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Consider input features x € R?. J
Draw a reasonable decision tree. [A} 5 /
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Instructor: Pat Virtue




Decision Tree

Fetal
Position

Breech

Fetal - , - ,
Distress -section -section
No
Previous :
C-section C-section

Medical Prediction

Vertex Abnormal

(Oversimplified example)




Reminder: Machine Learning Problem Formulation

Three components <T,PE>:
1. Task, T
2. Performance measure, P
3. Experience, E
/\
Definition of learning:
A computer program learns if its performance at tasks in T, as

| measured by P, improves with experience E
\

L

Definition from (Mitchell, 1997)



Decision Trees

Why are we talking about decision trees?

Minimal prereqgs: Doesn't rely on a ton of linear algebra, probability, or calc.

= So we can focus on some important ML concepts and notation, including
model selection, overfitting/underfitting

Explainability

= Decision trees can be incredibly useful as they can more easily be
interpreted and altered by humans than other ML algorithms

Basis of very powerful set of techniques: Random Forests

= Random forests train many simple decision trees (ML topic: ensemble
learning)

= While powerful, random forests unfortunately have poor explainablility



Regression Model

Regression: learning a model to predict a numerical output (but not
numbers that just represent categories, that would be classification)

Model

4

N
)[ .

3

<\/‘—' ,O(fﬂl.'ﬁ@



Regression Model

Regression: learning a model to predict a numerical output (but not
numbers that just represent categories, that would be classification)

Model: Memorization

0{07[ Jrarn /=>D> ,Z .
self. oD =L/ - )
O)@C’ Fl"@a"C’%x/"@b ’
ﬁo(* )()y n 9€|7F.00 “

,*P X.new ==X ' .
Ce TN \/ ; ] j-}—L—-L

new

Al X X




Regression Model

Regression: learning a model to predict a numerical output (but not
numbers that just represent categories, that would be classification)

Model: Nearest neighbor

0’?7[ Jra)n /005
self oD = o/

Jet Fm&ic%(x,r\mb
For X,y N 9€|7E.o(7

if dist (X ]x-new) £ best st
hest=y =7

etwn best.y

e
-

st

=




Regression Model

Regression: learning a model to predict a numerical output (but not
numbers that just represm@egories, that would be classification)

Model: Linear

(}ch Aracn (QDB
F/\Q besT 5)06>€ W
and Wefcest )5

de’g (PYGA\’Q)\’< X_ peww

oYU W e ¥y | YT WX1R 15 mode] j’rfme»rmgg\
A 2@ are N\M{\ paFaMffj




Poll 1

Does the memorization algorithm learn?

A. Yes
B. No
C. | have no clue

ijf Jra)n /:»D> ¢ ( .
self.oD = o/ |

A(F Fre&ic’}(x,MVB ’
for X, Y n selt- -
A+ xonew =%
feTurn >/ p—

n 0

Slide crg It: CMU MLD Matt Gormley




ML Task: Classification

Predict species label from first two input measurements
h(x) » ¥

AN Y=0
s O Y=l
CAFAES
] Length Width
:Q*' A 0 4.3 3.0
0 4.9 3.6
. A P 0 5.3 3.7
A 1 4.9 2.4
fﬁi 1 5.7 2.8
5 6 7 g 9 10 1 6.3 3.3

Images and full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



Problem Formulation

X = [xz] — [x11x2)x3]T

Medical Prediction

x, € {Vertex, Breech, Abn}

m
X9 (S {Y, N}

Natural Vertex
X3 (S {Y, N}
C-section Breech N N
Natural Vertex Y Y .
y € {Csection, Natural}
C-section Vertex N Y
Natural Abnormal N N

y = h(x)



Decision Tree

Fetal
Position

Breech

Fetal - , - ,
Distress -section -section
No
Previous :
C-section C-section

Medical Prediction

Vertex Abnormal

(Oversimplified example)




o Sepal Sepal Petal Petal
D eclsion Tre es Length Width Length Width

0
A few tools N — ) 0
2 0 5.3 3.7 1.5 0.2
o 1 4.9 2.4 3.3 1.0
I\/Iajorlty vote: 1 5.7 2.8 4.1 1.3
§ = argmax N J 3 ) 1 6.3 3.3 4.7 1.6
c N 7 7 1N 5.9 3.0 5.1 1.8
Classification error rate:
1 . (1
f ErrorRate = —Z- ]I(y(‘) * y(‘)) &
What fraction did we predict mcorrectly
Expected value b/ f value /

