
10-315
Introduction to ML

Neural Networks
Applications for Images

Instructor: Pat Virtue

Neural Networks for Images

1. Image features

2. Computer vision tasks

3. Computer vision history

▪ Old school computer vision

▪ Image features and classification

▪ Deep learning boom

4. Convolution “nuts and bolts”

Image Features

Image Features
Raw Data

Image Features
Raw Data

Image Features
Raw Data

Image Features
Raw Data

Image Features
Raw Data

Image Features
Raw Data

Image Features
Handwritten Digits

Image Features
Converting more complex data into a table of numerical values
Task: Face recognition from image

Image Features
Keypoints

Image credit: https://arxiv.org/abs/1901.10436

Image Features
Animal Classification

Image: ImageNet

Image Features
Feature engineering

Edge detection convolutions (direction and strength of edges in image patch)

HOG filer: Histogram of gradients (edges)

Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html

Image Features
Feature engineering

Edge detection convolutions (direction and strength of edges in image patch)

HOG filer: Histogram of gradients (edges)

Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html

Image Features
Feature learning

Convolutional neural nets

Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html

Image Features
Feature learning

Self-supervised, e.g. autoencoders

 Image →
𝑧1
𝑧2

 → Image

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Net Net𝑧1
𝑧2

Net Net𝑧1
𝑧2

𝑧1

𝑧2

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Computer Vision
Image in → information out

Computer Vision Tasks

Computer Vision Tasks: How far along are we?

Computer Vision Tasks: How far along are we?

Terminator 2, 1991 https://www.youtube.com/watch?v=9MeaaCwBW28

https://www.youtube.com/watch?v=9MeaaCwBW28

Computer Vision Tasks: How far along are we?

He, Kaiming, et al. "Mask R-CNN." Computer Vision (ICCV), 2017 IEEE
International Conference on. IEEE, 2017.Mask R-CNN

2017:
0.2 seconds
per image

Computer Vision Tasks: How far along are we?

Terminator 2, 1991

“My CPU is a neural net processor, a learning computer”

Computer Vision Tasks: Autonomous Driving

Tesla, Inc: https://vimeo.com/192179726

https://vimeo.com/192179726

Computer Vision Tasks: Autonomous Driving

https://photos.app.goo.gl/YMEEkcYguCmaKbJa7
https://photos.app.goo.gl/YMEEkcYguCmaKbJa7

Computer Vision: Autonomous Driving

https://photos.app.goo.gl/YMEEkcYguCmaKbJa7
https://photos.app.goo.gl/YMEEkcYguCmaKbJa7

Image-related Tasks: Input/Output
Input Task Output

Image Image classification Category

Image Image detection Bounding box

Image Image segmentation Image: category per pixel

Image Image processing* Image

CAT

Image-related Tasks: Domain Transfer

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks", ICCV 2017.

CycleGAN

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros

Image-related Tasks : Domain Transfer
Pix2pix

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros

https://affinelayer.com/pixsrv/ and https://phillipi.github.io/pix2pix/

https://affinelayer.com/pixsrv/
https://phillipi.github.io/pix2pix/

Text to Image

https://mingukkang.github.io/GigaGAN/
Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, Taesung Park. "Scaling
up GANs for Text-to-Image Synthesis", CVPR 2023.

GigaGAN

https://mingukkang.github.io/GigaGAN/

Image-related Tasks: Input/Output
Input Task Output

Image Image classification Category

Image Image detection Bounding box

Image Image segmentation Image: category per pixel

Image Image processing* Image

Image
(portion missing)

In-painting Image

Random values Image generation Image

Text Image generation Image

Image Image captioning Text

Neural Networks for Images

1. Image features (redux)

2. Computer vision tasks

3. Computer vision history

▪ Old school computer vision

▪ Image features and classification

▪ Deep learning boom

4. Convolution “nuts and bolts”

Computer Vision History

CNNs for Image Classification

Slide from Kaiming He

Which neural network are they talking about?

From Wikipedia:

V2 receives strong feedforward connections from V1 and sends robust
connections to V3, V4, and V5. Additionally, it plays a crucial role in the
integration and processing of visual information.

