10-315
Introduction to ML

Regularization

Instructor: Pat Virtue




Plan

Today

= Wrap-up neural nets (for now)
= Regularization
= (Make sure they aren’t too powerful ©)
= Regularization with L2 horm
= Regularization optimization
= Regularization with L1 nhorm




Regularization with L2 norm

Example: Linear regression with polynomial features



Poll 1 J&) = o

Which is model do you prefer, assuming both have zero training error?
%\
Model structure (for both models): ——

ho(x) = 0y + 0yx + 0,x% +03x3 + 0,x* +0:x> +0,x° +0,x7 +0gx°

Model parameters:
0=[90; 91; 92; 93' 04' 65! 96' 07' 88]T

A. BA —

[—190.0, —135.0, 310.0, 45.0, —62.0, 90.0, —82.0, —40.0, 29.0]"
B. HB —

| 25.5, —-64, -—-08, 0.0, 6.6, —44 0.2, -2.9, O.l]T



Poll 1

Which is model do you prefer, assuming both have zero training error?
Model structure (for both models):

ho(x) = 0y + 01x + 0,x2% +03x3 + 0,x* +05x° +0,x® +6,x7 +0gx8

Model parameters:
9=[901 01, 03, 93! 04, 95' 96' 07, 08]T

A 06, =[-190.0, —135.0, 310.0, 45.0, —62.0, 90.0, —82.0, —40.0, 29.0]7

@BB=[ 255 —6.4, —08, 00, 66 —44, 02 —29, 01]7




Overfitting

Definition: The problem of overfitting is when the model captures the
noise in the training data instead of the underlying structure

Overfitting can occur in all the models we’ve seen so far:
» Decision Trees (e.g. when tree is too deep)

= K-NN (e.g. when k is small)

" Linear Regression (e.g. with nonlinear features or extraneous features)

" Logistic Regression (e.g. with nonlinear features or extraneous features)

( = Neural networks



Best of both worlds

How can we keep the expressive power of a complex model while still
avoiding overfitting?

Notebook demo: regression regularization.ipynb
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https://drive.google.com/file/d/17aD17TVVIx8MO5icXOLL9RWyN7BUrTQD/view?usp=drive_link

Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial

basis function | Linear Regression (poly=9)

DEoED -

1.2 (1.2)2 .. (1.2 -
13 1.7 (172 .. (1.7
01 27 (272 .. (2.7)9y 1o
1.1 1.9 (1.9?2 .. (1.99°

0.5 -

true “unknown”
target function is 0.0 -
linear with
negative slope
and gaussian R

nOise 1.5 2.0 2.5




Symptoms of Overfitting

M=0 M=1 M= M =9
B 0.19 082 0.3l 0.35
6, 127 7.99 9232.37
6, -25.43 -5321.83
” 17.37 48568.31
6, -231639.30
B 640042.26
B -1061800.52
6, 1042400.18
s -557682.99
6, 125201.43




Motivation: Regularization

Occam’s Razor: prefer the simplest hypothesis

What does it mean for a hypothesis (or model) to be simple?

1. sma
2. sma

> 3. sma

number of features (model selection) j Z /
number of “important” features (feature reduction)

values for associated parameters //29//; Z Q norm

10



Regularization
Key idea:

Define regularizer v(0) that we will add to our minimization objective
to keep the model simple.

r(0) should be:
= Small for a simple model

" Large for a complex model

Z
L2 norm: square-root of sum of squares  § (‘95 - //9//2
L1 norm: sum of absolute values

LO norm: count of non-zero values



Regularization 2
@) =16l

A 0,=[6 3-4-2T 25+3¢*¥=45

B. 65 =0, 3,—4, 0]7 23



Poll 2
Which model do you prefer?

A = [—-190.0, —135.0, 310.0, 45.O]T Training error: 0.0

B 6;=[ 0.0, 0.0, 0.0, 0.0]" Training error: 34.2

Ay < o



Poll 3

Notebook demo: regression regularization.ipynb on course website

What is the best value for lambda?