E[f (X)] = Xyex f() PX =x) orE[f(X)] = [, f(x) p(x) dx
P Y=y %=



Decision Stumps

Split data based on a single attribute
Majority vote at leaves

> - — ++4r+-\—
/ Y
okt
§/: \/—"‘l’

Slide credit: CMU MLD Matt Gormley

Dataset:

Output Y, Attributes , B, C
0

X




Decision Stumps

Split data based on a single attribute Dataset:
Majority vote at leaves Output Y, Attributes A, B, C
Y A8 C
3-, 5+ - 1 0 0
1 0) 1
A=0 A=1 1 o
+ 0) 0) 1
0-, 1+ 3-, 4+ . ) ] o
y =+ 5} =+ + 1 1 1
Error: (0 + 3)/8 N 1 1 o
=3/8

Slide credit: CMU MLD Matt Gormley



Poll 2

Splitting on which attribute {A, B, C} creates a
decision stump with the lowest training error?

Slide credit: CMU MLD Matt Gormley

Dataset:
Output Y, Attributes A, B, C

A
v RIS
+ - 1 0 0




Poll 2

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

Answer B ) EAENENKS
- 1 0] 0]

3-, 5+
O S
B=0 B=1 ) 1 -
+ (0] (0] 1
3-, 1+  O-, 4+ + 11 o0
y=— y=+ + 1 1 1
Error: (1 + 0 )/ 8 + 1 1 0
=1/8
+ 1 1 1
— )

Slide credit: CMU MLD Matt Gormley



Poll 2

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

Answer: B EEESENKS
- 1 0] o

3-, 5+

- 1 (0] 1

C=0 c=1 ' R I

+ 0 0 1

2-, 2+ 1-, 3+ + 1 1 e

y=+/- y=+ n 1 1 1

Error: (2 + 1)/8 N : : 5
=3/8

Slide credit: CMU MLD Matt Gormley



Building a Decision Tree Binary

Function BuildT D, Attribut '
unction Bul ree ( ributes) DOfﬁﬂ + {ZOMS<
# D: dataset at current node ‘ bj ‘*
&’H [\ T €S

# Attributes : current set of attributes
i # TODO BRase Case
else

# Internal node

X <& bestAttribute (D, Attributes)

—_—~—~

LeftNode = BuildTree (D (X=1), Attributes \ {X})
_————
RightNode = BuildTree (D (X=0), Attributes \ {X})

P e SRS,
end

end



Poll 3

Dataset:
Which of the following trees would be learned by the Output Y, Attributes A, B, C
decision tree learning algorithm using “error rate” as v c
the splitting criterion? -F?’
+

(Assume ties are broken alphabetically.) NERERE
A = 0) 1 0)
O x P A P A
C c B |C B B YL
+ - -+ + - -+ + /C\ /C\ 1 o 0
o/\1 o/\1
D= P : >__é4 SEEE
N, N D B 110
B A e By
IN N FANA A A + 01 11
* | | Bl U A
+ C C
N N
+ - -+




Poll 3
Dataset:
Which of the following trees would be learned by the Output Y, Attributes A, B, C

« o . . . o 7

the deuqu tree.learnmg algorithm using “error rate n

as the splitting criterion? 5 | o | e
+

(Assume ties are broken alphabetically.) NERERE

=) A . o0 1 o
B
B B + 0] 1 1
AN N
+ C _ C - 1 0] 0]
0o/\1 o/\1
NN T e
- 1 1 0]

Slide credit: CMU MLD Matt Gormley



Poll 4

How many errors do each of the two decision
stumps;wake on the training set?