The feedforward connections from V1 to V2 contribute to the
hierarchical processing of visual stimuli. V2 neurons build upon the
basic features detected in V1, extracting more complex visual attributes
such as texture, depth, and color. This hierarchical processing is
essential for the construction of a more nuanced and detailed
representation of the visual scene.

Furthermore, the reciprocal feedback connections from V2 to V1 play a

https://en.wikipedia.org/wiki/Visual_cortex

Vision / Computer Vision History
A few highlights ☺

▪ 1782: Documenting the (human) visual cortex

Mitchell Glickstein, The Discovery of the Visual Cortex. 1998

Vision / Computer Vision History
A few highlights ☺

▪ 1782: Documenting the (human) visual cortex

▪ 1959: V1 (cat) sensitive to edge orientation

Hubel and Wiesel, RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX. 1959

Vision / Computer Vision History
A few highlights ☺

▪ 1782: Documenting the (human) visual cortex

▪ 1959: V1 (cat) sensitive to edge orientation

M. Li, F. Liu, H. Jiang, Tai Sing Lee, S. Tang, Long-Term Two-Photon Imaging in Awake Macaque Monkey. 2017

https://www.cnbc.cmu.edu/~tai/
https://www.cell.com/neuron/fulltext/S0896-6273(17)30051-X
https://www.youtube.com/watch?v=DD1K06ecuy8
https://www.youtube.com/watch?v=DD1K06ecuy8
https://www.youtube.com/watch?v=DD1K06ecuy8

Vision / Computer Vision History
A few highlights ☺

▪ 1782: Documenting the (human) visual cortex

▪ 1959: V1 (cat) sensitive to edge orientation

▪ 1986: Canny edge detection

John Canny, A Computational Approach To Edge Detection. 1986

Vision / Computer Vision History
A few highlights ☺

▪ 1782: Documenting the (human) visual cortex

▪ 1959: V1 (cat) sensitive to edge orientation

▪ 1986: Canny edge detection

▪ 1989: LeNet (1) CNN

LeCun, et al, Backpropagation Applied to Handwritten Zip Code Recognition. 1989

https://direct.mit.edu/neco/article/1/4/541/5515/Backpropagation-Applied-to-Handwritten-Zip-Code

Vision / Computer Vision History
A few highlights ☺

▪ 1782: Documenting the (human) visual cortex

▪ 1959: V1 (cat) sensitive to edge orientation

▪ 1986: Canny edge detection

▪ 1994: MNIST Database

https://en.wikipedia.org/wiki/MNIST_database

https://en.wikipedia.org/wiki/MNIST_database

Vision / Computer Vision History
A few highlights ☺

▪ 1782: Documenting the (human) visual cortex

▪ 1959: V1 (cat) sensitive to edge orientation

▪ 1986: Canny edge detection

▪ 1996: Learning convolutional filters from
natural images

Olshausen & Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. 1996

https://www.nature.com/articles/381607a0

Vision / Computer Vision History
A few highlights ☺

▪ 1782: Documenting the (human) visual cortex

▪ 1959: V1 (cat) sensitive to edge orientation

▪ 1986: Canny edge detection

▪ 1998: LeNet-5 CNN → state-of-the-art digit classification

LeCun, Bengio, Haffner, Gradient-Based Learning Applied to Document Recognition. 1995

Vision / Computer Vision History
A few highlights ☺

▪ 1782: Documenting the (human) visual cortex

▪ 1959: V1 (cat) sensitive to edge orientation

▪ 1986: Canny edge detection

▪ 1998: LeNet-5 CNN → state-of-the-art digit classification

▪ 1998-2012: Lots of edge detection

▪ 2012: AlexNet CNN → state-of-the-art ImageNet classification

Alex Krizhevsky, Ilya Sutskever, Geoff Hinton, ImageNet Classification with Deep Convolutional Neural Networks. 2012

What happened in 2012?

Slide from Kaiming He

Computer Vision 1998-2012

[Dalal and Triggs, 2005]

HoG: Histogram of oriented gradients

Computer Vision 1998-2012

[Dalal and Triggs, 2005]

HoG: Histogram of oriented gradients

Image Classification
HOG features passed to a linear classifier (logistic regression / SVM)

CAT
CAT

Not
CAT

What happened in 2012?
The challenge.

