
Warm-up as you walk in: Worksheet
Consider input features 𝑥 ∈ ℝ2.

Draw a reasonable decision tree.
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10-315
Introduction to ML

Decision Trees

Instructor: Pat Virtue



Decision Tree
Medical Prediction

(Oversimplified example)
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C-section
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Yes

C-section
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C-sectionNatural



Reminder: Machine Learning Problem Formulation

Three components <T,P,E>:
1. Task, T
2. Performance measure, P
3. Experience, E

Definition of learning:
A computer program learns if its performance at tasks in T, as 
measured by P, improves with experience E

4
Definition from (Mitchell, 1997)



Decision Trees
Why are we talking about decision trees?

Minimal prereqs: Doesn't rely on a ton of linear algebra, probability, or calc.

▪ So we can focus on some important ML concepts and notation, including 
model selection, overfitting/underfitting

Explainability

▪ Decision trees can be incredibly useful as they can more easily be 
interpreted and altered by humans than other ML algorithms

Basis of very powerful set of techniques: Random Forests

▪ Random forests train many simple decision trees (ML topic: ensemble 
learning)

▪ While powerful, random forests unfortunately have poor explainablility



Regression Model
Regression: learning a model to predict a numerical output (but not 
numbers that just represent categories, that would be classification)

Model



Regression Model
Regression: learning a model to predict a numerical output (but not 
numbers that just represent categories, that would be classification)

Model: Memorization



Regression Model
Regression: learning a model to predict a numerical output (but not 
numbers that just represent categories, that would be classification)

Model: Nearest neighbor



Regression Model
Regression: learning a model to predict a numerical output (but not 
numbers that just represent categories, that would be classification)

Model: Linear



Poll 1
Does the memorization algorithm learn?

A. Yes

B. No

C. I have no clue

Slide credit: CMU MLD Matt Gormley



ML Task: Classification
Predict species label from first two input measurements

ℎ 𝐱 → ො𝑦

Species
Sepal 

Length
Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

Images and full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set



Problem Formulation
Medical Prediction

Outcome Fetal Position Fetal Distress Previous C-sec

Natural Vertex N N

C-section Breech N N

Natural Vertex Y Y

C-section Vertex N Y

Natural Abnormal N N

𝑦          𝑥1 𝑥2 𝑥3

𝒙 =

𝑥1

𝑥2

𝑥3

= 𝑥1, 𝑥2, 𝑥3
𝑇 

𝑥1 ∈ {𝑉𝑒𝑟𝑡𝑒𝑥, 𝐵𝑟𝑒𝑒𝑐ℎ, 𝐴𝑏𝑛} 
𝑥2 ∈ {𝑌, 𝑁} 
𝑥3 ∈ {𝑌, 𝑁} 

𝑦 ∈ {𝐶𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑁𝑎𝑡𝑢𝑟𝑎𝑙} 

ො𝑦 = ℎ(𝒙) 



Decision Tree
Medical Prediction

(Oversimplified example)

Fetal
Position

Fetal
Distress

Previous
C-section

Vertex
Breech

Abnormal

C-section C-section

No

No
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C-section
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Decision Trees
A few tools

Majority vote:

ො𝑦 = argmax
𝑐

𝑁𝑐

𝑁

Classification error rate:

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
1

𝑁
σ𝑖 𝕀 𝑦(𝑖) ≠ ො𝑦(𝑖)