2/% st

N El

O- 0+ K~ b+ A=+ O/“\L/""
A A A "
<~ yso Y=t -y o Y ST

Slide credit: CMU MLD Matt Gormley




Building a Decision Tree
Function BuildTree (D, Attributes) O@&‘P\/\‘g

# D: dataset at current node

# Attributes : current set of attributes 4‘
X efrol fate

# TODO BRase Case

) best boﬁea) — Qv sy
# Internal node/ OMN §P ’)’h j ‘%/\I\U\‘}Mﬂ\

X << bestAttribute (D, Attributes) ( %'([ y A ]V\’Faf N\Z'I,Z’ln
LeftNode = BuildTree (D (X=1), Attributes \ {X}) .
RightNode = BuildTree (D (X=0), Attributes \ {X}) /W\‘{(‘) 74 .f\j

end

end



Entropy 5“?“”"\

Surprisal )

%532 ’\D(\{’;\ — vw
/

= (\D (\g = ﬂ ) b SQ (F( \/” D Claude Shannon (1916 — 2001),
) most of the work was done in

4+ F( \% :03 ) 032_ ,’P(\(':Q) Bell labs



Entropy

» Quantifies the amount of uncertainty associated
with a specific probability distribution

" The higher the entropy, the less confident we are in
the outcome

= Definition

HOO = ) p(X = x)log,

p(X =x)

HOO = = ) p(X = ) logy p(X = x)

X
Claude Shannon (1916 — 2001),
most of the work was done in

Bell labs



Conditional Entropy H (e/\ = Zf_{—[ﬂwlﬂr.%aﬁ

Entropy Definition

H(Y) = Y,p(Y =y)log,

Voadd —— -

1

p(Y=Y) '56 72 D (g

HY) = —2yp(Y = y)logap(Y =) Py p .»]
Conditional Entropy

Entropy after splitting on a Ao

particularfe.ature I—-/(‘/ /ﬁb Z)E E furpflga \g

" Must consider expected
value over both branches!




Conditional Entropy H (e/\ = Zg[w,ar.eag

Entropy Definition
H(Y) = 3, p(Y = y) log, — 7[ C e
Ay P T 2 p(r=y) B
eboe (D)
H(Y) =—=3,p(Y = y)log, p(Y = y) A ) A-|

@itional Entro Mo D J
f - 7 —

Entropy after splitting on a

particular feature H(V/Ab - Z{ E‘/ I;urpfﬁ@(\g

" Must consider expected A
value over both branches! %rpﬁ(( 47(%( -

Mutual Information: I(Y; X) :@E{(YU()




Mutual Information Notation

We use mutual information in the context of before and after a split, X
regardless of where that split is in the tree.

1(Y;X) = HY) —H(Y | X)
XY H(Y) é@ WY
Xp=D) X, )G).:D/ \XB’—')
= i \
Nrer bj /—knc—)j O O

T 0= HY) oy \= M)
: «{/(rm\ 220 — (1%,




As|wio9 1eN aTiN NIAD :31PaJd 3pI|S

o
(aa)

Mutual Information




Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — Z P(Y =y)logy P(Y =y)

yey
Specific Conditional Entropy: H(Y | X =z) = — z PY=y|X=2x)logo PY =y | X =1z)
yey
Conditional Entropy: H(Y | X) = Y P(X =xz)H(Y | X = 1)
zekX

Mutual Information: I(Y; X) = H(Y) — H(Y|X)

 For adecision tree, we can use
mutual information of the output
class Y and some attribute X on

which to split as a splitting criterion

* Given a dataset D of training
examples, we can estimate the
required probabilities as...

P(Y =y) = Ny—,/N
P(X = z) = Nx_,/N
P(Y — y|X — 'T) — NY:y,Xza:/NX:;E

where Ny _, is the number of examples
forwhichY = yand so on.



Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — ) _ P(Y =y)log, P(Y =)
yey

{

Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=x)logg P(Y =y | X =x)
yeY
Conditional Entropy: H(Y | X) = Y P(X =xz)H(Y | X = 1)
TeEX
Mutual Information: I(Y; X) = H(Y) — H(Y|X)

Ul

* Entropy measures the expected # of bits to code one random draw from X.

* For a decision tree, we want to reduce the entropy of the random variable we
are trying to predict!

Conditional entropy is the expected value of specific conditional entropy
EpxolH(Y | X = X)

Informally, we say that mutual information is a measure of the following:
If we know X, how much does this reduce our uncertainty about Y?




Splitting with Mutual Information

Which attribute {A, B} would mutual
information select for the next split?

