

10-315Machine LearningProblem Formulation

Instructor: Pat Virtue

# Today

## Autoencoder (Aliens) (previous slides)

Features

### **ML Problem Formulation**

- Task input and output
- Task, Performance, Experience
- Data and notation
- Examples: Iris Classification and Car Price Regression

### **ML** Training and Models

- Linear
- Memorization
- Nearest Neighbor



# ML Problem Formulation

# Agents

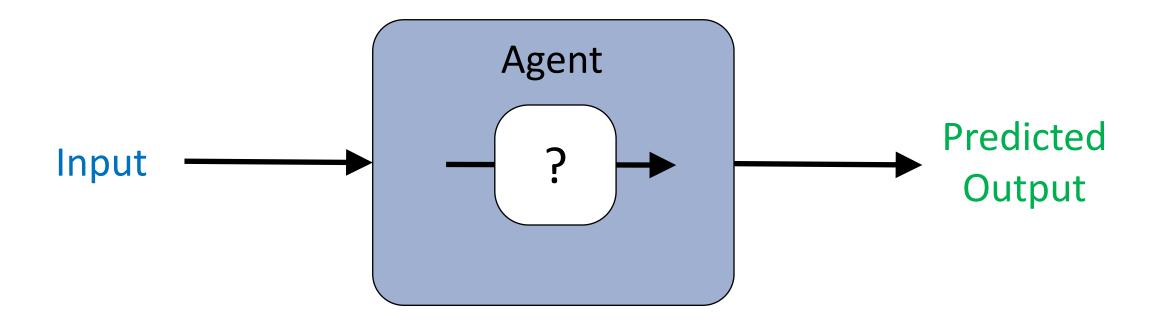
An **agent** is an entity that *perceives* and *acts*.

Actions can have an effect on the environment.

The specific sensors and actuators affect what the agent is capable of perceiving and what actions it is capable of taking



# Agent: Simple Input/Output Task



# Task Input and Output

| Input              | Task                     | Output         |
|--------------------|--------------------------|----------------|
| Petal measurements | Iris classification      | Category       |
| Time of day        | Traffic prediction       | Traffic Volume |
| Image              | Image classification     | Category       |
| Image              | Image denoising          | Image          |
| Text               | Text to image generation | Image          |
| ???                | Face generation          | lmage          |

## Task: Face Generation

https://thispersondoesnotexist.com/



## Machine Learning Problem Formulation

## Three components <*T,P,E*>:

- 1. Task, *T*
- 2. Performance measure, P
- 3. Experience, E

### Definition of learning:

A computer program **learns** if its performance at tasks in T, as measured by P, improves with experience E

# Machine Learning Problem Formulation

#### Task

Formalize the task as a mapping from input to output

### Experience

Data! Task experience examples will usually be pairs: (input, measured output)

### Performance measure

Objective function that gives a single numerical value representing how well the system performs for a given dataset

- Classification: error rate
- Regression: mean squared error

### **Notation**

$$h(x) \rightarrow \hat{y}$$

$$\mathcal{D} = \{ (x^{(i)}, y^{(i)}) \}_{i=1}^{N}$$

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y^{(i)} \neq \hat{y}^{(i)})$$

$$\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$$

## ML Problem Formulation

#### Task

Formalize the task as a mapping from input to output

### Experience

Data! Task experience examples will usually be pairs: (input, measured output)

#### Performance measure

Objective function that gives a single numerical value representing how well the system performs for a given dataset

- Classification: error rate
- Regression: mean squared error

### **Notation alert:** Indicator function

$$\mathbb{I}(z) = \mathbf{1}(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

$$h(x) \to \hat{y}$$

$$\mathcal{D} = \{ (x^{(i)}, y^{(i)}) \}_{i=1}^{N}$$

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y^{(i)} \neq \hat{y}^{(i)})$$

$$\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$$

Slide: CMU ML, Tom Mitchel and Roni Rosenfeld

# Experience: Data and Notation

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

| Species | Sepal<br>Length | Sepal<br>Width | Petal<br>Length | Petal<br>Width |
|---------|-----------------|----------------|-----------------|----------------|
| 0       | 4.3             | 3.0            | 1.1             | 0.1            |
| 0       | 4.9             | 3.6            | 1.4             | 0.1            |
| 0       | 5.3             | 3.7            | 1.5             | 0.2            |
| 1       | 4.9             | 2.4            | 3.3             | 1.0            |
| 1       | 5.7             | 2.8            | 4.1             | 1.3            |
| 1       | 6.3             | 3.3            | 4.7             | 1.6            |
| 2       | 5.9             | 3.0            | 5.1             | 1.8            |



