

10-315 Introduction to ML

Probabilistic Models: MAP

Instructor: Pat Virtue

Announcements

Probability

Come get help this week

Project

- First step: groups of 3
- See piazza for details

Polls

- Still working on WiFi
 - Please avoid non-315 bandwith
- Mid-semester adjustment
 - 6 free polls: (denominator is currently 22 rather than 28)
- Peer Instruction

Plan

Today

• MLE \rightarrow MAP

Wed and next Mon

Neural net applications (image, language)

Next Wed

- Back to probability
- Discriminative → Generative
 - Naïve Bayes
 - Discriminant Analysis
- Combining MAP and Generative

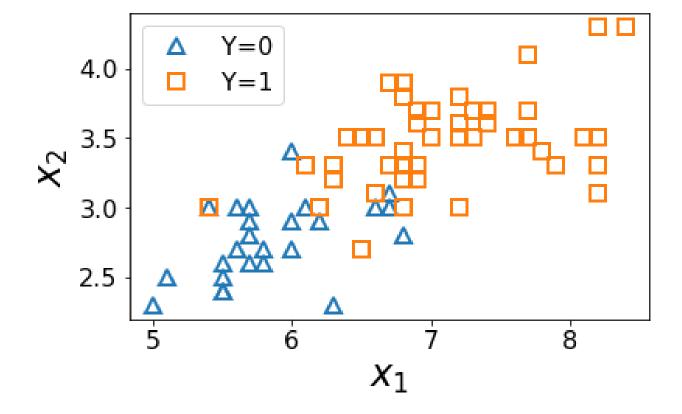
Where are we?

Empirical Risk Minimization vs MLE/MAP

We seem to be redoing a lot of work? ...well, we are. But there is a reason

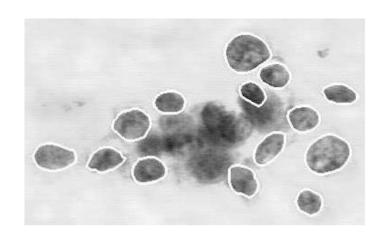
Why Probabilistic Models?

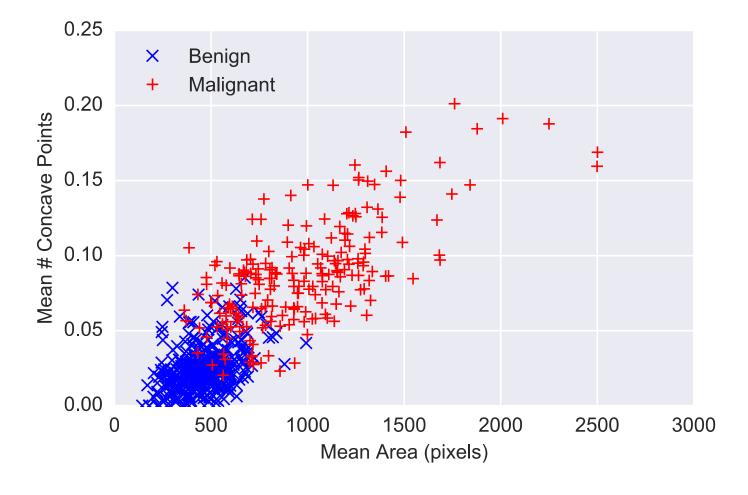
Iris Data



Why Probabilistic Models?

