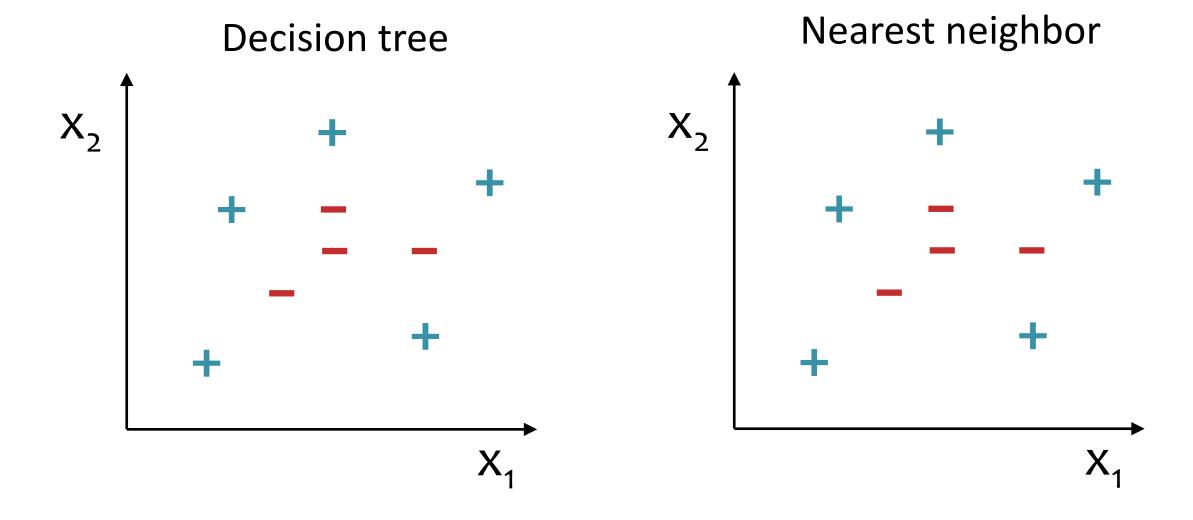
- A. Decision trees
- B. 1-Nearest Neighbor
- C. Both
- D. Neither

If zero error, draw the decision boundary.

Otherwise, why not?

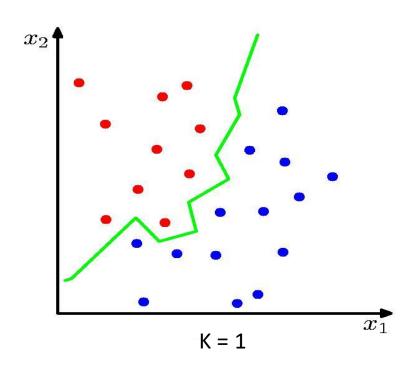


Decision Boundaries

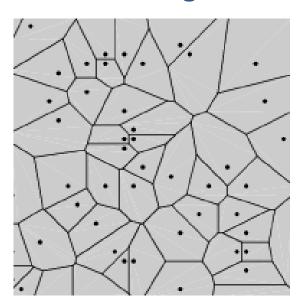


Nearest Neighbor Decision Boundary

1-nearest neighbor classifier decision boundary



Voronoi Diagram

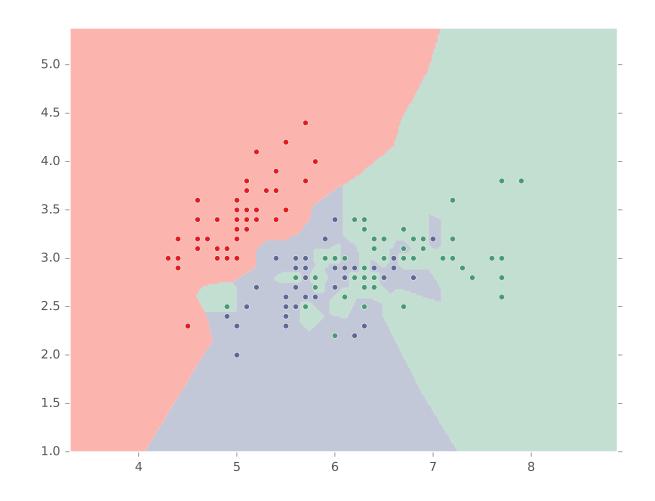


Poll 4

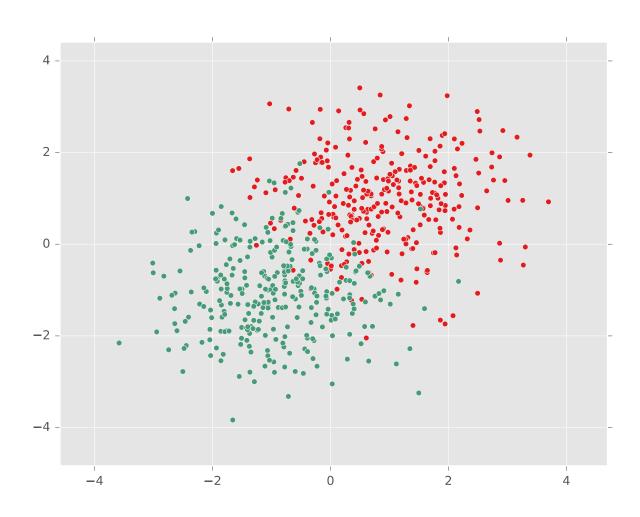
1-nearest neighbor will likely:

- A. Overfit
- B. Underfit
- C. Neither (it's a great learner!)