Assume samples in data are i.i.d.

from sklearn import datasets

iris = datasets.load\_iris()

X = iris.data

y = iris.target

# Dataset notation

$$\mathcal{D} = \left\{ \left( y^{(i)}, \mathbf{x}^{(i)} \right) \right\}_{i=1}^{N}$$

$$= \left\{ \left( y^{(i)}, \mathbf{x}_{1}^{(i)}, \mathbf{x}_{2}^{(i)}, \mathbf{x}_{3}^{(i)}, \mathbf{x}_{4}^{(i)} \right) \right\}_{i=1}^{N}$$

Linear algebra can represent all data

$$y \in \{0,1,2\}^N$$
  $X \in \mathbb{R}^{N \times 4}$  (design matrix)

|   |         | <b>&gt;</b> 1   | 12             | 13              | 74             |
|---|---------|-----------------|----------------|-----------------|----------------|
|   | Species | Sepal<br>Length | Sepal<br>Width | Petal<br>Length | Petal<br>Width |
| 1 | 0       | 4.3             | 3.0            | 1.1             | 0.1            |
| 2 | 0       | 4.9             | 3.6            | 1.4             | 0.1            |
| 3 | 0       | 5.3             | 3.7            | 1.5             | 0.2            |
| 4 | 1       | 4.9             | 2.4            | 3.3             | 1.0            |
| 5 | 1       | 5.7             | 2.8            | 4.1             | 1.3            |
| 6 | 1       | 6.3             | 3.3            | 4.7             | 1.6            |
|   | 2       | 5.9             | 3.0            | 5.1             | 1.8            |

Assume samples in data are i.i.d.

from sklearn import datasets

iris = datasets.load\_iris()

X = iris.data

y = iris.target

### **Dataset notation**

$$\mathcal{D} = \{ (y^{(i)} | \mathbf{x}^{(i)}) \}_{i=1}^{N}$$

$$= \{ (y^{(i)}, x_1^{(i)}, x_2^{(i)}, x_3^{(i)}, x_4^{(i)}) \}_{i=1}^{N}$$

Data point  $i = 6: (y^{(6)}, \mathbf{x}^{(6)})$ 

| Spe | cies     | Sepal<br>Length | Sepal<br>Width | Petal<br>Length | Petal<br>Width |
|-----|----------|-----------------|----------------|-----------------|----------------|
| C   | )        | 4.3             | 3.0            | 1.1             | 0.1            |
| C   | )        | 4.9             | 3.6            | 1.4             | 0.1            |
| C   | )        | 5.3             | 3.7            | 1.5             | 0.2            |
| 1   | L        | 4.9             | 2.4            | 3.3             | 1.0            |
| 1   | L        | 5.7             | 2.8            | 4.1             | 1.3            |
| 1   | L        | 6.3             | 3.3            | 4.7             | 1.6            |
| 2   | <u>)</u> | 5.9             | 3.0            | 5.1             | 1.8            |

Assume samples in data are i.i.d.

from sklearn import datasets

iris = datasets.load\_iris()

X = iris.data

y = iris.target



### **Dataset notation**

$$\mathcal{D} = \left\{ \left( y^{(i)}, \mathbf{x}^{(i)} \right) \right\}_{i=1}^{N}$$

$$= \left\{ \left( y^{(i)}, x_1^{(i)}, x_2^{(i)}, x_3^{(i)}, x_4^{(i)} \right) \right\}_{i=1}^{N}$$

Linear algebra can represent all data

$$\mathbf{y} \in \{0,1,2\}^N$$
 $X \in \mathbb{R}^{N \times 4}$  (design matrix)

