\ = R
) - X —> \/:-’ fuff/f
Warm-up as you walk in: Worksheet \\ S \/A-—pmnj;)

Consider input features x € R?. J
Draw a reasonable decision tree. [A} 5 /
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Decision Tree

Fetal
Position

Breech

Fetal - , - ,
Distress -section -section
No
Previous :
C-section C-section

Medical Prediction

Vertex Abnormal

(Oversimplified example)




Reminder: Machine Learning Problem Formulation

Three components <T,PE>:
1. Task, T
2. Performance measure, P
3. Experience, E

Definition of learning:

A computer program learns if its performance at tasks in T, as
measured by P, improves with experience E

Definition from (Mitchell, 1997)



Decision Trees

Why are we talking about decision trees?

Minimal prereqgs: Doesn't rely on a ton of linear algebra, probability, or calc.

= So we can focus on some important ML concepts and notation, including
model selection, overfitting/underfitting

Explainability

= Decision trees can be incredibly useful as they can more easily be
interpreted and altered by humans than other ML algorithms

Basis of very powerful set of techniques: Random Forests

= Random forests train many simple decision trees (ML topic: ensemble
learning)

= While powerful, random forests unfortunately have poor explainablility



Regression Model

Regression: learning a model to predict a numerical output (but not
numbers that just represent categories, that would be classification)

Model .




Regression Model

Regression: learning a model to predict a numerical output (but not
numbers that just represent categories, that would be classification)

Model: Memorization

0{07[ Jrarn /=>D> ,Z .
self. oD =L/ - )
O)@C’ Fl"@a"C’%x/"@b ’
ﬁo(* )()y n 9€|7F.00 “

,*P X.new ==X ' .
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Regression Model

Regression: learning a model to predict a numerical output (but not
numbers that just represent categories, that would be classification)

Model: Nearest neighbor

0’?7[ Jra)n /005
self oD = o/

Jet Fm&ic%(x,r\mb
For X,y N 9€|7E.o(7

if dist (X ]x-new) £ best st
hest=y =7

etwn best.y

e
-

st

=




Regression Model

Regression: learning a model to predict a numerical output (but not
numbers that just represm@egories, that would be classification)

Model: Linear

(}ch Aracn (QDB
F/\Q besT 5)06>€ W
and Wefcest )5

de’g (PYGA\’Q)\’< X_ peww

oYU W e ¥y | YT WX1R 15 mode] j’rfme»rmgg\
A 2@ are N\M{\ paFaMffj




Poll 1

Does the memorization algorithm learn?

A. Yes
B. No
C. | have no clue

ijf Jra)n /:»D> ¢ ( .
self.oD = o/ |

A(F Fre&ic’}(x,MVB ’
for X, Y n selt- -
A+ xonew =%
feTurn >/ p—

n 0

Slide crg It: CMU MLD Matt Gormley




ML Task: Classification

Predict species label from first two input measurements
h(x) » ¥

AN Y=0
s O Y=l
CAFAES
] Length Width
:Q*' A 0 4.3 3.0
0 4.9 3.6
. A P 0 5.3 3.7
A 1 4.9 2.4
fﬁi 1 5.7 2.8
5 6 7 g 9 10 1 6.3 3.3

Images and full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



Problem Formulation

X = [xz] — [x11x2)x3]T

Medical Prediction

x, € {Vertex, Breech, Abn}

m
X9 (S {Y, N}

Natural Vertex
X3 (S {Y, N}
C-section Breech N N
Natural Vertex Y Y .
y € {Csection, Natural}
C-section Vertex N Y
Natural Abnormal N N

y = h(x)



Decision Tree

Fetal
Position

Breech

Fetal - , - ,
Distress -section -section
No
Previous :
C-section C-section

Medical Prediction

Vertex Abnormal

(Oversimplified example)




o Sepal Sepal Petal Petal
D eclsion Tre es Length Width Length Width

0

A few tools 0
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
Majority vote: 1 5.7 2.8 4.1 1.3
= argmaxﬂ 1 6.3 3.3 4.7 1.6
c N 2 5.9 3.0 5.1 1.8

Classification error rate:
1 . (1
ErrorRate = Nzi I(y® = 9®)

What fraction did we predict incorrectly
Expected value

E[f(X)] = Yrex f() P(X =x) orE[f(X)] = [, f(x) p(x) dx



Decision Stumps

Split data based on a single attribute Dataset:
Majority vote at leaves Output Y, Attributes A, B, C

EEENENKN
- 1 0 0

1 o 1

1 0 o)
+ 0) (0] 1
+ 1 1 0]
+ 1 1 1
+ 1 1 0]

Slide credit: CMU MLD Matt Gormley



Decision Stumps

Split data based on a single attribute Dataset:
Majority vote at leaves Output Y, Attributes A, B, C
Y A8 C
3-, 5+ - 1 0 0
1 0) 1
A=0 A=1 1 o
+ 0) 0) 1
0-, 1+ 3-, 4+ . ) ] o
y =+ 5} =+ + 1 1 1
Error: (0 + 3)/8 N 1 1 o
=3/8