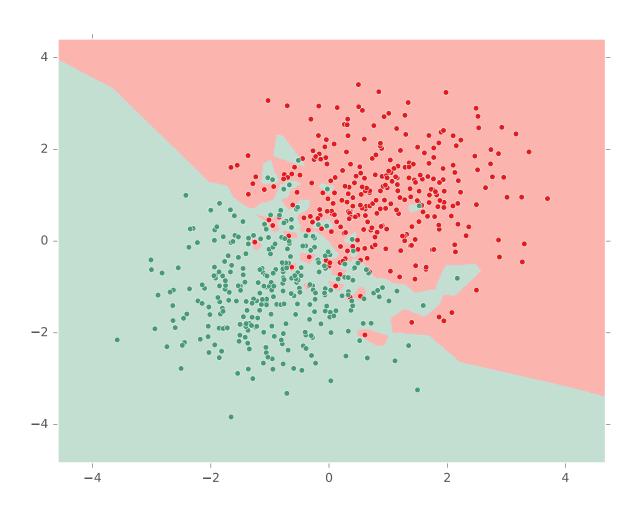
Nearest Neighbor on Fisher Iris Data



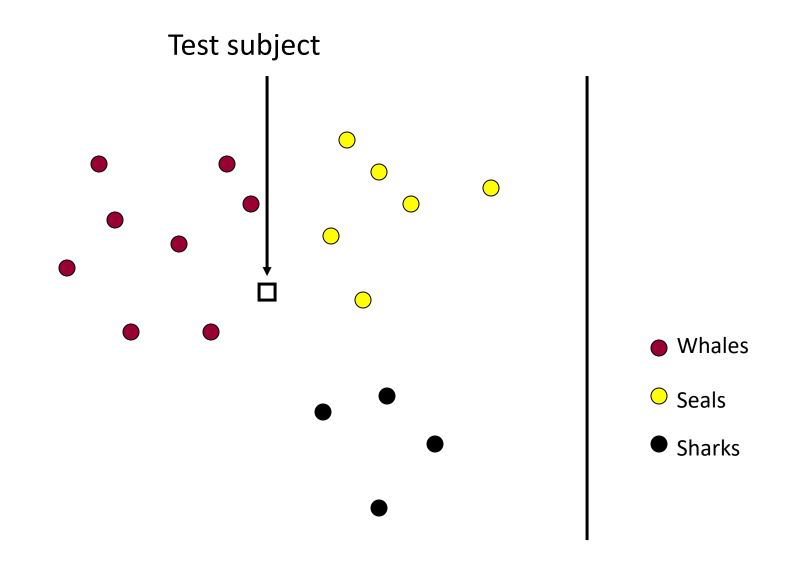
Nearest Neighbor on Gaussian Data



Nearest Neighbor on Gaussian Data



kNN classifier (k=5)



Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, x^{(n)}\}_{n=1}^{N}, y \in \{1, ..., C\}, x \in \mathbb{R}^{M}$ and a test input x_{test} , predict the class label, \hat{y}_{test} :

- 1) Find the closest point in the training data to x_{test} $n = \operatorname*{argmin}_{n} d(x_{test}, x^{(n)})$
- 2) Return the class label of that closest point $\hat{y}_{tost} = y^{(n)}$

k-Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, x^{(n)}\}_{n=1}^{N}, y \in \{1, ..., C\}, x \in \mathbb{R}^{M}$ and a test input x_{test} , predict the class label, \hat{y}_{test} :