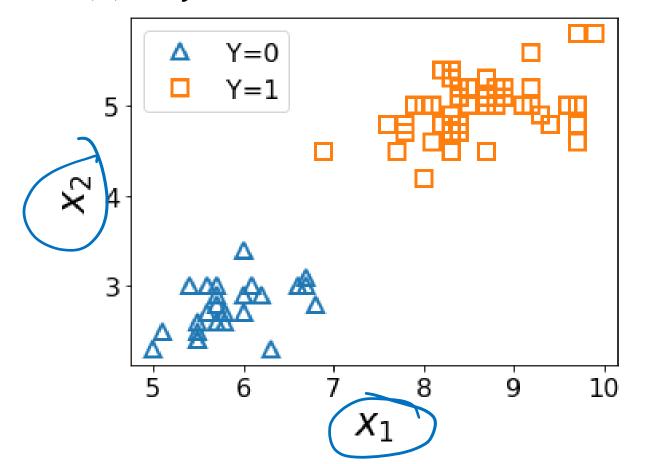
| Species | Sepal<br>Length | Sepal<br>Width | Petal<br>Length | Petal<br>Width |
|---------|-----------------|----------------|-----------------|----------------|
| 0       | 4.3             | 3.0            | 1.1             | 0.1            |
| 0       | 4.9             | 3.6            | 1.4             | 0.1            |
| 0       | 5.3             | 3.7            | 1.5             | 0.2            |
| 1       | 4.9             | 2.4            | 3.3             | 1.0            |
| 1       | 5.7             | 2.8            | 4.1             | 1.3            |
| 1       | 6.3             | 3.3            | 4.7             | 1.6            |
| 2       | 5.9             | 3.0            | 5.1             | 1.8            |

Task: Classification

## ML Task: Classification

### Predict species label from first two input measurements

$$h(\mathbf{x}) \to \hat{y}$$





| Y       | $\times$        | XZ             |
|---------|-----------------|----------------|
| Species | Sepal<br>Length | Sepal<br>Width |
| 0       | 4.3             | 3.0            |
| 0       | 4.9             | 3.6            |
| 0       | 5.3             | 3.7            |
| 1       | 4.9             | 2.4            |
| 1       | 5.7             | 2.8            |
| 1       | 6.3             | 3.3            |
|         |                 |                |

Images and full dataset: https://en.wikipedia.org/wiki/Iris\_flower\_data\_set

## Classification

### Iris data example

$$\mathbb{I}(z) = \mathbf{1}(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

# $\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_{i=1}^{N}, \text{ where } \mathbf{x}^{(i)} \in \mathbb{R}^{4}, y^{(i)} \in \{0, 1, 2\}$

### Predict species label from input measurements

$$h(\mathbf{x}) \to \hat{y}$$

### Performance measure?

### Classification error rate

• Fraction of times  $y \neq \hat{y}$  in a given dataset

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y^{(i)} \neq \hat{y}^{(i)})$$

| Species | Sepal<br>Length | Sepal<br>Width | Petal<br>Length | Petal<br>Width |
|---------|-----------------|----------------|-----------------|----------------|
| 0       | 4.3             | 3.0            | 1.1             | 0.1            |
| 0       | 4.9             | 3.6            | 1.4             | 0.1            |
| 0       | 5.3             | 3.7            | 1.5             | 0.2            |
| 1       | 4.9             | 2.4            | 3.3             | 1.0            |
| 1       | 5.7             | 2.8            | 4.1             | 1.3            |
| 1       | 6.3             | 3.3            | 4.7             | 1.6            |
| 2       | 5.9             | 3.0            | 5.1             | 1.8            |

## **ML** Tasks

Supervised learning: Pairs of input and output in training data

$$\mathcal{D} = \left\{ \left( \mathbf{x}^{(i)}, y^{(i)} \right) \right\}_{i=1}^{N} \qquad h(\mathbf{x}) \to \hat{y}$$

## Classification

- Output labels
- $y \in \mathcal{Y}$ , where  $\mathcal{Y}$  is discrete and order of values has no meaning

## Regression

- Output values
- $y \in \mathcal{Y}$ , where  $\mathcal{Y}$  is usually continuous, order of values has meaning

# Unsupervised Tasks

## ML Tasks

### Unsupervised learning

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{N} \quad h(\mathbf{x}) \to ???$$

