10-315
Introduction to ML

MLE anc
Probabilistic Formulation
of Machine Learning

Instructor: Pat Virtue




Logistics

Exam
= Wed in class, see Piazza for details

Coming this week
" Probability Primer

= MAP Pre-reading
"  Mini project info

Today
= Worap-up regularization (for now)
= MLE
= Maximum likelihood estimation
" Probabilistic formulation of linear and logistic regression



Poll 1

Course feedback link on Piazza
Are you finished with the course feedback form?

A. Yes
B. No
C. Still working on it



Exercises

Calculate the probability of these event sequences happening

1. Coin
a) Fair:
{H, H, T, H}
b) Biased, ¢ = 3/4 heads
{H, H, T, H}

2. 4-sided die with sides: A, B, C, D
a) Fair:
{A,B,D, D, A}

b) Weighted, [¢,, 5, D, dp] = [1/10, 2/10, 3/10, 4/10]
{A, B, D, D, A}



Poll 2

Implement a function in Python for the pdf of a Gaussian distribution.
Python numpy or math packages are fine, no scipy, etc.

—(x—p)*>

1
fO) === 20

def gaussian(x, mu, sigmaSq):

What is gaussian(3.3, 2.2, 1.1)?



Poll 3

Assume that exam scores are drawn independently from the same
Gaussian (Normal) distribution.

Given three exam scores {75, 80, 90}, which pair of parameters is a
better fit (a higher likelihood)?

A) Mean 80, standard deviation 3
B) Mean 85, standard deviation 7
C) Idon't know

Use a calculator/computer.
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Gaussian PDF: p(y | u,02) =



Poll 4

Trick coin: comes up heads only 1/3 of the time

1 flip: H probability: %
2 flips: H,H probability: %%
3 flips: H,H,T probability: %% (1 — é)

But what property allows us to just multiply these?



Poll 5 D = {y®,y®,y3)}

Which of these is the correct labeling of these properties? Y ~ Bern(¢)

p(DIé)=



Likelihood

Pre-reading



Likelihood

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.



Likelihood

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

Grades
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Gaussian PDF: p(y | u,02) =



Likelihood

Trick coin: comes up heads only 1/3 of the time

1 flip: H probability:
2 flips: H,H probability:

3 flips: H,H,T probability:

Wk W e
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But why can we just multiply these?



Likelihood and i.i.d

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

i.i.d.: Independent and identically distributed



Bernoulli Likelihood

Bernoulli distribution:

r~pern@)  p019)= {7, ]

What is the likelihood for three i.i.d. samples, given parameter ¢:
D = {y(l) — 1,y(2) — 1’y(3) = 0}

Nip(Y =yD|¢)
=+ (1- )



MLE

Maximum likelihood estimation



From Probability to Statistics



Estimating Parameters with Likelihood

We model the outcome of a single mysterious weighted-coin flip as a
Bernoulli random variable:

Y ~ Bern(¢)
| o y =1 (heads)
POy 1 4) = 1— ¢, y =0 (tails)
Given the ordered sequence of coin flip outcomes:
1,0,1,1 pEoI®
|

What is the estimate of parameter ¢?

p(Dlp)=¢-¢-(1—¢) ¢
=¢°(1—¢)? [ B

https://www.desmos.com/calculator/kr7m2m6cf7



https://www.desmos.com/calculator/kr7m2m6cf7

Likelihood and Maximum Likelihood Estimation

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many
different values of the parameters)

Maximum Likelihood Estimation (MLE): Find the parameter value that
maximizes the likelihood.



MLE as Data Increases

Given the ordered sequence of coin flip outcomes:
11,0,1, 1]

N
p019) =] [P(r@ 1) = @Vt - @)=

What happens as we flip more coins?

o0 | @)

https://www.desmos.com/calculator/kr7m2m6cf7



https://www.desmos.com/calculator/kr7m2m6cf7

MLE for Gaussian
Gaussian distribution:
Y ~ N (u,0?)

_(y-w*

p(y | M,O'Z) -1 e 202

202

D = {yM) = 65,y?) =95 y3) = 85}

Formulate the likelihood for three i.i.d. samples, given parameters u,o
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L{w0?) =

i = argmax ‘ ‘ P(y(i) | 9)
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MLE for Gaussian

Assume that exam scores are drawn independently from the same
Gaussian (Normal) distribution.