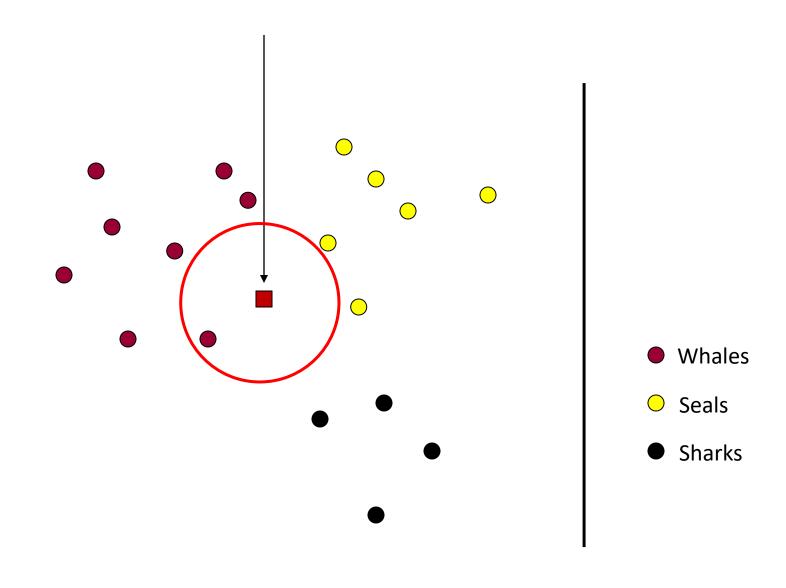
- 1) Find the closest k points in the training data to x_{test} . $\mathcal{N}_k(x_{test}, \mathcal{D})$
- 2) Return the class label of that closest point

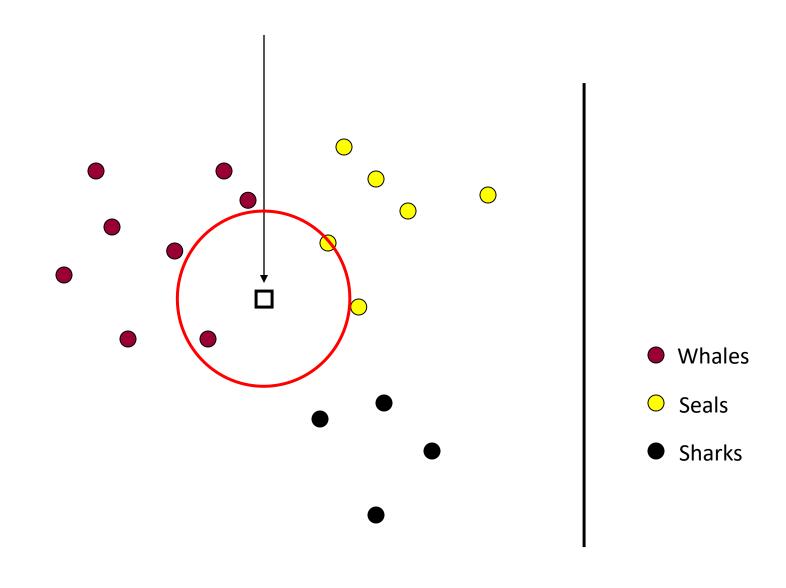
$$\hat{y}_{test} = \underset{c}{\operatorname{argmax}} p(Y = c \mid x_{test}, \mathcal{D}, k)$$

$$= \underset{c}{\operatorname{argmax}} \frac{1}{k} \sum_{i \in \mathcal{N}_k(x_{test}, \mathcal{D})} \mathbb{I}(y^{(i)} = c)$$

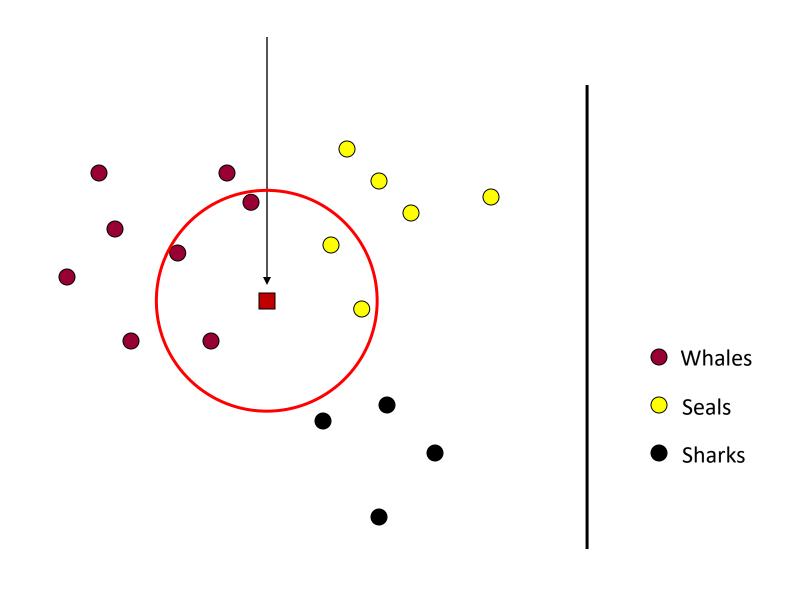
$$= \underset{c}{\operatorname{argmax}} \frac{k_c}{k},$$

where k_c is the number of the k-neighbors with class label c









What is the best k?