- Training data has no output values
- Tasks can vary
- Often used to organize data for future (minimally) supervised learning

## Task: Face Generation

https://thispersondoesnotexist.com/



## ML Tasks

### Unsupervised learning

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{N} \quad h(\mathbf{x}) \to ???$$

- Training data has no output values
- Tasks can vary
- Often used to organize data for future (minimally) supervised learning

Example: Unsupervised autoencoder  $\rightarrow$  Random image generation

$$\mathbf{x} \to \boxed{h(\mathbf{x})} \to \hat{\mathbf{x}}$$

$$\mathbf{x} \to \boxed{f(\mathbf{x})} \to \mathbf{z} \to \boxed{g(\mathbf{z})} \to \hat{\mathbf{x}}$$



$$\mathbf{z} \to g(\mathbf{z}) \to \hat{\mathbf{x}}$$

## ML Tasks

### Unsupervised learning

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{N} \quad h(\mathbf{x}) \to ???$$

- Training data has no output values
- Tasks can vary
- Often used to organize data for future (minimally) supervised learning

**Example: Text Generation** 

# Vocab pause

#### Task

- Prediction
- Inference
- Hypothesis function
- Classification
- Regression

### Experience/Data

### Input

- Input feature
- Measurement
- Attribute

### Output

- Target
- Class/category/label
- True output
- Measured output
- Predicted output