What fraction did we predict incorrectly

Expected value

𝔼 𝑓(𝑋) = σ𝑥∈𝒳 𝑓 𝑥 𝑃 𝑋 = 𝑥 or 𝔼 𝑓(𝑋) = 𝒳׬
𝑓 𝑥 𝑝 𝑥 𝑑𝑥

Species
Sepal 

Length
Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

2 5.9 3.0 5.1 1.8



Decision Stumps
Split data based on a single attribute

Majority vote at leaves
Dataset: 
Output Y, Attributes A, B, C

Y A B C

- 1 0 0

- 1 0 1

- 1 0 o

+ 0 0 1

+ 1 1 0

+ 1 1 1

+ 1 1 0

+ 1 1 1

Slide credit: CMU MLD Matt Gormley



Decision Stumps
Split data based on a single attribute

Majority vote at leaves
Dataset: 
Output Y, Attributes A, B, C

Y A B C

- 1 0 0

- 1 0 1

- 1 0 o

+ 0 0 1

+ 1 1 0

+ 1 1 1

+ 1 1 0

+ 1 1 1

Slide credit: CMU MLD Matt Gormley

A

A=0 A=1

3-, 5+

0-, 1+
ො𝑦 = +

3-, 4+
ො𝑦 = +

Error:        (   0        +      3   )  /  8
                             = 3/8



Poll 2
Splitting on which attribute {A, B, C} creates a 
decision stump with the lowest training error?

Dataset: 
Output Y, Attributes A, B, C

Y A B C

- 1 0 0

- 1 0 1

- 1 0 o

+ 0 0 1

+ 1 1 0

+ 1 1 1

+ 1 1 0

+ 1 1 1

Slide credit: CMU MLD Matt Gormley

A

A=0 A=1

3-, 5+

0-, 1+
ො𝑦 = +

3-, 4+
ො𝑦 = +

Error:        (   0        +      3   )  /  8
                             = 3/8



Poll 2
Splitting on which attribute {A, B, C} creates a 
decision stump with the lowest training error?

Answer: B

Dataset: 
Output Y, Attributes A, B, C

Y A B C

- 1 0 0

- 1 0 1

- 1 0 o

+ 0 0 1

+ 1 1 0

+ 1 1 1

+ 1 1 0

+ 1 1 1

Slide credit: CMU MLD Matt Gormley

B

B=0 B=1

3-, 5+

3-, 1+
ො𝑦 = −

0-, 4+
ො𝑦 = +

Error:        (   1        +      0   )  /  8
                             = 1/8



Poll 2
Splitting on which attribute {A, B, C} creates a 
decision stump with the lowest training error?

Answer: B

Dataset: 
Output Y, Attributes A, B, C

Y A B C

- 1 0 0

- 1 0 1

- 1 0 o

+ 0 0 1

+ 1 1 0

+ 1 1 1

+ 1 1 0

+ 1 1 1

Slide credit: CMU MLD Matt Gormley

C

C=0 C=1

3-, 5+

2-, 2+
ො𝑦 =+/−

1-, 3+
ො𝑦 = +

Error:        (   2        +      1   )  /  8
                             = 3/8



Building a Decision Tree
Function BuildTree(D, Attributes)

    # D: dataset at current node

    # Attributes : current set of attributes

    

    # TODO Base Case

    else

        # Internal node

        X  bestAttribute(D, Attributes)

        LeftNode = BuildTree(D(X=1), Attributes \ {X}) 

        RightNode = BuildTree(D(X=0), Attributes \ {X})

    end

end



Poll 3
Which of the following trees would be learned by the 
decision tree learning algorithm using “error rate” as 
the splitting criterion?

(Assume ties are broken alphabetically.)

Dataset: 
Output Y, Attributes A, B, C

Y A B C

+ 0 0 0

+ 0 0 1

- 0 1 0

+ 0 1 1

- 1 0 0

- 1 0 1

- 1 1 0

+ 1 1 1

A

+

C C

0 1

0 1 0 1

- - +

A

+

B C

0 1

0 1 0 1

- - +

C

+

B A

0 1

0 1 0 1

- - +

B

+

A C

0 1

0 1 0 1

- - +

1 2

4 5

A

B B

0 1

0 1 0 1

+ C
0 1

- +

C
0 1

-

- +

B

A A

0 1

0 1 0 1

+ -

+

C C
0 1 0 1

- - +

3

6

Slide credit: CMU MLD Matt Gormley
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Slide credit: CMU MLD Matt Gormley



Poll 4
How many errors do each of the two decision 
stumps make on the training set?