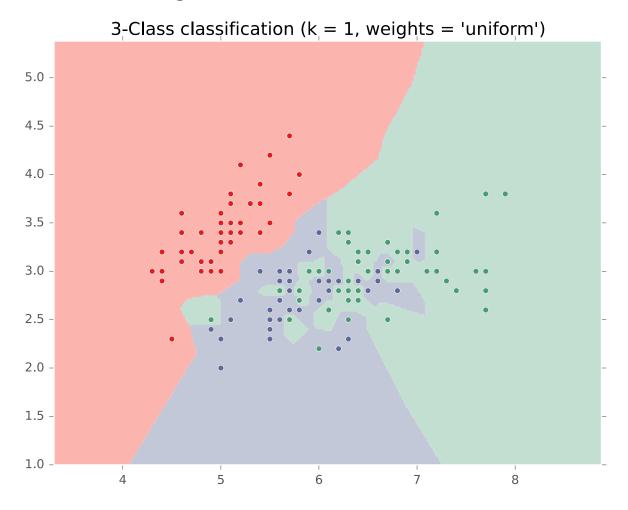
How do we choose a learner that is accurate and also generalizes to unseen data?

- Larger k → predicted label is more stable
- Smaller k → predicted label is more affected by individual training points

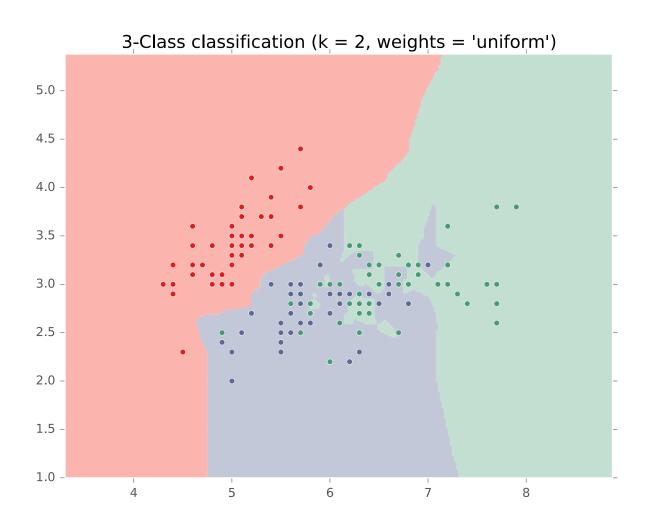
But how to choose *k*?