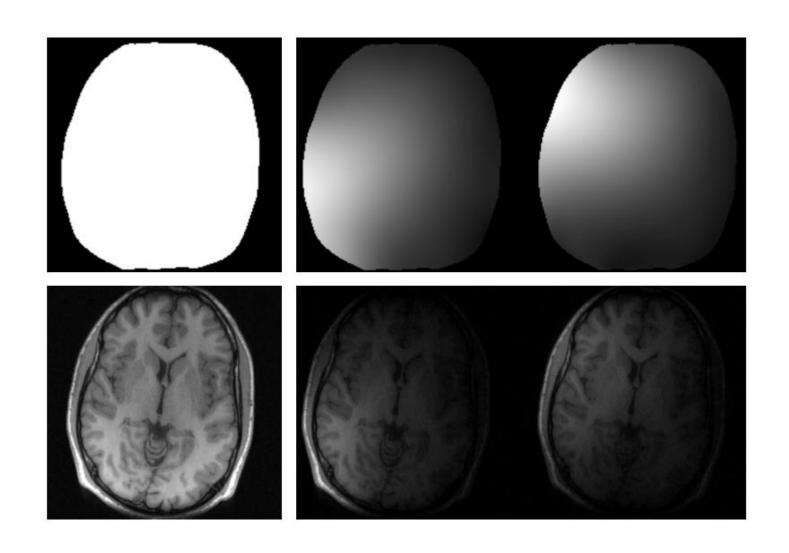
Breast Cancer Diagnosis





Why Probabilistic Models?

MRI Image Reconstruction



Cottogorical Gaussian Generative Model

$$Y \sim Categorical(\pi_1, \pi_2, \pi_3)$$

$$X_{Y=k} \sim \mathcal{N}(\mu_k, \sigma_k^2).$$

$$\mathcal{D} = \{x^{(i)}, y^{(i)}\}_{i=1}^{N} \leftarrow$$

$$\frac{\partial \mathcal{L}}{\partial x} = 0$$

$$\begin{cases} \frac{1}{\sqrt{3}} & \text{if } \\ \frac{1}{\sqrt{3}} & \text{if }$$

ML Applications of Bayes Rule

Bayes Rule

$$p(a \mid b) = \frac{p(b \mid a) p(a)}{p(b)}$$

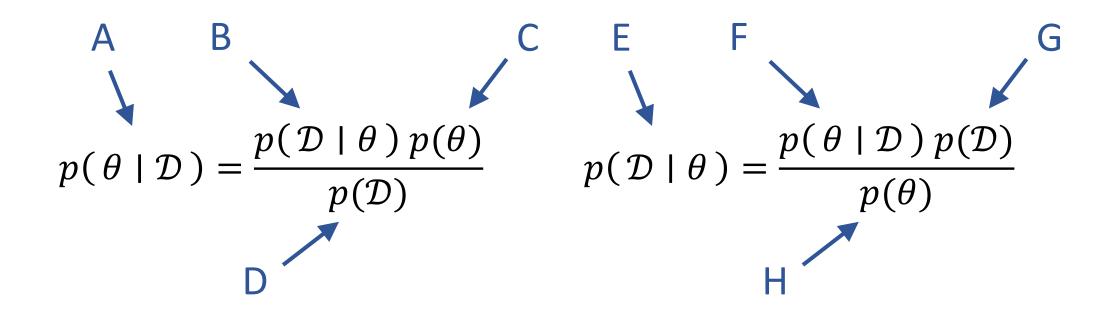
$$p(b \mid a) = \frac{p(a \mid b) p(b)}{p(a)}$$

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})} \qquad p(\mathcal{D} \mid \theta) = \frac{p(\theta \mid \mathcal{D}) p(\mathcal{D})}{p(\theta)}$$

Poll 1

Which of these terms is the likelihood?

Select all that apply



Bayes Rule

Terminology

Posterior Likelihood Prior

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})}$$

Two Applications of Bayes Rule

$$p(a \mid b) = \frac{p(b \mid a) p(a)}{p(b)}$$

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})} \qquad p(y \mid x) = \frac{p(x \mid y) p(y)}{p(x)}$$

$$F(x)$$

$$f(x; \lambda)$$

$$p(x | \lambda)$$

$$p(x)$$

MLE and MAP

$$\frac{P(D)}{TP(x^i)} VS \qquad \frac{P(D|A)}{TP(x^{(i)}|A)}$$

Poll 2

$$P(x|\lambda) = \lambda e^{-\lambda x}$$

Where do we plug in the pdf, e.g.,
$$f(x) = \lambda e^{-\lambda x}$$

$$D = \left\{ \begin{array}{c} X \\ X \end{array} \right\} = \left\{ \begin{array}{c} X \\$$

