10-315
Introduction to ML

Probabilistic Models:
MAP

Instructor: Pat Virtue




Announcements

Probability
= Come get help this week

Project
" First step: groups of 3
= See piazza for details

Polls
= Still working on WiFi
" Please avoid non-315 bandwith
= Mid-semester adjustment
= 6 free polls: (denominator is currently 22 rather than 28)
= Peer Instruction



Plan

Today
= MLE > MAP

Wed and next Mon

= Neural net applications (image, language)

Next Wed

= Back to probability
= Discriminative =2 Generative
= Naive Bayes
" Discriminant Analysis
= Combining MAP and Generative



Where are we?



Empirical Risk Minimization vs MLE/MAP

We seem to be redoing a lot of work? ...well, we are. But there is a reason




Why Probabilistic Models?
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Why Probabilistic Models?

Breast Cancer Diagnosis
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Why Probabilistic Models?

MRI Image Reconstruction
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ML Applications of Bayes Rule



Bayes Rule

_P(bla)p(a) _P(alb)p(b)
plalb)==——"33 p(bla)=—"—"2=
p(glp):p(zvle)p(e) p(DlH)zp(HID)p(D)

p(D) p(®)



Poll 1

Which of these terms is the likelihood?
Select all that apply

A B\ /C E F N /G
\ \
- p(D16)p(6) _p(61D)p(D)
p(61D) = (D) p(D16) = 5 0)
e e

D H



Bayes Rule

Terminology
Posterior Likelihood Prior

p(D16)p(H)

A )



Two Applications of Bayes Rule

_P(bla)p(a)
plalb)=—— %
0) (6
p(@lD):p(Dl ) p(6) p(ylx):p(x|y)p(y)



MLE and MAP



Poll 2

Where do we plug in the pdf, e.g., f(x) = le Ax

A B C
v N/
~p(D16)p(6)
p(6 D) = D)
e



MLE and MAP

Maximum likelihood estimation Maximum a prosteriori estimation
Oy g = argmaxp(D | 0) Oy ap = argmaxp(6 | D)
0 0
p(D16)p(6)
= argma
gg . p(D)

N (0
— argmax [li=, p(y""19)p(0)
0 p(D)

= argmax 1L, py™ 16) = argmax [T, p(P 1 6) p(6)




Recipe for Estimation

MLE

1. Formulate the likelihood, p(D | 0)

2. Set objective /(8) equal to negative log of the likelihood
J(8) = —logn(D | 6)

3. Compute derivative of objective, dJ /00

4. Find 6, either

a. Set derivate equal to zero and solve for 6
b. Use (stochastic) gradient descent to step towards better 6



Recipe for Estimation

MAP
1. Formulate the likelihood times the prior, p(D | 8 )p(6)
2. Set objective J(8) equal to negative log of the likelihood times the prior

J(6) = —log|p(D | 6 )p(0)]
3. Compute derivative of objective, dJ /00
4. Find 6, either

a. Set derivate equal to zero and solve for 6
b. Use (stochastic) gradient descent to step towards better 6



Coin Flipping Example

Trick coin from pre-reading

Initially: no information about the coin, so we just default to a uniform
belief about the Bernoulli parameter ¢

Invoice: Weighted Coins Customer: Torch Tricks, Inc.
Item Quantity Cotﬂ Type) 5% p ng))_
[ 0% Heads Coin 10/7200 0.0 0 .20
20% Heads Coin 50,/200 O, O, 2{
50% Heads Coin 80/200 05 0O 40
80% Heads Coin 10/200 O(ﬂ O ‘05_
LlOO% Heads Coin 20/Z,OD /.0 0,/0
Total: 200 ﬂ_




Poll 3

As we collect more and more data (more coin flips), will the peak of the
likelihood curve increase or decrease?

A) Increase
B) Decrease
C) | have no idea



Coin Flipping Example

Trick coin from pre-reading

Suppose we discover information about the distribution of trick coin types?
How can we use this information both before and after flipping coins?

Invoice: Weighted Coins Customer: Torch Tricks, Inc.
Item Quantity Colﬂ Type) 5% p C¢)¥
[ 0% Heads Coin 10/7200 0.0 0 .20
20% Heads Coin 50,/200 O, O, 2{
50% Heads Coin 80/200 05 0O 40
80% Heads Coin 10/200 O‘ﬂ O '05_
L_lOO% Heads Coin 20/Z,OD /.0 0,/0
Total: 200 ’(7//00—




N

Coin Flipping Example yap = argmax p(@)l_[p(y(i) | 6)
6 .