Supervised

Unsupervised

### Performance Measure

Objective function

### Classification

- Error rate
- Accuracy rate

### Regression

Mean squared error

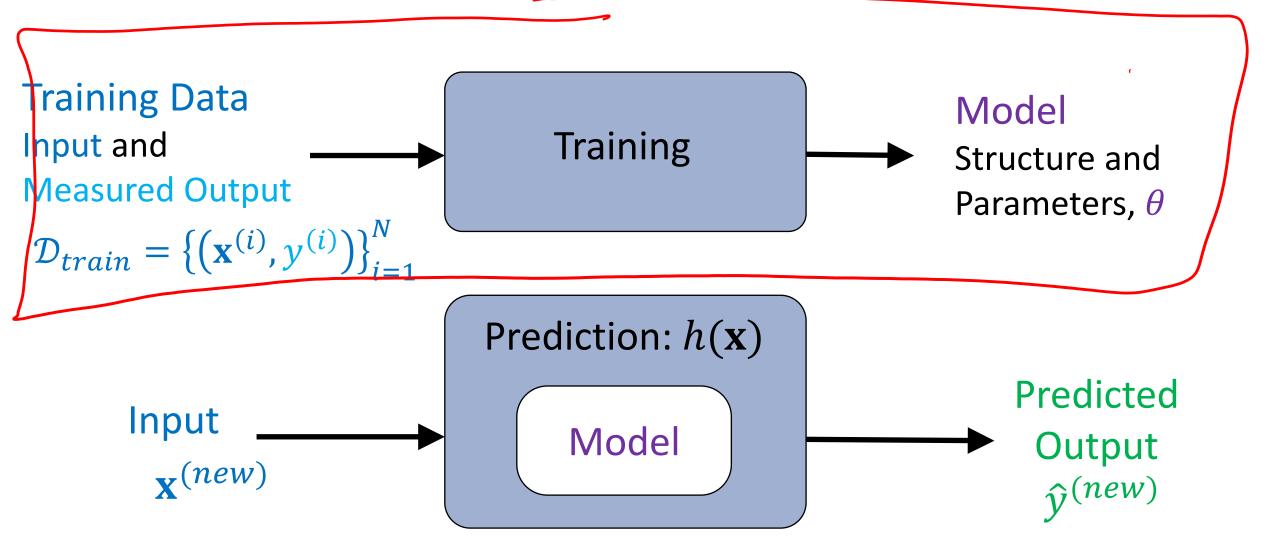
### **Training**

- Model
- Model structure
- Model parameters

# Training and ML Models

# Machine Learning

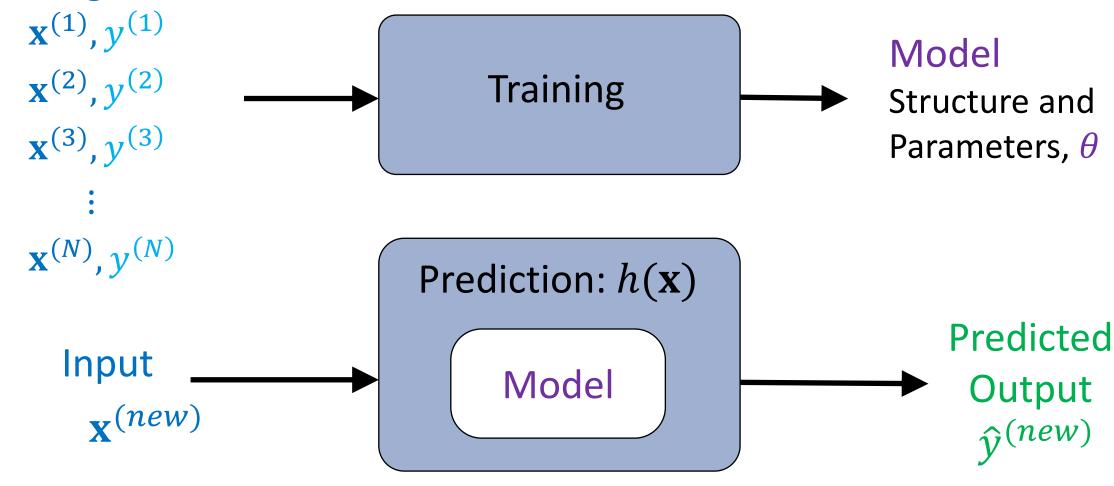
Using (training) data to learn a model that we'll later use for prediction



# Machine Learning

Using (training) data to learn a model that we'll later use for prediction

## **Training Data**

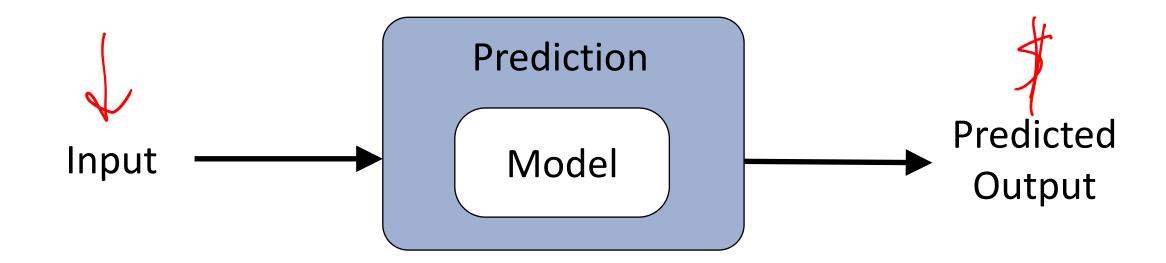


## Task: Car Price Prediction

Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

### Example

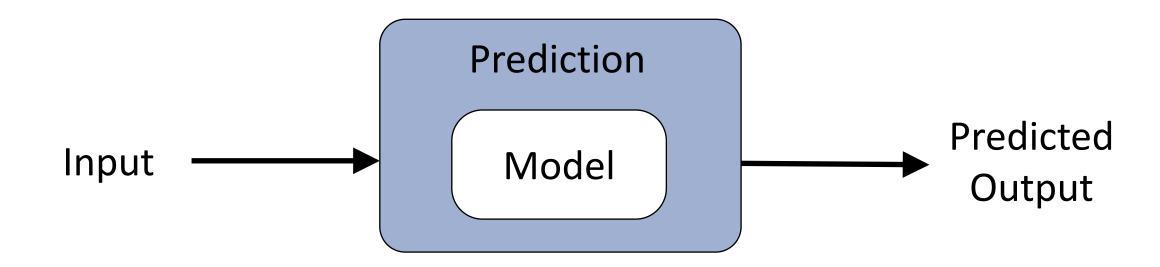
Trying to see how much I should sell my car for.