Images: https://www.nytimes.com/2016/09/20/science/computer-vision-tesla-driverless-cars.html
 https://www.utoronto.ca/news/google-acquires-u-t-neural-networks-company

Computer Vision Neural Networks
Jitendra Malik Geoff HintonFei-Fei Li Ilya and Alex

AlexNet, 2012
Input: 3, 224, 224
nn.Conv2d(channels=96, kernel_size=11, stride=4),
 nn.BatchNorm(), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(channels=256, kernel_size=5),
 nn.BatchNorm(256), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(channels=384, kernel_size=3),
 nn.BatchNorm(384), nn.ReLU(),
nn.Conv2d(channels=384, kernel_size=3),
 nn.BatchNorm(384), nn.ReLU(),
nn.Conv2d(channels=256, kernel_size=3),
 nn.BatchNorm(256), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Dropout(0.5),
nn.Linear(channels=4096), nn.ReLU(),
 nn.Dropout(0.5),
nn.Linear(channels=4096), nn.ReLU(),
nn.Linear(channels=1000)

Vision / Computer Vision History
LeNet 5, 1998
Input: 1, 32, 32
nn.Conv2d(out_channels=6, kernel_size=5),
 nn.Tanh(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(out_channels=16, kernel_size=5),
 nn.Tanh(),
nn.AvgPool2d(kernel_size=2, stride=2)

nn.Linear(out_features=120),
 nn.Tanh(),
nn.Linear(out_features=84),
 nn.Tanh(),
nn.Linear(out_features=10)

Network changes (other than bigger, deeper)
▪ tanh → ReLU
▪ Avg Pool → Max Pool
▪ + Batch Normalization (keep values in reasonable range)
▪ + Dropout (form of regularization)

AlexNet, 2012
Input: 3, 224, 224
nn.Conv2d(channels=96, kernel_size=11, stride=4),
 nn.BatchNorm(), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(channels=256, kernel_size=5),
 nn.BatchNorm(256), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(channels=384, kernel_size=3),
 nn.BatchNorm(384), nn.ReLU(),
nn.Conv2d(channels=384, kernel_size=3),
 nn.BatchNorm(384), nn.ReLU(),
nn.Conv2d(channels=256, kernel_size=3),
 nn.BatchNorm(256), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Dropout(0.5),
nn.Linear(channels=4096), nn.ReLU(),
 nn.Dropout(0.5),
nn.Linear(channels=4096), nn.ReLU(),
nn.Linear(channels=1000)

Vision / Computer Vision History
State-of-the-art Classification

Network changes (other than bigger, deeper)
▪ tanh → ReLU
▪ Avg Pool → Max Pool
▪ + Batch Normalization (keep values in reasonable range)
▪ + Dropout (form of regularization)

2012: AlexNet (+ ImageNet + GPUs) opened doors

Kaiming He, et al, Deep Residual Learning for Image Recognition

Key

▪ Network + Data + Compute

Additional innovations

▪ Deep learning toolkits

▪ (Caffe, Torch) → (PyTorch, Tensorflow)

▪ "Model zoos"

▪ Residual connections (ResNet)

▪ (aka skip connections)

▪ Shortcuts for information flow (forward
and backward)

VGG-19 34-layer plain 34-layer residual

2012: AlexNet (+ ImageNet + GPUs) opened doors
Kaiming He, et al, Deep Residual Learning for Image Recognition

Neural Networks for Images

1. Image features (redux)

2. Computer vision tasks

3. Computer vision history

▪ Old school computer vision

▪ Image features and classification

▪ Deep learning boom

4. Convolution “nuts and bolts”

Convolution Details

Deep Learning for Images

CAT

What if we just used logistic regression?

i.e., just directly classify the raw pixels

Deep Learning for Images
What if we just used logistic regression?

i.e., just directly classify the raw pixels

CAT
CAT

Not
CAT

Poll 1
Logistic regression for 28x28=784 pixel hand-written digit images into
10 classes:

How many parameters (including bias terms)?