MLE and MAP

Maximum likelihood estimation

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} \, p(\mathcal{D} \mid \theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{N} p(y^{(i)} \mid \theta)$$

Maximum *a prosteriori* estimation

$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}} \underbrace{p(\theta \mid \mathcal{D})}_{\theta}$$

$$= \underset{\theta}{\operatorname{argmax}} \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}$$

$$= \underset{\theta}{\operatorname{argmax}} \frac{\prod_{i=1}^{N} p(y^{(i)} \mid \theta)p(\theta)}{p(\mathcal{D})}$$

$$= \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{N} p(y^{(i)} \mid \theta) p(\theta)$$

Recipe for Estimation

$P(x) = \frac{1}{e^{-(x-u)}}$

MLE

- 1. Formulate the likelihood, $p(\mathcal{D} \mid \theta)$
- 2. Set objective $J(\theta)$ equal to negative log of the likelihood $J(\theta) = -\log p(\mathcal{D} \mid \theta)$
- 3. Compute derivative of objective, $\partial J/\partial \theta$
- 4. Find $\hat{\theta}$, either
 - a. Set derivate equal to zero and solve for θ
 - b. Use (stochastic) gradient descent to step towards better θ

Recipe for Estimation

MAP

- 1. Formulate the likelihood times the prior, $p(\mathcal{D} \mid \theta)p(\theta)$
- 2. Set objective $J(\theta)$ equal to negative log of the likelihood times the prior $J(\theta) = -\log[p(\mathcal{D} \mid \theta)p(\theta)]$
- 3. Compute derivative of objective, $\partial J/\partial \theta$
- 4. Find $\hat{\theta}$, either
 - a. Set derivate equal to zero and solve for θ
 - b. Use (stochastic) gradient descent to step towards better θ

Coin Flipping Example

Trick coin from pre-reading

Initially: no information about the coin, so we just default to a uniform belief about the Bernoulli parameter ϕ

Invoice: Weighted Coins		Customer: Torch Tricks, Inc.	
<u> Item</u>	Quantity	Cointype, &	p(\$\phi\$)_
0% Heads Coin	40/200	0.0	0,20
20% Heads Coin	50/200	0,2	0,25
50% Heads Coin	80/100	0.5	0.40
80% Heads Coin	10/200	0.8	0,05
100% Heads Coin	20/200	1.0	0,10
То	tal: 200		1.00

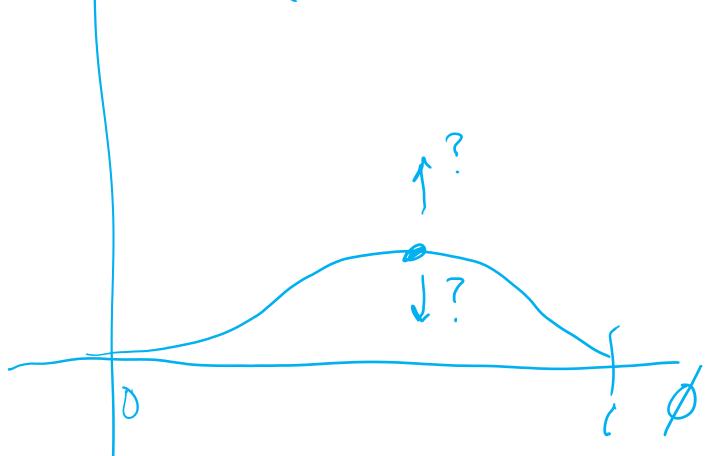
Poll 3

As we collect more and more data (more coin flips), will the peak of the

likelihood curve increase or decrease?