Slide credit: CMU MLD Matt Gormley



Poll 2

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

EEENENKN
- 1 0 0

3-, 5+

- 1 0] 1

A=0 A=1 ' R I

+ 0 0 1

0-, 1+  3-, 4+ £ 11 o0

y=+ y=+ + 1 1 1

Error: (0 + 3 )/ 8 N : : 5
=3/8

Slide credit: CMU MLD Matt Gormley



Poll 2

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

Answer: B EEESENKS
- 1 0] o

3-, 5+
O S
B=0 B=1 ) 1 -
+ (0] (0] 1
3-, 1+  O-, 4+ + 11 o0
y=— y=+ + 1 1 1
Error: (1 + 0 )/ 8 + 1 1 0
=1/8
+ 1 1 1
— )

Slide credit: CMU MLD Matt Gormley



Poll 2

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

Answer: B EEESENKS
- 1 0] o

3-, 5+

- 1 (0] 1

C=0 c=1 ' R I

+ 0 0 1

2-, 2+ 1-, 3+ + 1 1 e

y=+/- y=+ n 1 1 1

Error: (2 + 1)/8 N : : 5
=3/8

Slide credit: CMU MLD Matt Gormley



Building a Decision Tree

Function BuildTree (D, Attributes)
# D: dataset at current node

# Attributes : current set of attributes

# TODO BRase Case

else
# Internal node
X <& bestAttribute (D, Attributes)
LeftNode = BuildTree (D (X=1), Attributes \ {X})
RightNode = BuildTree (D (X=0), Attributes \ {X})
end

end



Poll 3

Dataset:
Which of the following trees would be learned by the Output Y, Attributes A, B, C
decision tree learning algorithm using “error rate” as v c
the splitting criterion? -F?’
+

(Assume ties are broken alphabetically.) NERERE
A = 0) 1 0)
O x P A P A
C c B |C B B YL
+ - -+ + - -+ + /C\ /C\ 1 o 0
o/\1 o/\1
D= P : >__é4 SEEE
N, N D B 110
B A e By
IN N FANA A A + 01 11
* | | Bl U A
+ C C
N N
+ - -+




Poll 3
Dataset:
Which of the following trees would be learned by the Output Y, Attributes A, B, C

« o . . . o 7

the deuqu tree.learnmg algorithm using “error rate n

as the splitting criterion? 5 | o | e
+

(Assume ties are broken alphabetically.) NERERE

=) A . o0 1 o
B
B B + 0] 1 1
AN N
+ C _ C - 1 0] 0]
0o/\1 o/\1
NN T e
- 1 1 0]

Slide credit: CMU MLD Matt Gormley



Poll 4

How many errors do each of the two decision
stumps make on the training set?

Slide credit: CMU MLD Matt Gormley



Building a Decision Tree

Function BuildTree (D, Attributes)
# D: dataset at current node

# Attributes : current set of attributes

# TODO BRase Case

else
# Internal node
X <& bestAttribute (D, Attributes)
LeftNode = BuildTree (D (X=1), Attributes \ {X})
RightNode = BuildTree (D (X=0), Attributes \ {X})
end

end



Entropy

Surprisal

Claude Shannon (1916 — 2001),
most of the work was done in
Bell [abs



Entropy

» Quantifies the amount of uncertainty associated
with a specific probability distribution

" The higher the entropy, the less confident we are in
the outcome

= Definition

HOO = ) p(X = x)log,

p(X =x)

HOO = = ) p(X = ) logy p(X = x)

X
Claude Shannon (1916 — 2001),
most of the work was done in

Bell labs



Conditional Entropy

Entropy Definition

H(Y) = ¥, p(Y = y)log, —

p(Y=y)

HY)=-Y,p(Y =y)log,p(Y =)

Conditional Entropy

Entropy after splitting on a
particular feature

" Must consider expected
value over both branches!



Conditional Entropy

Entropy Definition

H(Y) = ¥, p(Y = y)log, —

p(Y=y)

HY)=-Y,p(Y =y)log,p(Y =)

Conditional Entropy

Entropy after splitting on a
particular feature

" Must consider expected
value over both branches!

Mutual Information: I(Y; X) = H(Y) — H(Y | X)



Mutual Information Notation

We use mutual information in the context of before and after a split,

regardless of where that split is in the tree.
I(V;X)=HY)—-H{Y | X)



As|wio9 1eN aTiN NIAD :31PaJd 3pI|S

o
(aa)

Mutual Information




Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — Z P(Y =y)logy P(Y =y)

yey
Specific Conditional Entropy: H(Y | X =z) = — z PY=y|X=2x)logo PY =y | X =1z)
yey
Conditional Entropy: H(Y | X) = Y P(X =xz)H(Y | X = 1)
zekX

Mutual Information: I(Y; X) = H(Y) — H(Y|X)

 For adecision tree, we can use
mutual information of the output
class Y and some attribute X on

which to split as a splitting criterion

* Given a dataset D of training
examples, we can estimate the
required probabilities as...

P(Y =y) = Ny—,/N
P(X = z) = Nx_,/N
P(Y — y|X — 'T) — NY:y,Xza:/NX:;E

where Ny _, is the number of examples
forwhichY = yand so on.



Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — ) _ P(Y =y)log, P(Y =)
yey

{

Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=x)logg P(Y =y | X =x)
yeY
Conditional Entropy: H(Y | X) = Y P(X =xz)H(Y | X = 1)
TeEX
Mutual Information: I(Y; X) = H(Y) — H(Y|X)

Ul

* Entropy measures the expected # of bits to code one random draw from X.

* For a decision tree, we want to reduce the entropy of the random variable we
are trying to predict!

Conditional entropy is the expected value of specific conditional entropy
EpxolH(Y | X = X)

Informally, we say that mutual information is a measure of the following:
If we know X, how much does this reduce our uncertainty about Y?




Splitting with Mutual Information

Which attribute {A, B} would mutual
information select for the next split?

1) A

2) B

3) AorB (tie)
4) |don’t know




Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)

yey
Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)
ycy
Conditional Entropy: H(Y | X) =Y P(X =2)H(Y | X =)
v | A B
rEX

_ 1 0 Mutual Information: I(Y; X) = H(Y) — H(Y |X)

1 0]
+ 1 0]
+ 1 0]
+ 1 1
+ 1 1
+ 1 1

34



Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)
ycy

Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)

yey

Conditional Entropy: H(Y | X) =Y P(X =2)H(Y | X =)

+

1

1

1

0

0

0

Mutual Information: I(Y; X) = H(Y) — H(Y |X)

2 2 6 6
H(Y) = — lglngg + glOgZ g]

H(Y | A=0)=undefined

2 2 6 6 [2-, 6+]
H(YIA=1)=—[§log2§+§log2§]=H(Y) A
H(Y|A)=PA=0H(Y|IA=0)+P(A=1HY 1A=1) A=0 A=1

= H(Y)
I(Y;A)=HY)—H(Y|A)=0 [0-, O+] [2-, 6+]

P(A=0) =0 P(A=1)=1
35



n Conditional Entropy: H(Y | X

= H(Y)

+

1

1

1

Decision Tree Learning Example

Entropy: H(Y) =

yey

Specific Conditional Entropy: H(Y | X = x)

0

0

0

Mutual Information: I(Y; X)

=) PX

rCEX

— ) P(Y =y)logy P(Y =)

=Y P(Y=y|X=a)log, P(Y = y | X = 2)

yey
2)H(Y | X = z)

- H(Y|X)

P(B=

[2-, 6+]
B

B:V\le

[2-, 2+] [0-, 4+]
0)=4/8 P(B=1)=4/8




Decision Tree Learning Example

Entropy: H(Y) = — ) P(Y =y)log, P(Y =)
yey
Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)
ycy

“ Conditional Entropy: H(Y | X Z P H(Y | X = 3’})
xEX

0 Mutual Information: I(Y; X) = H(Y) — H(Y |X)
0 2 2 6 6

H(Y) = — lglogzg + glOgZ g]
0

2 2 2 2

; H(Y 1B =0) =~ |2log, 5 +log, 7| 2-, 6+)

H(Y|B=1)=—]|0log, 0+ 1log,1] =0 3
1
1 H(YIB)=P(B=0)H(YIB=0)+P(B=1DHY|B=1) g B=1

=2H(yIB=0)+2%.0
1 8 8
[2-, 2+] [0-, 4+]

1 I(Y;B)=H(Y)—H(Y|B)>0 P(B=0)=4/8 P(B=1)=4/8

[(Y; B) ends up being greater than I(Y; A) = 0, so we split on B 37



Building a Decision Tree
How do we choose the best feature?
A splitting criterion is a function that measures how good or useful splitting

on a particular feature is for a specified dataset

Insight: use the feature that optimizes the splitting criterion current decision

Potential splitting criteria:
" Training error rate (minimize)
" Gini impurity (minimize) = CART algorithm

* Mutual information (maximize) — ID3 algorithm




Why bother with splitting criteria at all?

Occam’s razor: try to find the “simplest” (e.g., smallest decision tree)

classifier that explains the training dataset

The inductive bias of a machine learning algorithm is the principal by which

it generalizes to unseen examples

What is the inductive bias of the ID3 algorithm i.e., decision tree learning

with mutual information maximization as the splitting criterion?

" Try to find the tree that achieves
with

features at the top




Are decision trees algorithms optimal?
Well, what do we mean by optimal?
Considering all possible decision trees (i.e., trees splitting on one feature per node),

will the ID3 algorithm (each split maximizes mutual information; stopping when

mutual information is zero)...
produce the smallest decision tree that has lowest classification training error?
No, they aren’t optimal

Decision trees are greedy algorithms, i.e., they make the best local decision without

considering longer term possibilities.

= Better trees are possible, but it takes too long to search all combinations



Decision Trees: Pros & Cons

Pros

" Interpretable

" Efficient (computational cost and
storage)
= Can be used for classification and

regression tasks

=" Compatible with categorical and

real-valued features

Cons
" Greedy: each split only
considers the immediate impact
= Not guaranteed to find the
smallest (fewest number of
splits) tree that achieves a

training error rate of O.

= | iable to overfit!
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