k-NN on Fisher Iris Data

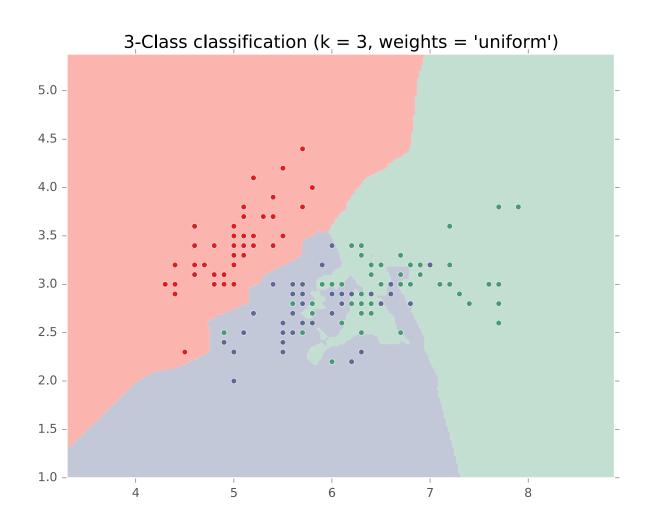
Special Case: Nearest Neighbor

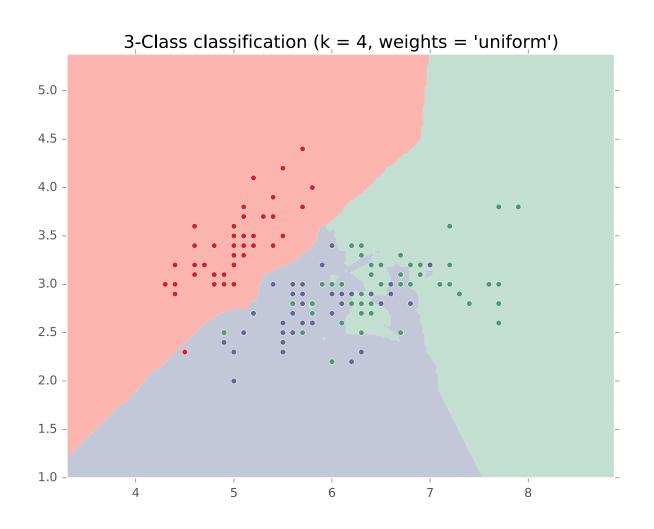


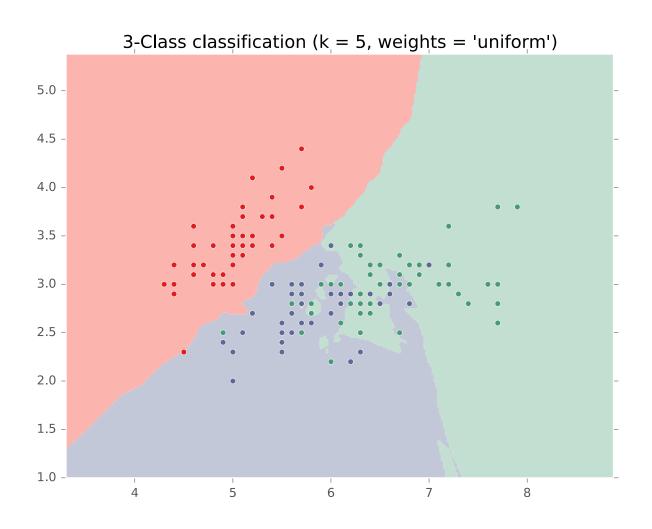
k-NN on Fisher Iris Data



k-NN on Fisher Iris Data

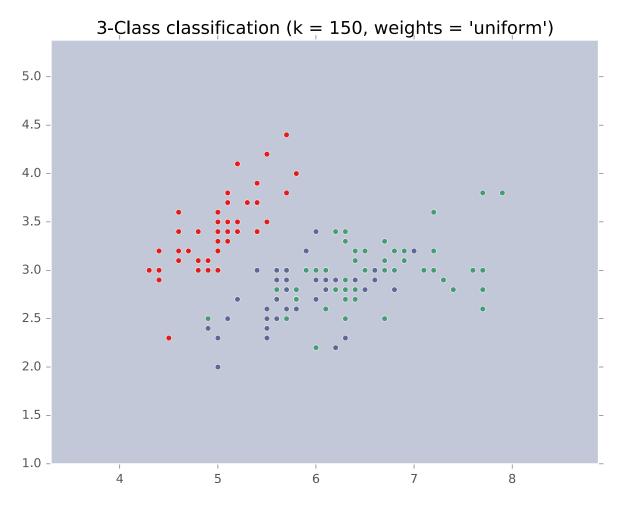








Special Case: Majority Vote



K-NN Details

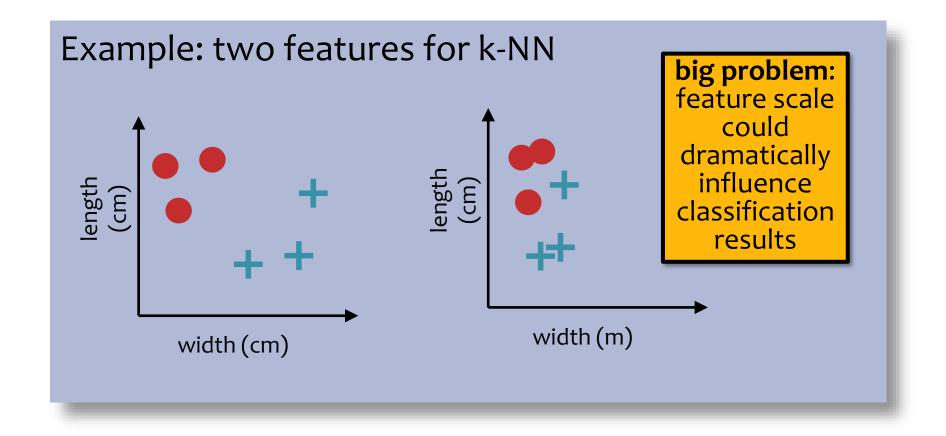
The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples

Inductive Bias:

- 1. Close points should have similar labels
- 2. All dimensions are created equally!

Inductive Bias:

- 1. Close points should have similar labels
- 2. All dimensions are created equally!



Computational Efficiency:

Suppose we have N training examples, and each one has M features Computational complexity for the special case where k=1:

Poll 5: Two questions (train) and (predict)

Suppose we have N training examples, and each one has M features Computational complexity for the special case where k=1:

- A. O(1)
- B. O(log N)
- C. O(log M)
- D. O(log NM)
- E. O(N)
- F. O(M)
- G. O(NM)
- $H. O(N^2)$
- I. O(N^2M)

Computational Efficiency:

Suppose we have N training examples, and each one has M features Computational complexity for the special case where k=1:

Task	Naive	k-d Tree
Train	O(1)	~O(M N log N)
Predict (one test example)	O(MN)	~ O(2 ^M log N) on average

Problem: Very fast for small M, but very slow for large M

In practice: use stochastic approximations (very fast, and empirically often as good)

Computational Efficiency:

Suppose we have N training examples, and each one has M features Computational complexity for the special case where k=1:

Task	Naive	k-d Tree
Train	O(1)	~O(M N log N)
Predict (one test example)	O(MN)	~ O(2 ^M log N) on average

Problem: Very fast for small M, but very slow for large M

In practice: use stochastic approximations (very fast, and empirically often as good)

WARNING:

- In some sense, our discussion of model selection is premature.
- The models we have considered thus far are fairly simple.
- The models and the many decisions available to the data scientist wielding them will grow to be much more complex than what we've seen so far.