A. 10

B. 10+784

C. 10*784

D. 10*784 + 10

E. 10*784 + 784

F. I don't know

Poll 2
Given a training set of 1000 MNIST digits 0-9, what training accuracy do you
think we can get using just logistic regression?

Value between 0.0 and 1.0.

Input
(28x28)

Learning Which Pixels are Valuable
Input
(28x28)

Weights
10 x (28x28)

Classification: Deep Learning

CAT

What if we just used fully connected networks?

Classification: Deep Learning

CAT

▪ Lost spatial content after first layer
▪ Not spatially invariant
▪ Too many weights to learn

What if we just used fully connected networks?

Classification: Deep Learning

CAT

What if we just used fully connected networks?

Let's try just one hidden layer with two neurons

Classification: Deep Learning
What if we just used fully connected networks?

Let's try just one hidden layer with two neurons

Classification: Deep Learning
What if we just used fully connected networks?

Let's try just one hidden layer with two neurons

Classification: Learning Features

CAT

Convolutional Neural Networks

Convolution

Convolution

-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0

-1 0 1

-1 0 1

-1 0 1-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

3

-1 0 1

-1 0 1

-1 0 1-1 0 1

-1 0 1

-1 0 1

0

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3

-1 0 1

-1 0 1

-1 0 1-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3 0

-1 0 1

-1 0 1

-1 0 1-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3 0 0

-1 0 1

-1 0 1

-1 0 1-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3 0 0 -3

-1 0 1

-1 0 1

-1 0 1-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3 0 0 -3 -3

-1 0 1

-1 0 1

-1 0 1-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3 0 0 -3 -3 0

-1 0 1

-1 0 1

-1 0 1-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3 0 0 -3 -3 0

0

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

3 3 0 0 -3 -3

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3 0 0 -3 -3 0

0 3 3 0 0 -3 -3 0

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3 0 0 -3 -3 0

0 3 3 0 0 -3 -3 0

0

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

3 3 0 0 -3 -3

Convolution

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 3 3 0 0 -3 -3 0

0 3 3 0 0 -3 -3 0

0 3 3 0 0 -3 -3 0

0 3 3 0 0 -3 -3 0

0 3 3 0 0 -3 -3 0

0 3 3 0 0 -3 -3 0

0 3 3 0 0 -3 -3 0

0 3 3 0 0 -3 -3 0

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

Convolution -1 0 1

-1 0 1

-1 0 1

Convolution

Signal processing definition

𝑧 𝑖, 𝑗 = ෍

𝑢=−∞

∞

෍

𝑣=−∞

∞

𝑥 𝑖 − 𝑢, 𝑗 − 𝑣 ⋅ 𝑤[𝑢 , 𝑣]

Relaxed definition
▪ Drop infinity; don’t flip kernel

𝑧 𝑖, 𝑗 = ෍

𝑢=0

K−1

෍

𝑣=0

K−1

𝑥 𝑖 + 𝑢, 𝑗 + 𝑣 ⋅ 𝑤[𝑢 , 𝑣]

-1 0 1

-2 0 2

-1 0 1

Convolution

Relaxed definition

𝑧 𝑖, 𝑗 = ෍

𝑢=0

K−1

෍

𝑣=0

K−1

𝑥 𝑖 + 𝑢, 𝑗 + 𝑣 ⋅ 𝑤[𝑢 , 𝑣]

for i in range(0, im_width - K + 1):

 for j in range(0, im_height - K):

 im_out[i,j] = 0

 for u in range(0, K):

 for v in range(0, K):

 im_out[i,j] += im[i+u, j+v] * kernel[u,v]

GPU!!

-1 0 1

-2 0 2

-1 0 1

0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

3 3 0 0 -3 -3

3 3 0 0 -3 -3

3 3 0 0 -3 -3

3 3 0 0 -3 -3

3 3 0 0 -3 -3

3 3 0 0 -3 -3

Convolution: Padding

0 2 2 0 0 -2 -2 0

0 0

0 0

0 0

0 0

0 0

0 0

0 2 2 0 0 -2 -2 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

Exercise: Which kernel goes with which output image?