Given three exam scores 2, 3, 4, which pair of parameters is the best fit
(the highest likelihood)?

A

N N2
1 _(y(l)_ﬂ)
p(D|u,0?) = 1_[ e 207

V2mo?

=1

https://www.desmos.com/3d/988327bd26



https://www.desmos.com/3d/988327bd26

MLE

Suppose we have dataD = {z(W} IV

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. N .
""" = argmax Hp(x(’) 0)
0 .

1=1
Maximum Likelihood Estimate (MLE)




Likelihood and Log Likelihood

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

N
p(D | ) = l_[p(y(” | 6)
=1

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many
different values of the parameters)



MLE Objecti\/e Log is monotonic:

Ifa < b
Updating our objective: Minimize neg. log likelihood thenloga < logh
N
6 = argmax Hp y(i) 6
MLE 5 | | ( | ) //

N
= argmax 2 logp(y® | 6)
=
N
= argmin — z logp(y® | 6)
0 .
1=1

N
Minimize J(8) = —log L(0;D) = —Zlog p(y(i) | 6)
i=1



MLE for Gaussian
Gaussian distribution:
Y ~ N (u,0?)

_(y-w*

p(y | M,O'Z) — ! e 202

202

What is the log likelihood for three i.i.d. samples, given parameters u, 0%?
D = {yM =75,y =80,y =90}

- 2
Y-

N
L(u,0?%) = HW 2072 Ovie = argmax Hp(y(i) | 6)
| i
N

@ _ )\ A |
f(H»UZ) = 2 —logy/ 2mo? — (y ,u) Omie = argrglax z log P(y(l) | 9)
i

=1




Recipe for Estimation

MLE

1. Formulate the likelihood, p(D | 8)

2. Set objective J(8) equal to negative log of likelihood
J(8) = —logp(D|6)

3. Compute derivative of objective, dJ /00

4. Find 6, either

a. Set derivate equal to zero and solve for 6
b. Use (stochastic) gradient descent to step towards better 6



Probabilistic Formulation for ML
MLE for Linear and Logistic Regression



Using Statistics for Machine Learning
Likelihood vs conditional likelihood



Recipe for Estimation

MLE

1. Formulate the likelihood, p(D | 8)

2. Set objective J(8) equal to negative log of likelihood
J(8) = —logp(D|6)

3. Compute derivative of objective, dJ /00

4. Find 6, either

a. Set derivate equal to zero and solve for 6
b. Use (stochastic) gradient descent to step towards better 6



M(C)LE for Logistic Regression

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the
input of just one test results, X, and Xp _
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M(C)LE for Logistic Regression

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the
input of just one test results, X, and 1{’(3

OmLe = arggnax Hp(y(i) | x),0)
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M(C)LE for Multi-class Logistic Regression

Learn to predict if probability of output belonging to class k, Y, , given
inputX,P(Y;, =11X,04,...,0k)

N K ggx(i) H(y,ff)=1)

@MLE — argmaX 1 [1 [ ;
(i)
0 Y S




M(C)LE for Multi-class Logistic Regression

Learn to predict if probability of output belonging to class k, Y, , given
input X, P(Y;, =11X,04, ... HK)

r () (v '=1)

£(6; D) _1_[1_[ 0

1=1€ ¢




M(C)LE for Linear Regression f(z;1,0) =

1 —(x—p)*?

e 202
2102

Probabilistic interpretation of linear re%’ression

/

éMLE — argIHnaX Hp(y(l) ‘ x(i),H)
[

\/:wa+b




M(C)LE for Linear Regression

Probabilistic interpretation of linear regression

N
L(6;D) = Hp(y(” | x("),6)
l

f(z) = . e_(;;g)z
210 2
o1 (z9-n)
\V21o? e




Additional Slides



Probability Primer



Probability Vocab

Outcomes

Sample space

Events

Probability

Random variable

Discrete random variable
Continuous random variable
Probability mass function
Probability density function
Parameters