Dataset: 
Output Y, Attributes A and B

Slide credit: CMU MLD Matt Gormley



Building a Decision Tree
Function BuildTree(D, Attributes)

    # D: dataset at current node

    # Attributes : current set of attributes

    

    # TODO Base Case

    else

        # Internal node

        X  bestAttribute(D, Attributes)

        LeftNode = BuildTree(D(X=1), Attributes \ {X}) 

        RightNode = BuildTree(D(X=0), Attributes \ {X})

    end

end



Entropy
Surprisal

Claude Shannon (1916 – 2001), 

most of the work was done in 

Bell labs



Entropy
▪ Quantifies the amount of uncertainty associated 

with a specific probability distribution

▪ The higher the entropy, the less confident we are in 
the outcome

▪ Definition

𝐻 𝑋 = ෍

𝑥

𝑝 𝑋 = 𝑥 log2

1

𝑝(𝑋 = 𝑥)

𝐻 𝑋 = − ෍

𝑥

𝑝 𝑋 = 𝑥 log2 𝑝(𝑋 = 𝑥)

Claude Shannon (1916 – 2001), 

most of the work was done in 

Bell labs



Conditional Entropy
Entropy Definition

𝐻 𝑌 = σ𝑦 𝑝 𝑌 = 𝑦 log2
1

𝑝(𝑌=𝑦)

𝐻 𝑌 = − σ𝑦 𝑝 𝑌 = 𝑦 log2 𝑝(𝑌 = 𝑦)

Conditional Entropy

Entropy after splitting on a 
particular feature

▪ Must consider expected 
value over both branches!



Conditional Entropy
Entropy Definition

𝐻 𝑌 = σ𝑦 𝑝 𝑌 = 𝑦 log2
1

𝑝(𝑌=𝑦)

𝐻 𝑌 = − σ𝑦 𝑝 𝑌 = 𝑦 log2 𝑝(𝑌 = 𝑦)

Conditional Entropy

Entropy after splitting on a 
particular feature

▪ Must consider expected 
value over both branches!



Mutual Information Notation
We use mutual information in the context of before and after a split, 
regardless of where that split is in the tree.

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻(𝑌 ∣ 𝑋)



Mutual Information
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Mutual Information

31

• For a decision tree, we can use 
mutual information of the output 
class Y and some attribute X on 
which to split as a splitting criterion

• Given a dataset D of training 
examples, we can estimate the 
required probabilities as…

Sl
id

e
 c

re
d

it
: 

C
M

U
 M

LD
 M

at
t 

G
o

rm
le

y



Mutual Information

32

• For a decision tree, we can use 
mutual information of the output 
class Y and some attribute X on 
which to split as a splitting criterion

• Given a dataset D of training 
examples, we can estimate the 
required probabilities as…

Informally, we say that mutual information is a measure of the following: 
If we know X, how much does this reduce our uncertainty about Y?

• Entropy measures the expected # of bits to code one random draw from X. 
• For a decision tree, we want to reduce the entropy of the random variable we 

are trying to predict!

Conditional entropy is the expected value of specific conditional entropy 
EP(X=x)[H(Y | X = x)]
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Splitting with Mutual Information
Which attribute {A, B} would mutual 
information select for the next split?

1) A

2) B

3) A or B (tie)

4) I don’t know

Dataset: 
Output Y, Attributes A and B



Decision Tree Learning Example

34

Y A B

- 1 0

- 1 0

+ 1 0

+ 1 0

+ 1 1

+ 1 1

+ 1 1

+ 1 1

Slide credit: CMU MLD Matt Gormley



Decision Tree Learning Example

35

Y A B

- 1 0

- 1 0

+ 1 0

+ 1 0

+ 1 1

+ 1 1

+ 1 1

+ 1 1

Slide credit: CMU MLD Matt Gormley

𝐻 𝑌 = −
2

8
log2

2

8
+

6

8
log2

6

8
 

𝐻 𝑌 𝐴 = 0 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

𝐻 𝑌 𝐴 = 1 = −
2

8
log2

2

8
+

6

8
log2

6

8
= 𝐻(𝑌) 