Statistics

- Def: a model defines the data generation process (i.e. a set or family of parametric probability distributions)
- Def: model parameters are the values that give rise to a particular probability distribution in the model family
- Def: learning (aka. estimation) is the process of finding the parameters that best fit the data
- Def: hyperparameters are the parameters of a prior distribution over parameters

Machine Learning

- Def: (loosely) a model defines the hypothesis space over which learning performs its search
- Def: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- Def: the learning algorithm defines the datadriven search over the hypothesis space (i.e. search for good parameters)
- Def: hyperparameters are the tunable aspects of the model, that the learning algorithm does not select

Example: Decision Tree

- model = set of all possible trees, possibly restricted by some hyperparameters (e.g. max depth)
- parameters = structure of a specific decision tree
- learning algorithm = ID3, CART, etc.
- hyperparameters = max-depth, threshold for splitting criterion, etc.

Machine Learning

- Def: (loosely) a model defines the hypothesis space over which learning performs its search
- Def: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- Def: the learning algorithm defines the datadriven search over the hypothesis space (i.e. search for good parameters)
- Def: hyperparameters are the tunable aspects of the model, that the learning algorithm does not select

Example: k-Nearest Neighbors

- model = set of all possible nearest neighbors classifiers
- parameters = none (KNN is an instance-based or non-parametric method)
- learning algorithm = for naïve setting, just storing the data
- hyperparameters = k, the number of neighbors to consider

Machine Learning

- Def: (loosely) a model defines the hypothesis space over which learning performs its search
- Def: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- Def: the learning algorithm defines the datadriven search over the hypothesis space (i.e. search for good parameters)
- Def: hyperparameters are the tunable aspects of the model, that the learning algorithm does not select

picking the best

parameters how do we

pick the best

hyperparameters?

Statistics

Def: a model defines the data generation process (i.e. a set or family If "learning" is all about

probability distributions)

- Def: model parameters are give rise to a particular pro distribution in the model fa
- Def: learning (aka. estimation) is the process of finding the parameter at best fit the data
- Def: hyperparameters are the parameters of a prior distribution over parameters

Machine Learning

Def: (loosely) a model defines the hypothesis

which learning performs its

parameters are the numeric ructure selected by the learning hat give rise to a hypothesis

- per the rearrying algorithm defines the datadriven seard ver the hypothesis space (i.e. search for god varameters)
- Def: hyperparameters are the tunable aspects of the model, that the learning algorithm does not select

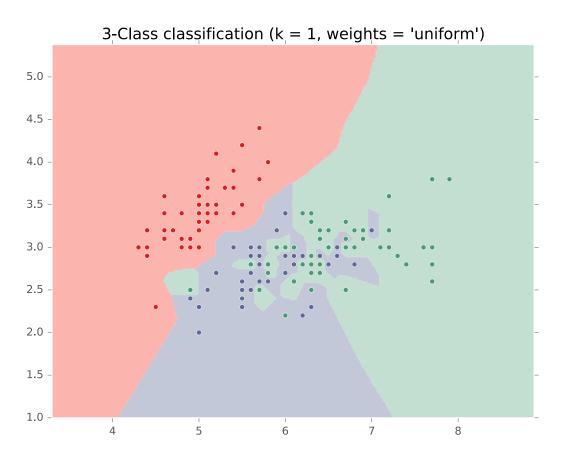
- Two very similar definitions:
 - Def: model selection is the process by which we choose the "best" model from among a set of candidates
 - Def: hyperparameter optimization is the process by which we choose the "best" hyperparameters from among a set of candidates (could be called a special case of model selection)
- Both assume access to a function capable of measuring the quality of a model
- **Both** are typically done "outside" the main training algorithm --- typically training is treated as a black box

Experimental Design

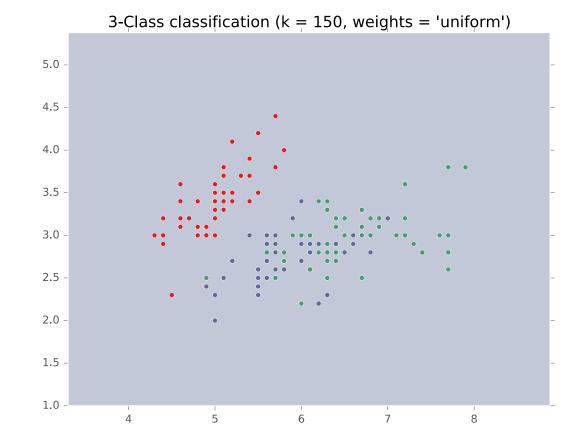
	Input	Output	Notes
Training	training datasethyperparameters	best model parameters	We pick the best model parameters by learning on the training dataset for a fixed set of hyperparameters
Hyperparameter Optimization	training datasetvalidation dataset	best hyperparameters	We pick the best hyperparameters by learning on the training data and evaluating error on the validation error
Testing	test datasethypothesis (i.e. fixed model parameters)	• test error	We evaluate a hypothesis corresponding to a decision rule with fixed model parameters on a test dataset to obtain test error

