As you walk in

Welcome!

1) Help draw some aliens
for our dataset today!

" @Grab asharpie and
some sticky notes

= Just stick figures,
nothing quite this
fancy 2
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Exercise: Human-defined Feature Space

Try to organize data on a 2-D coordinate
plot

to win the following game:
Select three students: A, B, C

1. Student A draws a new alien and
hands it to student B

- _ LA
2. Student B thinks about where to plot -0/ El 2 —QJ——
it and comes up with a 2-D 3T
coordinate, (X, y)

3. Student C looks at the coordinate
and the plot (but not the drawing
from A) and draws a new alien
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Course Information
Website: https://www.cs.cmu.edu/~10315

Communication:

piazza.com  [IIEELY

E-mail Joshmin if piazza doesn’t work:

joshminr@andrew.cmu.edu

Important posts coming soon!

Office Hours

Jupyter notebooks
Recitation (Fri)
Pre-reading (due Sun)
HWO

HW1
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https://piazza.com/cmu/fall2021/10607
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Course Team

Instructor Education Associate

Pat Josh min Ra

Virtue joshminr

pvirtue
Best way to contact Pat: Email Joshmin, joshminr@andrew.cmu.edu, for any:
= Post on Piazza (private post as needed) =  Exceptions, extensions, etc

= Just grab an OH appointment slot =  Any course logistics
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Course Team

Students!!
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Al Definition by John McCarthy

What is artificial intelligence

" |t is the science and engineering of making
intelligent machines, especially intelligent
computer programs

What is intelligence

" |[ntelligence is the computational part of the
ability to achieve goals in the world

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html



Attributes of Intelligence
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"Poll" Turn to your neighbor

Which of these more intelligent?
= Robot that assemble cars in factory
= Robot that fold clothes




Intelligence and Uncertainty

Uncertainty can have lots of sources, including anything we attribute to
random chance

* Hidden information
= (Cards in another player’s hand

= Noise
" Sensor noise

= Way to complicated to model
= Leaves blowing in the wind

" [nfinite number of possible configurations

" More possibilities than any computer can compute in a reasonable time
» Tic-tac-toe = Checkers = Chess



Al Definition by John McCarthy

What is artificial intelligence

" |t is the science and engineering of making
intelligent machines, especially intelligent
computer programs

What is intelligence

" |[ntelligence is the computational part of the
ability to achieve goals in the world

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html



Al Definition (Pat's Version)

What is intelligence

" |[ntelligence is the ability to perform well on a
task that involves uncertainty

Intelligence is not binary

" How well an agent performs and how much
uncertainty is involved will determine how
intelligent we consider the agent to be




Artificial Intelligence vs Machine Learning?

Artificial Intelligence

Machine Learning




A Brief History of Al

Images: ai.berkeley.edu
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A Brief History of Al

1940-1950: Early days
= 1943: McCulloch & Pitts: Boolean circuit model of brain
= 1950: Turing's “Computing Machinery and Intelligence”

1950—70: Excitement: Look, Ma, no hands!

= 1950s: Early Al programs, including Samuel's checkers program, Newell &
Simon's Logic Theorist, Gelernter's Geometry Engine

= 1956: Dartmouth meeting: “Artificial Intelligence” adopted

1970—90: Knowledge-based approaches

= 1969—79: Early development of knowledge-based systems
= 1980—88: Expert systems industry booms

= 1988—93: Expert systems industry busts: “Al Winter”

1990—: Statistical approaches

= Resurgence of probability, focus on uncertainty
= General increase in technical depth

= Agents and learning systems... “Al Spring”?

2012—: Deep learning
= 2012: ImageNet & AlexNet

2023 —: Generative Al
= 2023: ChatGPT

Images: ai.berkeley.edu



L Applications?

Speech Recognition

1. Learning to recognize spoken words
THEN

“...the SPHINX system (e.g.
Lee 1989) learns speaker-
specific strategies for
recognizing the primitive
sounds (phonemes) and
words from the observed
speech signal...neural
network methods. ..hidden
Markov models...”