- ∧ A) Increase
 - B) Decrease
- C) I have no idea

 $(1-\emptyset) \emptyset \emptyset$



Coin Flipping Example

Trick coin from pre-reading

Suppose we discover information about the distribution of trick coin types? How can we use this information both before and after flipping coins?

Invoice: Weighted Coins		Customer: Torch Tricks, Inc.	
<u> Item</u>	Quantity	Cointype, &	p(\$)_
0% Heads Coin	40/200	0.0	0,20
20% Heads Coin	50/200	0,2	0,25
50% Heads Coin	80/100	0.5	0.40
80% Heads Coin	10/200	0.8	0,05
100% Heads Coin	20/200	1.0	0.10
Tot	cal: 200		1.00

Coin Flipping Example

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} p(\theta) \prod_{i=1}^{n} p(y^{(i)} | \theta)$$

Trick coin from pre-reading

Suppose we discover information about the distribution of trick coin types? How can we use this information both before and after flipping coins?

\mathcal{D}	$p(\phi) \prod_{i=1}^{N} p(y^{(i)} \mid \phi)$
{}	$p(\phi)$
$\{H\}$	$p(\phi) \phi$
$\{H,T\}$	$p(\phi) \ \phi(1-\phi)$
$\{H,T,T\}$	$p(\phi) \ \phi(1-\phi)(1-\phi)$

Poll 5

$$p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta) p(\theta)$$
 posterior \propto likelihood · prior $p(\theta \mid \mathcal{D}) \propto \prod p(y^{(i)} \mid \theta) p(\theta)$

As the number of data points increases, which of the following are true? Select ALL that apply

- A. The MAP estimate approaches the MLE estimate
- B. The posterior distribution approaches the prior distribution
- C. The likelihood distribution approaches the prior distribution
- D. The posterior distribution approaches the likelihood distribution
- E. The likelihood has a lower impact on the posterior
- F. The prior has a lower impact on the posterior

Poll 5

$$p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta) p(\theta)$$
 posterior \propto likelihood · prior $p(\theta \mid \mathcal{D}) \propto \prod p(y^{(i)} \mid \theta) p(\theta)$

As the number of data points increases, which of the following are true? Select ALL that apply

- A. The MAP estimate approaches the MLE estimate
- B. The posterior distribution approaches the prior distribution
- C. The likelihood distribution approaches the prior distribution
- D. The posterior distribution approaches the likelihood distribution
- E. The likelihood has a lower impact on the posterior
- F. The prior has a lower impact on the posterior

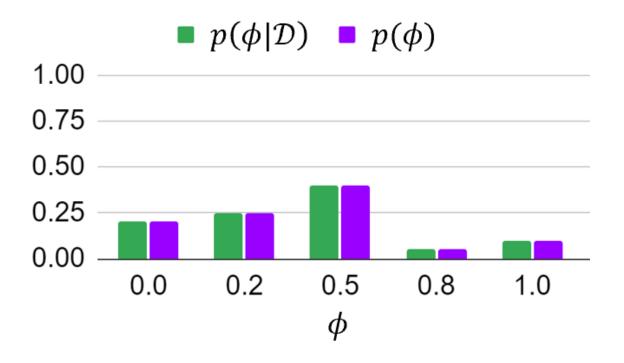
MAP as Data Increases

Given the ordered sequence of coin flip outcomes:

$$p(\mathcal{D} | \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} | \phi) p(\phi) \neq \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

What happens as we flip more coins?

$$N = 0$$
: $\mathcal{D} = \{\}$



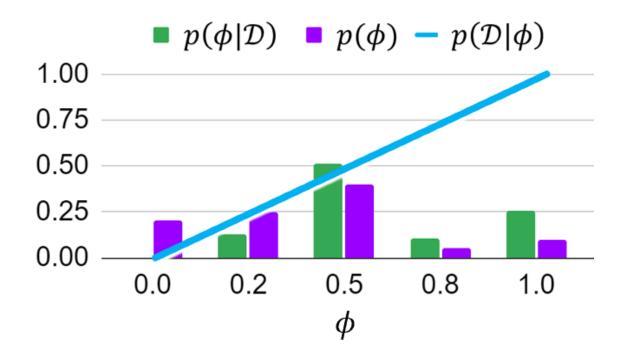
MAP as Data Increases

Given the ordered sequence of coin flip outcomes:

$$p(\mathcal{D} \mid \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} \mid \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