Special Cases of k-NN

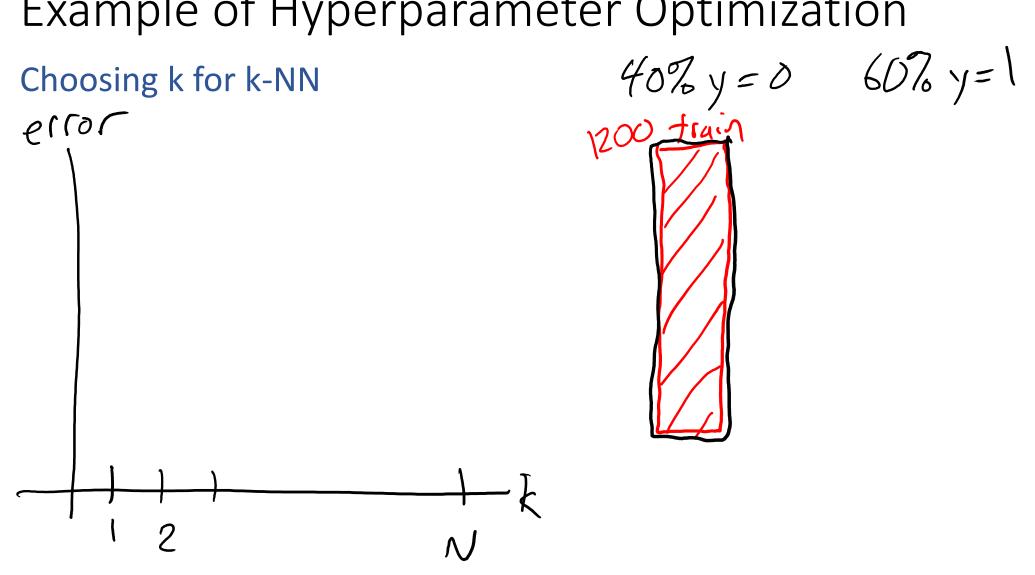
k=1: Nearest Neighbor

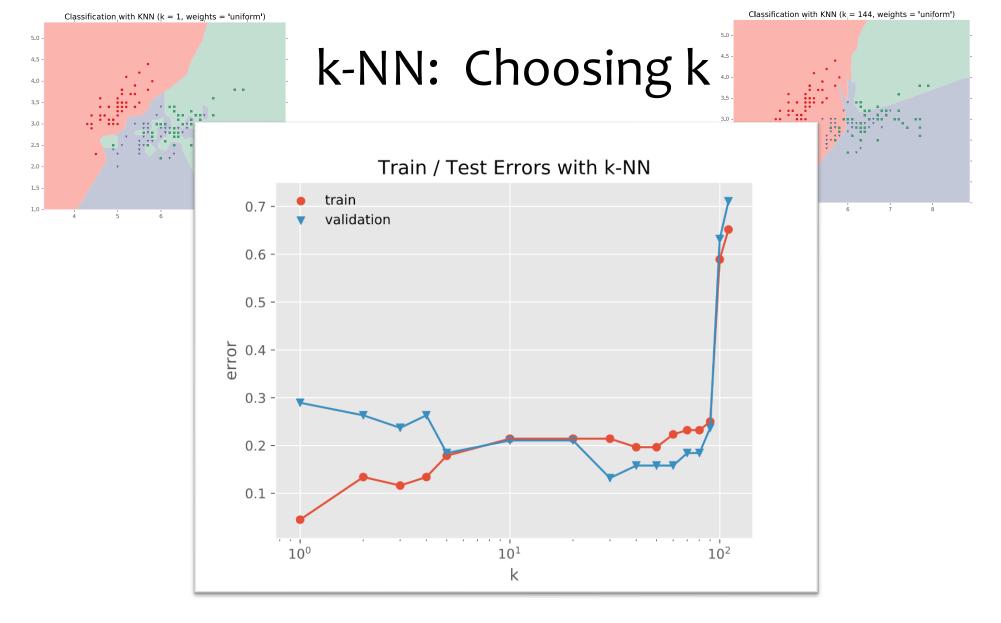


k=N: Majority Vote

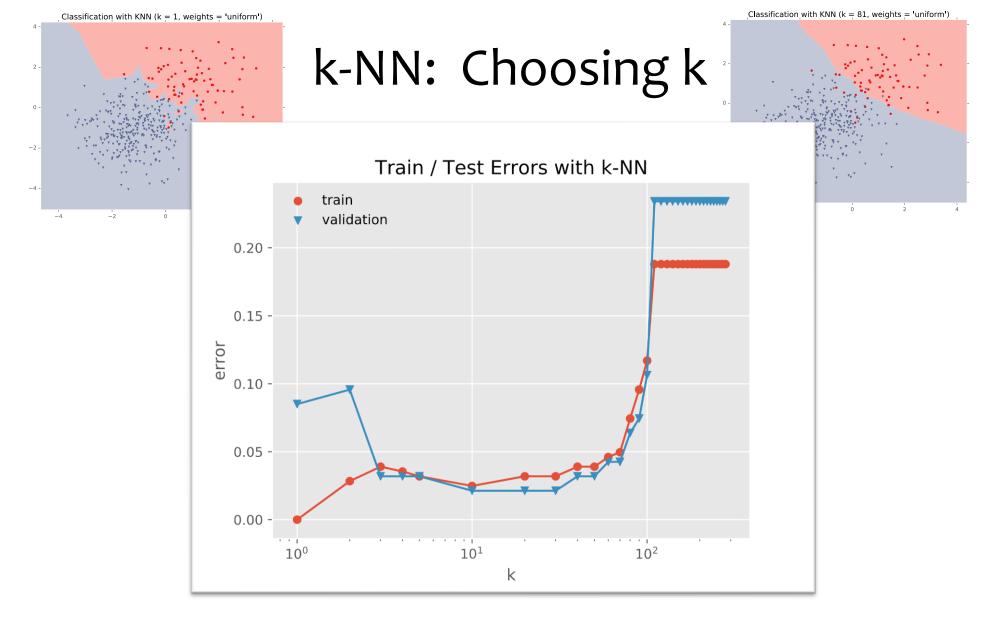


Example of Hyperparameter Optimization





Fisher Iris Data: varying the value of k



Gaussian Data: varying the value of k

Why do we need cross-validation?

- Choose hyperparameters
- Choose technique
- Help make any choices beyond our parameters

But now, we have another choice to make!

How do we split training and validation?

Trade-offs

- More held-out data, better meaning behind validation numbers
- More held-out data, less data to train on!

K-fold cross-validation

Create K-fold partition of the dataset.

Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error

	Total number of examples ►	training	validation
Run 1			
Run 2			
Run K		Slid	e credit: CMU MLD Aarti Singh

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=N partitions Equivalently, train on N-1 samples and validate on only one sample per run for N runs