## Task: Car Price Prediction

Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

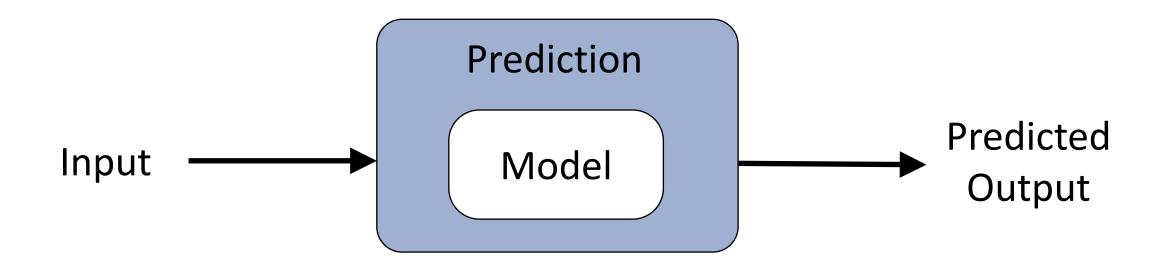
What input features should we use?



## Poll 2

Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

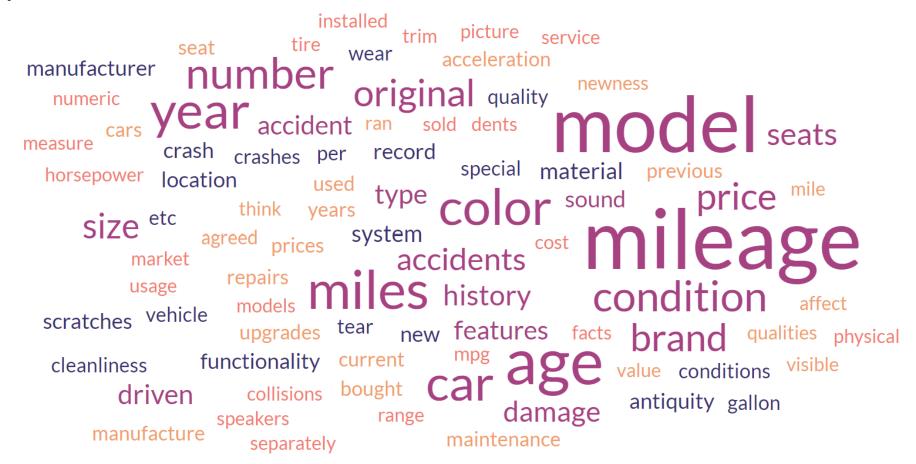
What input features should we use?