𝐻 𝑌 𝐴 = 𝑃 𝐴 = 0 𝐻 𝑌 𝐴 = 0 + 𝑃 𝐴 = 1 𝐻(𝑌 ∣ 𝐴 = 1) 
 =  0 +  𝐻(𝑌 ∣ 𝐴 = 1) 
 = 𝐻(𝑌) 
𝐼 𝑌; 𝐴 = 𝐻 𝑌 − 𝐻 𝑌 𝐴 = 0 

A

[2-, 6+]

[0-, 0+]
P(A=0) = 0

[2-, 6+]
P(A=1)=1

A=0 A=1



Decision Tree Learning Example

Y A B

- 1 0

- 1 0

+ 1 0

+ 1 0

+ 1 1

+ 1 1

+ 1 1

+ 1 1

Slide credit: CMU MLD Matt Gormley

B

[2-, 6+]

[2-, 2+]
P(B=0)=4/8

[0-, 4+]
P(B=1)=4/8

B=0 B=1



Decision Tree Learning Example

37

Y A B

- 1 0

- 1 0

+ 1 0

+ 1 0

+ 1 1

+ 1 1

+ 1 1

+ 1 1

Slide credit: CMU MLD Matt Gormley

𝐻 𝑌 = −
2

8
log2

2

8
+

6

8
log2

6

8
 

𝐻 𝑌 𝐵 = 0 = −
2

4
log2

2

4
+

2

4
log2

2

4
 

𝐻 𝑌 𝐵 = 1 = − 0 log2 0 + 1 log2 1 = 0 

𝐻 𝑌 𝐵 = 𝑃 𝐵 = 0 𝐻 𝑌 𝐵 = 0 + 𝑃 𝐵 = 1 𝐻(𝑌 ∣ 𝐵 = 1) 

 =
4

8
𝐻 𝑌 𝐵 = 0 +

4

8
⋅ 0 

𝐼 𝑌; 𝐵 = 𝐻 𝑌 − 𝐻 𝑌 𝐵 > 0 
𝐼 𝑌; 𝐵  ends up being greater than 𝐼 𝑌; 𝐴 = 0, so we split on B

B

[2-, 6+]

[2-, 2+]
P(B=0)=4/8

[0-, 4+]
P(B=1)=4/8

B=0 B=1



Building a Decision Tree
How do we choose the best feature?

A splitting criterion is a function that measures how good or useful splitting 

on a particular feature is for a specified dataset

Insight: use the feature that optimizes the splitting criterion current decision

Potential splitting criteria:

▪ Training error rate (minimize)

▪ Gini impurity (minimize) → CART algorithm

▪ Mutual information (maximize) → ID3 algorithm

Slide credit: CMU MLD Henry Chai



Why bother with splitting criteria at all?

Occam’s razor: try to find the “simplest” (e.g., smallest decision tree) 

classifier that explains the training dataset

The inductive bias of a machine learning algorithm is the principal by which 

it generalizes to unseen examples

What is the inductive bias of the ID3 algorithm i.e., decision tree learning 

with mutual information maximization as the splitting criterion?

▪ Try to find the tree that achieves  

with 

features at the top 
Slide credit: CMU MLD Henry Chai



Are decision trees algorithms optimal?
Well, what do we mean by optimal?

Considering all possible decision trees (i.e., trees splitting on one feature per node),

will the ID3 algorithm (each split maximizes mutual information; stopping when 

mutual information is zero)…

produce the smallest decision tree that has lowest classification training error?

No, they aren’t optimal

Decision trees are greedy algorithms, i.e., they make the best local decision without 

considering longer term possibilities.

▪ Better trees are possible, but it takes too long to search all combinations



Decision Trees: Pros & Cons

Pros

▪ Interpretable

▪ Efficient (computational cost and 

storage)

▪ Can be used for classification and 

regression tasks

▪ Compatible with categorical and 

real-valued features

Slide credit: CMU MLD Henry Chai

Cons

▪ Greedy: each split only 

considers the immediate impact

▪ Not guaranteed to find the 

smallest (fewest number of 

splits) tree that achieves a 

training error rate of 0. 

▪ Liable to overfit!
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