0 = argmin J(0) +
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https://drive.google.com/file/d/17aD17TVVIx8MO5icXOLL9RWyN7BUrTQD/view?usp=drive_link

Poll 3

Notebook demo: regression regularization.ipynb on course website
What is the best value for lambda?
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https://drive.google.com/file/d/17aD17TVVIx8MO5icXOLL9RWyN7BUrTQD/view?usp=drive_link

Regularization .2
~
Given objective function: /() = //y_, )(‘4//2

A

Goal is to find: @ = argmin J(0) 4+ Ar(0)

9 I — =

Key idea: Define regularizer r(8) s.t. we tradeoff
between fitting the data and keeping the model simple

Choose form of r(0): // 67//2Z

Slide credit: CMU MLD Matt Gormley
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Regularization

L2 Demos

Desmos: 1-D
Regularization Interpolation

Notebook: 2-D
L1 sparsity.ipynb (L2 part for now)
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https://www.desmos.com/calculator/wmkqef6itl
https://colab.research.google.com/drive/1JDxYswLLJJQNOUGnYnuM82TVZpQqTG5x?usp=drive_link

Regularization




Poll 4

Suppose we are minimizing J'(6) where

T'(6) = J(0) + \r(6)

As A increases, the minimum of J'(6) will... r(0)
A. ..move towards the midpoint between J’(6) and r(0)
...move towards the minimum of J(0)

...move towards the minimum of r(0)
...move towards a theta vector of positive infinities
...move towards a theta vector of negative infinities

...stay the same




Regularization Exercise

In-class Exercise
1. Plot train error vs. regularization hyperparameter (cartoon)
2. Plot validation error vs . regularization hyperparameter (cartoon)

3e 0 = a,rgénin J(0)+ Ar(0)
: \JVM (9§

Y,
regutarization hyperparameter{ A

20



Poll 5

Suppose we are minimizing J'(0) where
J'(0) = J(0)+ \r(0)

As we increase A from zero, the validation error will...
A. ...Increase
B. ...decrease
C. ..firstincrease, then decrease

..first decrease, then increase

E. ...stay the same

0
\S
= (613

r(6)

v



Poll 6

As we increase A, our model is more likely to:

A. O '
B. Underfit

~

0 = argmin J(0) + \r(0)
0




Regularization e

Don’t Regularize the Bias (Intercept) Parameter

* In our models so far, the bias / intercept parameter is usually denoted by 6,
- that is, the parameter for which we fixed x; = 1

* Regularizers always avoid penalizing this bias / intercept parameter

 Why? Because otherwise the learning algorithms wouldn’t be invariant to a
shift in the y-values

Whitening Data >< :G(fw«) —_/4>/Q/

* It’'s common to whiten each feature by subtracting its mean and dividing by
Its variance

* For regularization, this helps all the features be penalized in the same units
(e.g. convert both centimeters and kilometers to z-scores)



Regularization Optimization



Linear Regression with L2 Regularization

R/ a.k.a Ridge regression or Tychonov regression

3B = Ily=%e); + died;
O)G’\DN\ (j/'—)(wwz , >\v

il 9‘3 O ’O/X<Y XQ} + A0




Linear Algebra Timeout AV ”f((/ = <A*C/ v
Distribution of multiplic and addition with scalar

Otigina | | Efoker\ ‘ /’ X@)

3800 B (D ]}F

AV Fc (A +0) (A*CI Vv

)i {;1 ! ()




Regularization with L1 norm



Model Preference

Which is model do you prefer, assuming both have zero training error?
Model structure (for both models):

hg(X) = 90 + 91x1 + 02X2 +63X3 +04X4 +95X5 +96x6 +97X7 +98x8

Model parameters:
0=[90; 91; 92; 93' 04' 65! 96' 07' 88]T

A. BA —
[—190.0, —135.0, 310.0, 45.0, —62.0, 90.0, —82.0, —40.0, 29.0]"
"%B. BB —

[ 255, —-6.4, -08, 0.0, 6.6, —44, 0.2, -29, 0.1]'
§

What if X was a vector of input feature measurements (rather than
polynomial features)?