## Poll 2

Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

### What input features should we use?

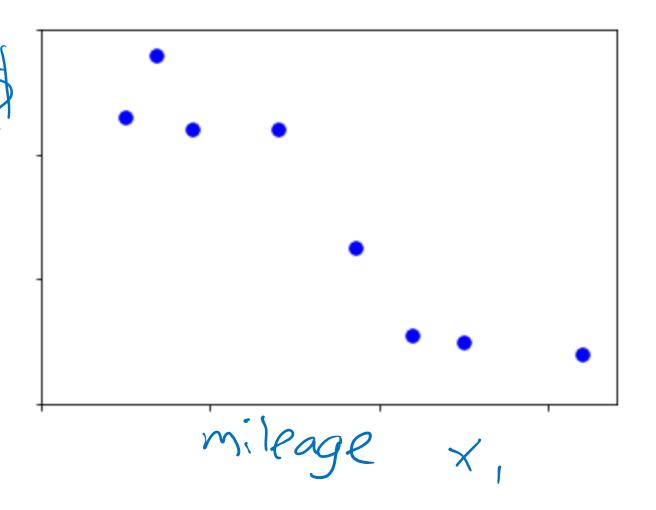


# Regression

Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

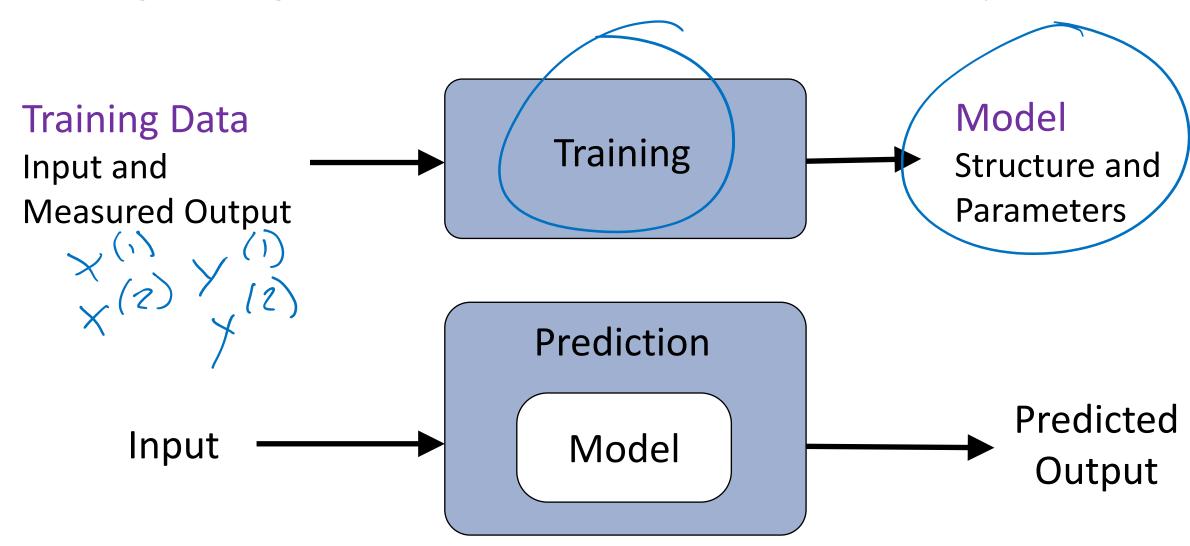
### Example

Trying to see how much I should sell my car for.
Looking up data from car websites, I find the mileage for a set of cars and the selling price for each car.

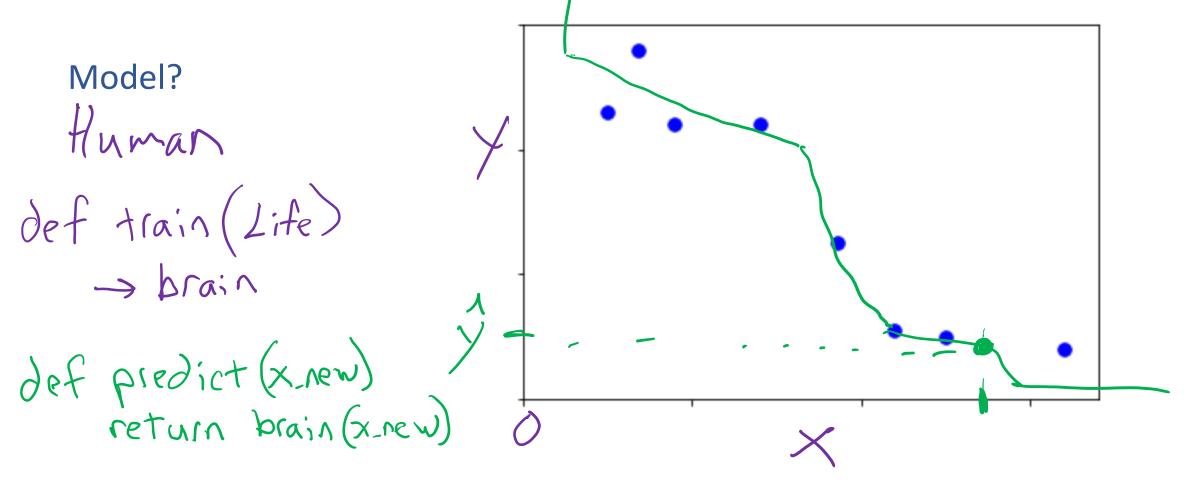


# Machine Learning

Using (training) data to learn a model that we'll later use for prediction

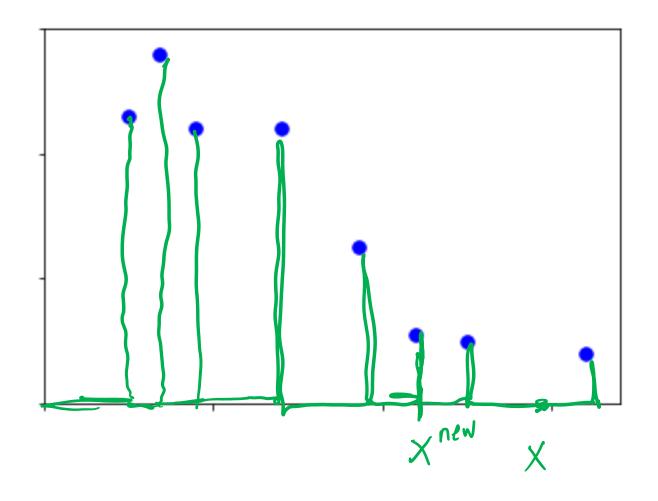


Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)



Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

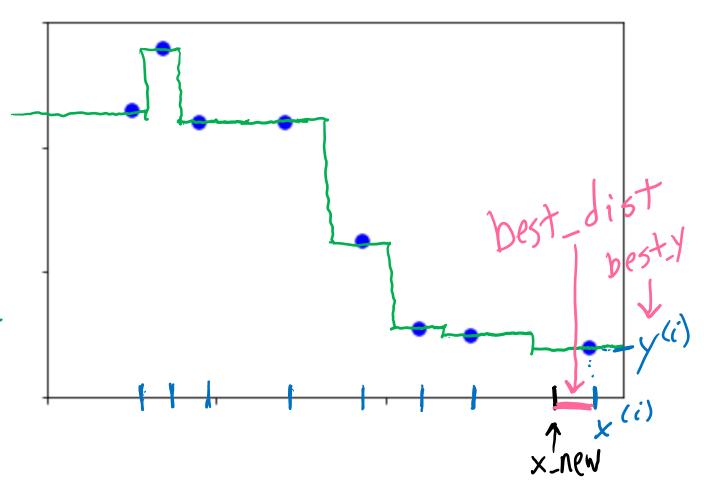
Model: Memorization



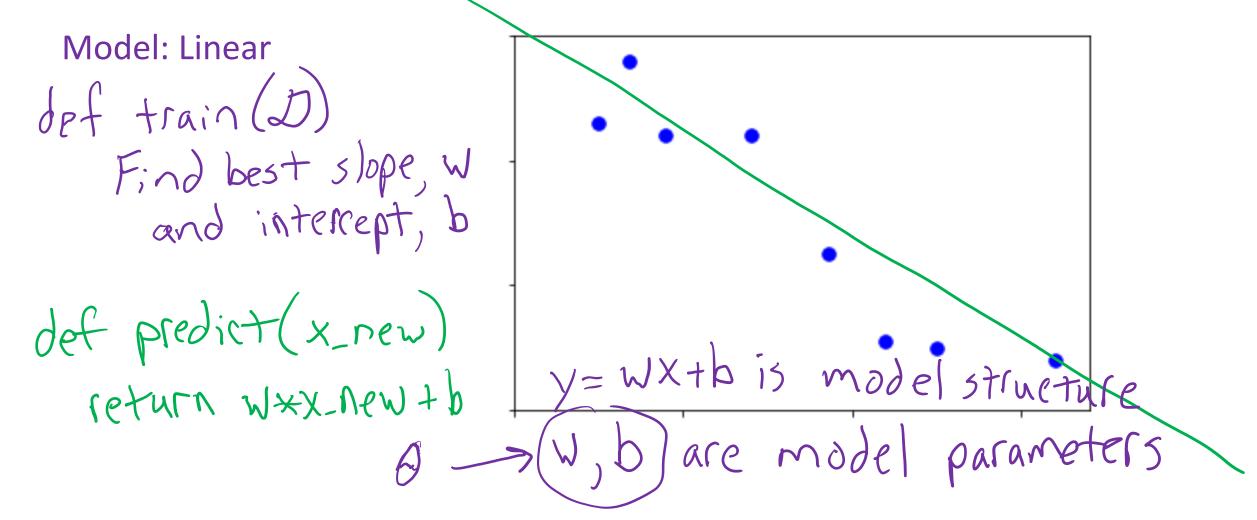
Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

Model: Nearest neighbor

def train(D)  
self. 
$$D = D$$
  
def predict(x\_new)  
for x, y in self.  $D$   
if dist(x, x\_new) = best\_dist  
best\_y = y  
return best\_y



Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)



Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