Trick coin from pre-reading .

Suppose we discover information about the distribution of trick coin types?
How can we use this information both before and after flipping coins?

D p(¢) [T.2 ('™ | ¢)
{} (o)

{H} p(9) ¢

{H, T} | plo) o(1 — o)
{H,T,T} | p(¢) o(1 —@)(1 — o)




Poll 5
p(@ | D) xp(D|O)p(O) posterior « likelihood - prior

p(6 1 D) « [1p(y?6) p(6)

As the number of data points increases, which of the following are true?

Select ALL that apply

The MAP estimate approaches the MLE estimate

The posterior distribution approaches the prior distribution

The likelihood distribution approaches the prior distribution

. The posterior distribution approaches the likelihood distribution
The likelihood has a lower impact on the posterior

The prior has a lower impact on the posterior

"Moo ® P



MAP as Data Increases

Given the ordered seqk;ence of coin flip outcomes:
p(D 1) p@) =] [p(yP9)p() = ¢"=1(1 = $)"=0 p($)

What happens as we flip more coins?

N=0: D= {} 00 = p(¢p|D) ®m p(¢)

0.75
0.50
0.25 .. II
0.00
0.0 0.2 0.5 0.8 1.0
¢



MAP as Data Increases

Given the ordered seqll\J,ence of coin flip outcomes:
p(D [ ¢)p(P) = Hp(y“) [ @) p(@) = d™=1(1 — p)"v=0 p(¢h)

What happens as we flip more coins?
= p(¢|D) ®m p(p) — p(D]¢)

= 1 | N

00 02 05 08 10
¢

N=0: D={H} 100

0.75
0.50
0.25
0.00




MAP as Data Increases

Given the ordered seqll\J,ence of coin flip outcomes:
p(D [ ¢)p(P) = Hp(y“) [ @) p(@) = d™=1(1 — p)"v=0 p(¢h)

What happens as we flip more coins?

N=0: 1D= {H, T, T, T, T} u p(CleD) o p((fb) - p(Dl(f))

1.00
0.75
0.50
0.00 A | T

00 02 05 08 10
¢



Prior Distributions for MAP
If the prior p(0) is unh;\(l)rm, then MLE and MAP are the same!

p(D|¢)p(d) = Hp(y“) | &) p(d) = p™Nv=1(1 — p)"r=0 p(¢h)

https://www.desmos.com/calculator/kr7m2m6cf7



https://www.desmos.com/calculator/kr7m2m6cf7

Prior Distributions for MAP
If the prior p(0) is unh;\c,)rm, then MLE and MAP are the same!

p(D|¢)p(d) = Hp(y“) | &) p(d) = p™Nv=1(1 — p)"r=0 p(¢h)

Conjugate priors: when the prior and the posterior distributions are in the
same family

Bernoulli likelihood with a Beta prior has Beta posterior

Categorical likelihood with a Dirichlet prior has Dirichlet posterior

Gaussian likelihood with a Gaussian prior has Gaussian posterior

https://www.desmos.com/calculator/kr7m2m6cf7



https://www.desmos.com/calculator/kr7m2m6cf7

Prior Distributions for MAP
If the prior p(0) is unh;\([)rm, then MLE and MAP are the same!

p(D 1) p@) =] [p(yP9)p() = ¢"=1(1 = $)"=0 p($)

Conjugate priors: when the prior and the posterior distributions are in the
same family

Bernoulli likelihood with a Beta prior has Beta posterior
¢"y=1(1 — ¢)"v=0 Beta(a, B) = Beta(a + Ny—1, 8 + N, o)
Tip: Think of the Beta distribution as having « — 1 heads and f — 1 tails

https://www.desmos.com/calculator/kr7m2m6cf7



https://www.desmos.com/calculator/kr7m2m6cf7

M(C)LE for Linear Regression

Probabilistic interpretation of linear re%ression

Ovip = argmax Hp(y(‘) | x,0)
\/-— W XFh > €

-~ e~ N(o,0)

Y "’LJ\( (WX )CYB
1

| P<\/ \X)\"“\O\:J _




MAP for Linear Regression

What assumptions are we making about our parameters?

)

0 _
/N’ [\ \ = L
) X 5(\ U'
‘ 74
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X2 W,
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MAP for Linear Regression

Recall prereading example of Gausssian prior for Gaussian likelihood

.
p(p | D) o< p(p) | [ (| )
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Linear Regression with Gaussian prior on weights



Regularization and MAP

Linear Regression
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