Example 3 < go R
IZ-—-» 2 O\

Random variable for splnach or no spmach

Random variable ﬂz Distribution

O

Sa pace —)  \/alues —_—) Probabilities or

- Densities
lcons: CC, https://openclipart.org/detail/296791/pizza-slice



Example owe

Random variable for spinach or no spinach

0 Siﬂ—%fo)\g

Random variable Distribution

-\SC"‘D:?O”% k— [0,77 pmt
N > O

Sample space —)  \/alues —_—) Probabilities or

Icons: CC, https://openclipart.org/detail/296791/pizza-slice Densities



Example

Random variable for topping typewith

three categories: none, non-meat, meat
Random variable (\ Distribution

T/ wne

\
o
S

—_ pt
Sample space —)  \/alues —) PTODavilities or

Densities

lcons: CC, https://openclipart.org/detail/296791/pizza-slice



Example

Random variable for topping typewith

three categories: none, non-meat, meat

T/wne

Random variable Distribution
BV E
> Y
5

~ /ZO

‘Pm—p-
Sample space —)  \/alues —_—) Probabilities or

Icons: CC, https://openclipart.org/detail/296791/pizza-slice Densities



Example

Random variable for number of heads after
two flips of a fair coin

—'4

Random variable Distribution

HH O — > |
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3

Probabilities or
Densities



Example

Random variable for number of heads after
two flips of a biased coin that lands heads 75%

Random variable Distribution
0
HH 0 7Y
- L3, 2L
;ﬁ | 94 Ty Ty
/ A 33
7 q4 ¢ _

Sample space —)  \/alues —_— Probabilities or
Densities



Example

Random variable for cat in picture or not

@ Random variable Distribution
> (-4
> ?

BC(Y\OMH: (7\

Sample space —)  \/alues —_— Probabilities or
Densities



Example

\\

Random variable for animal species in picture assuming 5 |
one animal picture and available species: dog, cat, pig 2 9.

T Random variable Distribution / =

U L) | 2

Do =3 2 .

ﬁ = 75 = (1752
Coﬁ(ﬁoﬁcﬁ\\ (7, 9, 79

Sample space —)  \/alues —_— Probabilities or
Densities




Example

Random variable for height of student

Ho)— R (onTinwuos 7[:()() — K
Random variable Distribution
Gaussia N
% N (u, 0?)

K
9, f 7[6(/, /‘“’SQ Pamme’ff(j
i ?c%

p
Sample space —)  \/alues —_— Probabilities or
Densities




Outcomes

Sample space /P ( el V\%

Event

A me\
P(y=1

Continuous random variabl C ‘DF

Probability mass function ?(XB ——P()( A
Probability density function ’F(X\ S (D(\ F(’Q:/P(X - b

Parameters

IS

Probability Vocab j_\ f)br[ ﬁuém_j

Random variable
Discrete random variable




Example Discrete Distributions

" |

Bernoulli F(Yf D = ¢
V¢ 0018 T(Y=0)= /’

Categorical

f

J
Binomial
Multinomial
Uniform

= p]

Y:f{‘y , €20, P(\( -|)= ¢

LP(YK DE f”%




. L, . Z
Example Continuous Distributions _ (-

o Q0%
P(VS/M\OJQV ot ©

Gaussian

Beta
Laplace



Probability Vocab
Margina fJ(X> —

S olc,y) aginaheins
Y
Joint Pé/)\/\ P&) V]?>®

Conditional P (Y /Y\ PG/B W 0') “y }B



Notation

Dataset
Parameters, generically 6
p(D|6),p(D; 6) Z\
Random variables
Capital P (\]j B 5 N
Values — 7 =
lower case

Random variable: function that maps events to values
Y is rand variable that maps the event of a coin toss being heads to value one

and the event of a coin toss being tails to zero

P(Y=1]|¢)= 3/4, where¢p =3/4
P(Y=1)=3/4

S
(Y = heads) = 3/4




Probability Toolbox

" Algebra

" Three axioms of probability
" Theorem of total probability

= Definition of conditional
probability

" Product rule

" Bayes’ theorem

" Chain rule

" Independence

" Conditional independence



Probability Tools Summary

Adding to the toolbox

P(A, B)
1. Definition of conditional probability P(A|B) =

P(B)
2. ChainRule  FodnceT (‘o\\e P(A,B) = P(A| B)P(B)

, P(A | B)P(B)
3. Bayes’ theorem P(BlA) =
(B1A) ==

4. Chain Rule...

N
P(Ay, - Ay) = P(A7) ) P(A; | Ai_y)
=2
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