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

0 0 -1 0

0 -2 0 1

-1 0 2 0

0 1 0 0

K1 K2 K3

Im1 Im2 Im3

Input

Exercise: Which kernel goes with which output image?

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

0 0 -1 0

0 -2 0 1

-1 0 2 0

0 1 0 0

K1 K2 K3

Im1 Im2 Im3

Input

CAT

Convolutional Neural Networks

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

0 0 -1 0

0 -2 0 1

-1 0 2 0

0 1 0 0

Convolution

Convolutional Neural Networks

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

0 0 -1 0

0 -2 0 1

-1 0 2 0

0 1 0 0

Convolution

Pooling

Convolution: Stride=2

.25 .25

.25 .25

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

Stride: Max Pooling

Stanford CS 231n, Spring 2017

Convolutional Neural Networks

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

0 0 -1 0

0 -2 0 1

-1 0 2 0

0 1 0 0

Convolution

Pooling

Convolutional Neural Networks

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

0 0 -1 0

0 -2 0 1

-1 0 2 0

0 1 0 0

Convolution

Pooling

Convolutional Neural Networks

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

0 0 -1 0

0 -2 0 1

-1 0 2 0

0 1 0 0

Convolution

Pooling

Convolutional Neural Networks

Lenet5 – Lecun, et al, 1998

▪ Convnets for digit recognition

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11
(1998): 2278-2324.

Question:

How big many convolutional weights between S2 and C3?

▪ S2: 6 channels @14x14

▪ Conv: 5x5, pad=0, stride=1

▪ C3: 16 channels @ 10x10

Question:

How big many convolutional weights between S2 and C3?

▪ S2: 6 channels @14x14

▪ Conv: 5x5, pad=0, stride=1

▪ C3: 16 channels @ 10x10

One image in C3 is actually the result of a 3D convolution

S2: 6x14x14

Kernel_1: 6x5x5 C3_1: 1x10x10

Question:

How big many convolutional weights between S2 and C3?

▪ S2: 6 channels @14x14

▪ Conv: 5x5, pad=0, stride=1

▪ C3: 16 channels @ 10x10

Each image in C3 convolved S2
convolved with a different 3D kernel

S2: 6x14x14

Kernel_2: 6x5x5 C3_2: 1x10x10

Kernel_1: 6x5x5 C3_1: 1x10x10

Question:

How big many convolutional weights between S2 and C3?

▪ S2: 6 channels @14x14

▪ Conv: 5x5, pad=0, stride=1

▪ C3: 16 channels @ 10x10

The 16 images in C3 are the result of doing 16 3D
convolutions of S2 with 16 different 6x5x5 kernels.
Assuming no bias term, this is 16x6x5x5 weights!

S2: 6x14x14
Kernels:
16@6x5x5 C3: 16@10x10

Convolutional Neural Networks

Alexnet – Krizhevsky, et al, 2012

▪ Convnets for image classification

▪ More data & more compute power

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural
networks." NIPS, 2012.

CNNs for Image Recognition

Slide from Kaiming He

CNN Summary

Convolution and Pooling Layers
Maintain spatial context across first layer

▪ The output of a convolution layer is still an image

▪ Can represent the location of the detected features

Leverage spatially invariance

▪ The same kernel moves across the image to detect features regardless of where
they are in the image

Fewer weights

▪ Avoids having to learn specific weights to detect features in many, many
different locations in the image

Downsampling

▪ Convolution/pooling layers with stride > 1 will reduce the total number of
values going forward, easing the next layer learning

Convolution and Pooling Layers
Hyperparameters

▪ Kernel size: Defines the 𝐾 × 𝐾 (usually square) shape of the kernel/weight
matrix. Note: There will also be a channel dimesion to the kernel

▪ Output channels: Similar to number of neurons in a linear layer, allows different
features to be learned in each output channel. There is one 𝐶𝑖𝑛 × 𝐾 × 𝐾 kernel
for each output channel, where 𝐾 is the kernel size and 𝐶𝑖𝑛 is the number of
input channels

▪ Bias term or not: Just like linear layers, we can include a bias term or not. If
including a bias term for a convolutional layer, there is one bias parameter for
each output channel

Parameters

▪ The contents of every entry in a kernel is a weight parameter. So the total
number of parameters for one 2D convolution layer is 𝐶𝑜𝑢𝑡 × (𝐶𝑖𝑛 × 𝐾 × 𝐾)
plus 𝐶𝑜𝑢𝑡 bias parameters if those are included.