(Mitchell, 1997)

Robotics

2. Learning to drive an autonomous vehicle
THEN

“...the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars...”

(Mitchell, 1997)

waymo.com

THEN

“...The recognizer is a
convolution network that
can be spatially replicated. it
From the network output, a
hidden Markov model
produces word scores. The
entire system is globally
trained to minimize word-

(LeCun et al., 1995)

Computer Vision

4. Learning to recognize images

Revolution of Deoth

Games [ Reasoning

3. Learning to beat the masters at board games
THEN

“...the world’s top computer
program for backgammon,
TD-GAMMON (Tesauro,
1992, 1995), learned its
strategy by playing over one
million practice games
against itself...”

(Mitchell, 1997)
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1. How many examples do we need
to learn?

2. How do we quantify our ability to
generalize to unseen data?

3. Which algorithms are better
suited to specific leaming
settings?




Machine Learning and Statistics

Statistics is also about learning from data
Statistics has been around from much longer!
What's the difference?

Until the mid 1990s:

Statistics:

" A branch of mathematics
" Emphasized rigor, correctness, provable properties (“is it correct?”)
= \WWas not very concerned with scaling

Machine Learning:
= A branch of Computer Science / Al
" Focus on heuristics, making things work in practice (“does it work?”)

" Not much awareness of statistical theory
Slide: CMU ML, Roni Rosenfeld



As you walk in

Welcome!

1) Help draw some aliens
for our dataset today!

= See table up front

= Just stick figures,
nothing quite this
fancy 2
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Exercise: Human-defined Feature Space

Try to organize data on a 2-D coordinate
plot

to win the following game:
Select three students: A, B, C

1. Student A draws a new alien and
hands it to student B

- _ LA
2. Student B thinks about where to plot -0/ El 2 —QJ——
it and comes up with a 2-D 3T
coordinate, (X, y)

3. Student C looks at the coordinate
and the plot (but not the drawing
from A) and draws a new alien
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Exercise: Human-defined Feature Space




Exercise: Human-defined Feature Space




Poll 1

What features did you use?



Poll 1

What features did you use?
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Learning to Organize Data

Neural networks can learn to organization t

Image =2 [Z] - Image
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Digit Autoencoder

Demo: Using a learned feature space

® O




Task: Face Generation

https://thispersondoesnotexist.com/



https://thispersondoesnotexist.com/

Task: Face Generation

https://thispersondoesnotexist.com/
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https://thispersondoesnotexist.com/

Face GAN Slider Demo

https://github.com/genforce/interfacegan

https://colab.research.google.com/github/genforce/interfacegan/blob/master/doc
s/InterFaceGAN.ipynb

r/v age: & @ 0

/v eyeglasses: o 0
> e 7
Z v gender: o 0
[/ pose: @ 0

Z— [\~ smile: @ 0

Show code



https://github.com/genforce/interfacegan
https://colab.research.google.com/github/genforce/interfacegan/blob/master/docs/InterFaceGAN.ipynb
https://colab.research.google.com/github/genforce/interfacegan/blob/master/docs/InterFaceGAN.ipynb

Face GAN Slider Demo

https://github.com/genforce/interfacegan

https://colab.research.google.com/github/genforce/interfacegan/blob/master/doc
s/InterFaceGAN.ipynb
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Show code



https://github.com/genforce/interfacegan
https://colab.research.google.com/github/genforce/interfacegan/blob/master/docs/InterFaceGAN.ipynb
https://colab.research.google.com/github/genforce/interfacegan/blob/master/docs/InterFaceGAN.ipynb
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Chris Harrison, CMU
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https://chrisharrison.net/index.php/Research/ListenLearner

Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.
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Digit Autoencoder

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Digit Autoencoder

Math for autoencoder model

Linear layer \\) ?? ¥ 10

RelLU layer Ma X (2 ) D>

Tanh layer ‘f'(kt\»\ (£>
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