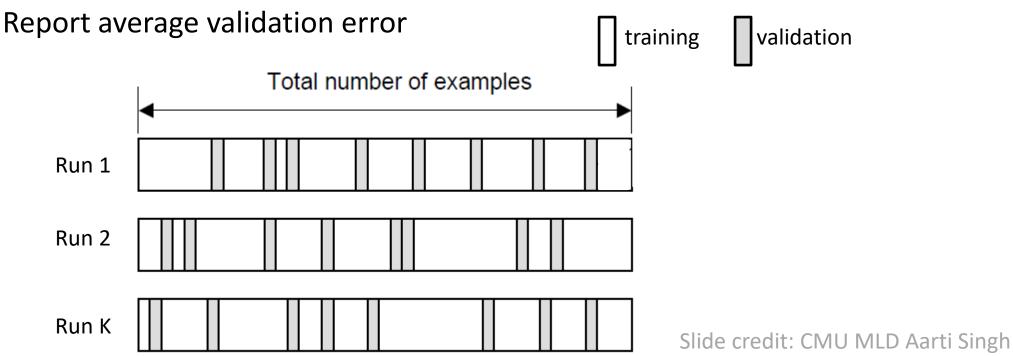
	Total number of examples	☐ training	validation
Run 1			
Run 2			
Run K			de credit: CMU MLD Aarti Singh

Random subsampling

Randomly subsample a fixed fraction αN (0< α <1) of the dataset for validation.

Compute validation error with remaining data as training data.

Repeat K times



Poll 6

Say you are choosing amongst 7 discrete values of a decision tree *mutual information threshold*, and you want to do K=5-fold cross-validation.

How many times do I have to train my model?

- A. 1
- B. 5
- C. 7
- D. 12
- E. 35
- F. 5⁷

WARNING (again):

- This section is only scratching the surface!
- Lots of methods for hyperparameter optimization: (to talk about later)
 - Grid search
 - Random search
 - Bayesian optimization
 - Graduate-student descent
 - ...

Main Takeaway:

Model selection / hyperparameter optimization is just another form of learning