Convolution and Pooling Layers
Hyperparameters (cont.)

▪ Stride: How much to shift the kernel over while performing the convolution
(usually the same in each direction). A stride of 1 will output and image that is
roughly the same size as the input (see padding), while a stride of 2 will
produce an image that is 2x smaller in both width and height

▪ Padding: Effectively add rows/columns around the input image to deal with
(literal) edge cases better. Often used to keep the exact same size output image
as the input (with stride=1)

▪ Pooling: Average or Max convolutions are just operations to combine pixels and
don't have any parameters. Max pooling is more common over average pooling

Convolution and Pooling Layers
Forward and backward passes

▪ Math: Convolutions are just multiplications and additions with a bunch of for-
loops, just like the matrix multiplication in linear layers. In fact, convolutions are
linear layers; they just apply the linear operations to different combinations of
input values and weights. Thus, the calculus for backpropagation is essentially
the same as a linear layer, just with some reshaping of the data.

▪ Computation: Just like linear layers convolutions and pooling layers have a ton
of embarrassingly parallel multiplication and addition operations across lots of
data. GPUs and more recently TPUs are designed for these operations, making
these hardware components essentially for neural net training

AlexNet, 2012
Input: 3, 224, 224
nn.Conv2d(channels=96, kernel_size=11, stride=4),
 nn.BatchNorm(), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(channels=256, kernel_size=5),
 nn.BatchNorm(256), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(channels=384, kernel_size=3),
 nn.BatchNorm(384), nn.ReLU(),
nn.Conv2d(channels=384, kernel_size=3),
 nn.BatchNorm(384), nn.ReLU(),
nn.Conv2d(channels=256, kernel_size=3),
 nn.BatchNorm(256), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Dropout(0.5),
nn.Linear(channels=4096), nn.ReLU(),
 nn.Dropout(0.5),
nn.Linear(channels=4096), nn.ReLU(),
nn.Linear(channels=1000)

Vision / Computer Vision History
LeNet 5, 1998
Input: 1, 32, 32
nn.Conv2d(out_channels=6, kernel_size=5),
 nn.Tanh(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(out_channels=16, kernel_size=5),
 nn.Tanh(),
nn.AvgPool2d(kernel_size=2, stride=2)

nn.Linear(out_features=120),
 nn.Tanh(),
nn.Linear(out_features=84),
 nn.Tanh(),
nn.Linear(out_features=10)

Network changes (other than bigger, deeper)
▪ tanh → ReLU
▪ Avg Pool → Max Pool
▪ + Batch Normalization (keep values in reasonable range)
▪ + Dropout (form of regularization)

2012: AlexNet (+ ImageNet + GPUs) opened doors

Kaiming He, et al, Deep Residual Learning for Image Recognition

Key

▪ Network + Data + Compute

Additional innovations

▪ Deep learning toolkits

▪ (Caffe, Torch) → (PyTorch, Tensorflow)

▪ "Model zoos"

▪ Residual connections (ResNet)

▪ (aka skip connections)

▪ Shortcuts for information flow (forward
and backward)