1) A

2) B

3) AorB (tie)
4) |don’t know




Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)

yey
Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)
ycy
Conditional Entropy: H(Y | X) =Y P(X =2)H(Y | X =)
v | A B
rEX

_ 1 0 Mutual Information: I(Y; X) = H(Y) — H(Y |X)

1 0]
+ 1 0]
+ 1 0]
+ 1 1
+ 1 1
+ 1 1

34



Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)
ycy

Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)

yey

Conditional Entropy: H(Y | X) =Y P(X =2)H(Y | X =)

+

1

1

1

0

0

0

Mutual Information: I(Y; X) = H(Y) — H(Y |X)

2 2 6 6
H(Y) = — lglngg + glOgZ g]

H(Y | A=0)=undefined

2 2 6 6 [2-, 6+]
H(YIA=1)=—[§log2§+§log2§]=H(Y) A
H(Y|A)=PA=0H(Y|IA=0)+P(A=1HY 1A=1) A=0 A=1

= H(Y)
I(Y;A)=HY)—H(Y|A)=0 [0-, O+] [2-, 6+]

P(A=0) =0 P(A=1)=1
35



n Conditional Entropy: H(Y | X

= H(Y)

+

1

1

1

Decision Tree Learning Example

Entropy: H(Y) =

yey

Specific Conditional Entropy: H(Y | X = x)

0

0

0

Mutual Information: I(Y; X)

=) PX

rCEX

— ) P(Y =y)logy P(Y =)

=Y P(Y=y|X=a)log, P(Y = y | X = 2)

yey
2)H(Y | X = z)

- H(Y|X)

P(B=

[2-, 6+]
B

B:V\le

[2-, 2+] [0-, 4+]
0)=4/8 P(B=1)=4/8




Decision Tree Learning Example

Entropy: H(Y) = — ) P(Y =y)log, P(Y =)
yey
Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)
ycy

“ Conditional Entropy: H(Y | X Z P H(Y | X = 3’})
xEX

0 Mutual Information: I(Y; X) = H(Y) — H(Y |X)
0 2 2 6 6

H(Y) = — lglogzg + glOgZ g]
0

2 2 2 2

; H(Y 1B =0) =~ |2log, 5 +log, 7| 2-, 6+)

H(Y|B=1)=—]|0log, 0+ 1log,1] =0 3
1
1 H(YIB)=P(B=0)H(YIB=0)+P(B=1DHY|B=1) g B=1

=2H(yIB=0)+2%.0
1 8 8
[2-, 2+] [0-, 4+]

1 I(Y;B)=H(Y)—H(Y|B)>0 P(B=0)=4/8 P(B=1)=4/8

[(Y; B) ends up being greater than I(Y; A) = 0, so we split on B 37



Building a Decision Tree
How do we choose the best feature?
A splitting criterion is a function that measures how good or useful splitting

on a particular feature is for a specified dataset
Insight: use the feature that optimizes the splitting criterion current decision
Potential splitting criteria:

" Training error rate (minimize)

" Gini impurity (minimize) = CART algorithm

E/Iutual information (maximize) — ID3 algorithm



e B <
Why bother with splitting criteria at all? 5 ) 4

N [
Fccam’s razor: try to find the “simplest” (e.g., smallest decision tree)

classifier that explains the training dataset

The inductive bias of a machine learning algorithm is the principal by which
e ——

it generalizes to unseen examples

What is the inductive bias of the ID3 algorithm i.e., decision tree learning

with mutual information maximization as the splitting criterion?

" Try to find the 5MA\{4§T tree that achieves
2070 ¥ansag 200p( é( a5 5mall a5 POﬁﬁSNith
- )
\(\"3\\ /WI features at the top




Are decision trees algorithms optimal?
K
Well, what do we mean by optimal? ‘\ < >/<
Considering all possible decision trees (i.e., trees splitting on one feature per node),

will the ID3 algorithm (each split maximizes mutual information; stopping when

mutual information is zero)...

produce the smallest decision tree that has lowest classification training error?

—

~

No, they aren’t optimal

Decision trees are greedy algorithms, i.e., they make the best local decision without

considering longer term possibilities.

= Better trees are possible, but it takes too long to search all combinations



Decision Trees: Pros & Cons

Pros '/ Cons
/' Interpretable " Greedy: each split only
= Efficient (computational cost and considers the immediate impact
storage) =" Not guaranteed to find the
= Can be used for classification and smallest (fewest number of
regression tasks splits) tree that achieves a

= Compatible with categorical and training error rate of 0.

real-valued features — = Liable to overfit!
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