What happens as we flip more coins?

$$N = 0$$
: $\mathcal{D} = \{H\}$



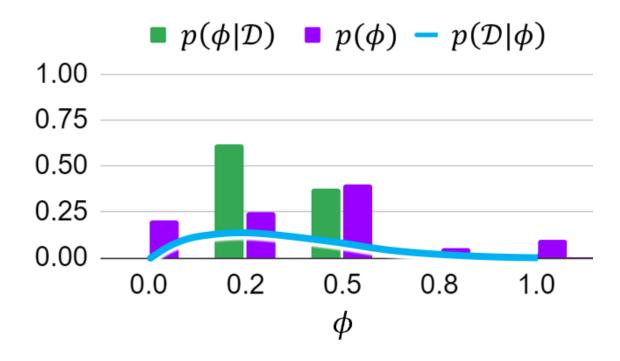
MAP as Data Increases

Given the ordered sequence of coin flip outcomes:

$$p(\mathcal{D} \mid \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} \mid \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

What happens as we flip more coins?

$$N = 0$$
: $\mathcal{D} = \{H, T, T, T, T\}$



Prior Distributions for MAP

If the prior $p(\theta)$ is uniform, then MLE and MAP are the same!

$$p(\mathcal{D} \mid \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} \mid \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

Prior Distributions for MAP

If the prior $p(\theta)$ is uniform, then MLE and MAP are the same!

$$p(\mathcal{D} \mid \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} \mid \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

Conjugate priors: when the prior and the posterior distributions are in the same family

Bernoulli likelihood with a **Beta prior** has **Beta posterior**

Categorical likelihood with a <u>Dirichlet prior</u> has <u>Dirichlet posterior</u>

Gaussian likelihood with a Gaussian prior has Gaussian posterior

https://www.desmos.com/calculator/kr7m2m6cf7

Prior Distributions for MAP

If the prior $p(\theta)$ is uniform, then MLE and MAP are the same!

$$p(\mathcal{D} \mid \phi) p(\phi) = \prod_{i}^{N} p(y^{(i)} \mid \phi) p(\phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} p(\phi)$$

Conjugate priors: when the prior and the posterior distributions are in the same family

Bernoulli likelihood with a **Beta prior** has **Beta posterior**

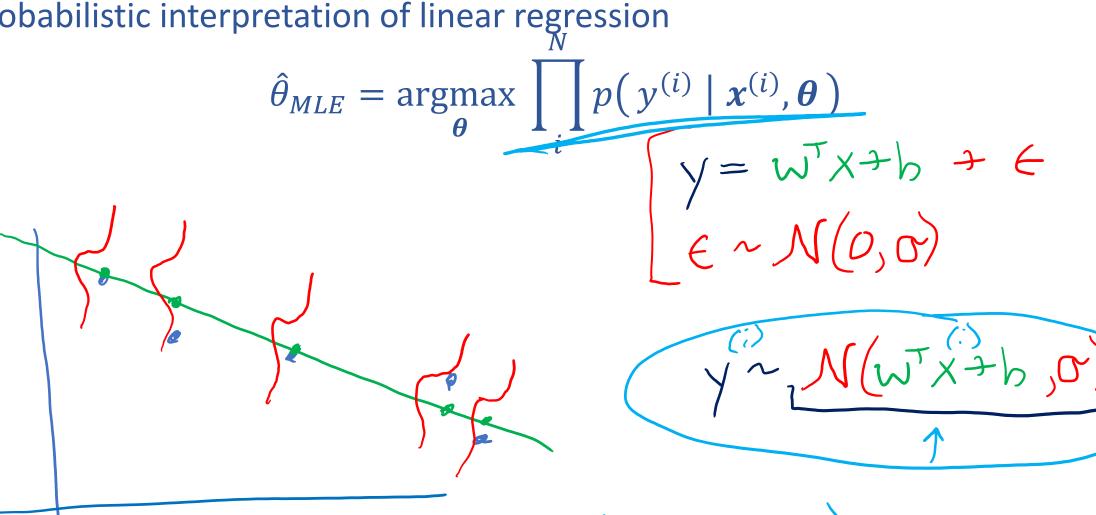
$$\phi^{N_{y=1}}(1-\phi)^{N_{y=0}} Beta(\alpha,\beta) = Beta(\alpha+N_{y=1},\beta+N_{y=0})$$