	Slide 1: 10-315 Introduction to ML Neural Networks Applications for Images
	Slide 2: Neural Networks for Images
	Slide 3: Image Features
	Slide 4: Image Features
	Slide 5: Image Features
	Slide 6: Image Features
	Slide 7: Image Features
	Slide 8: Image Features
	Slide 9: Image Features
	Slide 10: Image Features
	Slide 11: Image Features
	Slide 12: Image Features
	Slide 14: Image Features
	Slide 15: Image Features
	Slide 16: Image Features
	Slide 17: Image Features
	Slide 18: Image Features
	Slide 19: Computer Vision
	Slide 20: Computer Vision Tasks
	Slide 21: Computer Vision Tasks: How far along are we?
	Slide 22: Computer Vision Tasks: How far along are we?
	Slide 23: Computer Vision Tasks: How far along are we?
	Slide 24: Computer Vision Tasks: How far along are we?
	Slide 25: Computer Vision Tasks: Autonomous Driving
	Slide 26: Computer Vision Tasks: Autonomous Driving
	Slide 27: Computer Vision: Autonomous Driving
	Slide 28: Image-related Tasks: Input/Output
	Slide 29: Image-related Tasks: Domain Transfer
	Slide 30: Image-related Tasks : Domain Transfer
	Slide 31: Text to Image
	Slide 32: Image-related Tasks: Input/Output
	Slide 33: Neural Networks for Images
	Slide 34: Computer Vision History
	Slide 35: CNNs for Image Classification
	Slide 36: Which neural network are they talking about?
	Slide 37: Vision / Computer Vision History
	Slide 38: Vision / Computer Vision History
	Slide 39: Vision / Computer Vision History
	Slide 40: Vision / Computer Vision History
	Slide 41: Vision / Computer Vision History
	Slide 42: Vision / Computer Vision History
	Slide 43: Vision / Computer Vision History
	Slide 44: Vision / Computer Vision History
	Slide 45: Vision / Computer Vision History
	Slide 46: What happened in 2012?
	Slide 47: Computer Vision 1998-2012
	Slide 48: Computer Vision 1998-2012
	Slide 49: Image Classification
	Slide 50: What happened in 2012?
	Slide 51: Vision / Computer Vision History
	Slide 52: Vision / Computer Vision History
	Slide 53: 2012: AlexNet (+ ImageNet + GPUs) opened doors
	Slide 54: 2012: AlexNet (+ ImageNet + GPUs) opened doors
	Slide 55: Neural Networks for Images
	Slide 56: Convolution Details
	Slide 57: Deep Learning for Images
	Slide 58: Deep Learning for Images
	Slide 59: Poll 1
	Slide 60: Poll 2
	Slide 61: Learning Which Pixels are Valuable
	Slide 62: Classification: Deep Learning
	Slide 63: Classification: Deep Learning
	Slide 64: Classification: Deep Learning
	Slide 65: Classification: Deep Learning
	Slide 66: Classification: Deep Learning
	Slide 67: Classification: Learning Features
	Slide 68: Convolutional Neural Networks
	Slide 69: Convolution
	Slide 70: Convolution
	Slide 71: Convolution
	Slide 72: Convolution
	Slide 73: Convolution
	Slide 74: Convolution
	Slide 75: Convolution
	Slide 76: Convolution
	Slide 77: Convolution
	Slide 78: Convolution
	Slide 79: Convolution
	Slide 80: Convolution
	Slide 81: Convolution
	Slide 82: Convolution
	Slide 84: Convolution
	Slide 85: Convolution
	Slide 86: Convolution
	Slide 87: Convolution: Padding
	Slide 88: Exercise: Which kernel goes with which output image?
	Slide 89: Exercise: Which kernel goes with which output image?
	Slide 90: Convolutional Neural Networks
	Slide 91: Convolutional Neural Networks
	Slide 92: Convolution: Stride=2
	Slide 93: Stride: Max Pooling
	Slide 94: Convolutional Neural Networks
	Slide 95: Convolutional Neural Networks
	Slide 96: Convolutional Neural Networks
	Slide 97: Convolutional Neural Networks
	Slide 98: Question:
	Slide 99: Question:
	Slide 100: Question:
	Slide 101: Question:
	Slide 102: Convolutional Neural Networks
	Slide 103: CNNs for Image Recognition
	Slide 104: CNN Summary
	Slide 105: Convolution and Pooling Layers
	Slide 106: Convolution and Pooling Layers
	Slide 107: Convolution and Pooling Layers
	Slide 108: Convolution and Pooling Layers
	Slide 109: Vision / Computer Vision History
	Slide 110: 2012: AlexNet (+ ImageNet + GPUs) opened doors