Motivation: Regularization

Example: Stock Prices

Suppose we wish to predict Google’s
stock price at time t+1

What features should we use?
(putting all computational concerns aside)

= Stock prices of all other stocks at times t, t-1, t-
2, .., t-k

= Mentions of Google with positive / negative
sentiment words in all newspapers and social
media outlets

Do we believe that all of these features
are going to be useful?

S&P 500 (1950-2016)
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Regularization
Key idea:

Define regularizer v(0) that we will add to our minimization objective
to keep the model simple.

r(0) should be:

= Small for a simple model

" Large for a complex model /
L2 norm: square-root of sum of squares M
L1 norm: sum of absolute values - //152//, - JZ /9) ]

@norm:count of non-zero values = //y//a 72\#/(&)#0\



Regularization

A. BA — [6, 3, —4‘, —Z]T

B 6; =0, 3,—4, 0]T
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Regularization

Given objective function: J(8)

~

Goal isto find: @ = argmin J(0) + Ar(6)

9 ———

Key idea: Define regularizer 7(0) s.t. we tradeoff
between fitting the data and keeping the model simple

Choose form of r(0): (L)
= Example: g-norm (usually p-norm) r(0) = ||0]|, = [Z ||9m||q}
q 1(0) yields parame- name  optimization notes
ters that are...
0 [|8]lo =>_1(0,, #0) zerovalues Loreg. no good computa- e _
tional solutions

1 ||6]]1 =) |0ml] zero values Lireg. subdifferentiable
2 (||8]]2)% = > 02, small values L2reg. differentiable

32



Regularization

)(.6)= 16 -] /‘[E]

/V\\‘\f\ \)[01 915
¢ el
st lell, £




Regularization

L1 demo: L1 sparsity.ipynb



https://colab.research.google.com/drive/1JDxYswLLJJQNOUGnYnuM82TVZpQqTG5x?usp=drive_link

L2 vs L1 Regularization

Combine original objective with penalty on parameters

wo A wo A

Ve

Figures: Bishop, Ch 3.1.4



L2 vs L1: Housing Price Example

Predict housing price from several features
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Figure: Emily Fox, University of Washington



L2 vs L1: Housing Price Example

Predict housing price from several features

49 —— bedrooms
'- —=— bathroomg
—=— sqft_living

1 —=— sqft_lot
'- floors

—— yr_built
yI_renovaj
waterfront

200000

100000
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Figure: Emily Fox, University of Washington



L2 vs L1: Housing Price Example

Predict housing price from several features
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Figure: Emily Fox, University of Washington



L2 vs L1: Housing Price Example

Predict housing price from several features
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Figure: Emily Fox, University of Washington



L2 vs L1: Housing Price Example

Predict housing price from several features
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Figure: Emily Fox, University of Washington



L2 vs L1: Housing Price Example

Predict housing price from several features
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L2 vs L1: Housing Price Example

Predict housing price from several features
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Figure: Emily Fox, University of Washington



L2 vs L1: Housing Price Example

Predict housing price from several features
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Figure: Emily Fox, University of Washington



L2 vs L1: Housing Price Example

Predict housing price from several features
!
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Regularization as I\/IAF;Z

L1 and L2 regularization can be interpreted as maximum a-posteriori
(MAP) estimation of the parameters

To be discussed later in the course...

45



Additional Slides



Logistic Regression with Nonlinear Features

Jupyter notebook demo

47



Example: Logistic Regression
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For this example, we
construct nonlinear
features (i.e. feature
engineering)

Specifically, we add
polynomials up to order 9
of the two original features
X, and x,

Thus our classifier is linear
in the high-dimensional
feature space, but the
decision boundary is
nonlinear when visualized
in low-dimensions (i.e. the
original two dimensions)
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Example: Logistic Regression

error
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1e-05)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.0001)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.001)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=10)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Slide credit: CMU MLD Matt Gormley

Classification with Logistic Regression (lambda=10000)
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Example: Logistic Regression

~ Classification with Logistic Regression (lambda=100000)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1e+06)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1e+07)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

error
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