Tip: Think of the Beta distribution as having $\alpha-1$ heads and $\beta-1$ tails

https://www.desmos.com/calculator/kr7m2m6cf7

M(C)LE for Linear Regression

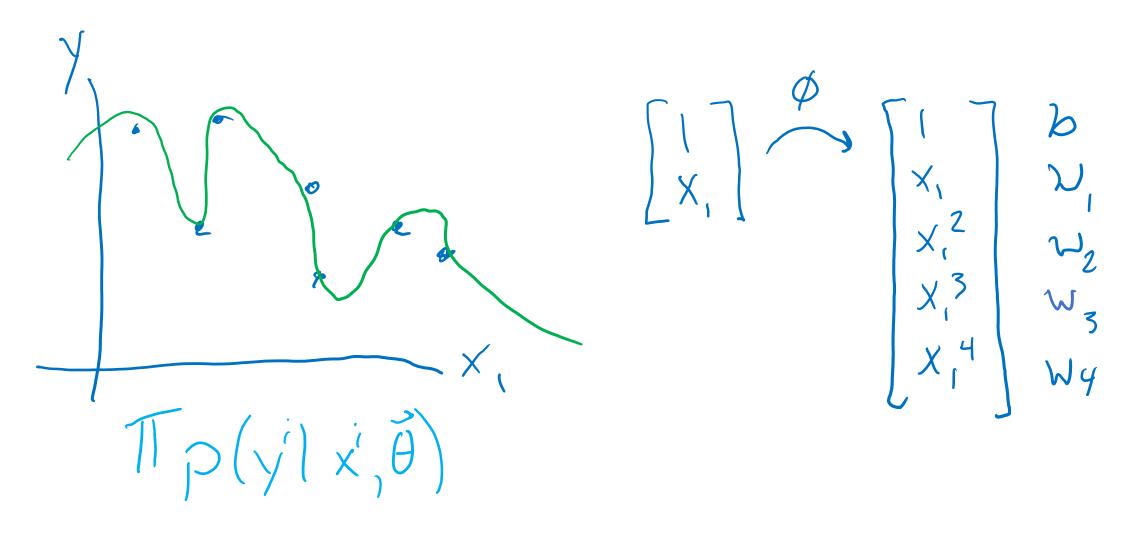
Probabilistic interpretation of linear regression



MAP for Linear Regression

 $P(W_j)$: $W_j \sim \mathcal{N}(0, \tau^2)$

What assumptions are we making about our parameters?



MAP for Linear Regression

Recall prereading example of Gausssian prior for Gaussian likelihood

$$p(\mu \mid \mathcal{D}) \propto p(\mu) \prod_{i=1}^{4} p(x^{(i)} \mid \mu)$$

$$= \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{1}{2\tau^2}(\mu - \nu)^2} \prod_{i=1}^{4} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x^{(i)} - \mu)^2}$$

Linear Regression with Gaussian prior on weights

weight decay Regularization and MAP Linear Regression Vn N(d'x, 0°) W; nN(U, r)
Gaussian Plior MSE + > llwll, W; ~ Laplace (w;)